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Abstract The electroelastic coupling interaction between multiple screw dislocations and a circular inclusion
with an imperfect interface in a piezoelectric solid is investigated. The appointed screw dislocation may be
located either outside or inside the inclusion and is subjected to a line charge and a line force at the core.
The analytic solutions of electroelastic fields are obtained by means of the complex-variable method. With
the aid of the generalized Peach–Koehler formula, the explicit expressions of image forces exerted on the
piezoelectric screw dislocations are derived. The motion and the equilibrium position of the appointed screw
dislocation near the circular interface are discussed for variable parameters (interface imperfection, material
electroelastic mismatch, and dislocation position), and the influence of the nearby parallel screw dislocations is
also considered. It is found that the piezoelectric screw dislocation is always attracted by the electromechanical
imperfect interface. When the interface imperfection is strong, the impact of material electroelastic mismatch
on the image force and the equilibrium position of the dislocation becomes weak. Additionally, the effect of
the nearby dislocations on the mobility of the appointed dislocation is very important.

Keywords Screw dislocations · Imperfect interface · Piezoelectric solid · Image force

1 Introduction

The interaction between dislocations and other defects, such as cracks, cavities, and inclusions, plays an
important role in understanding the physical behavior of many materials. The solution of the appropriate
problem involving the interaction of dislocations with inclusions has two important physical interpretations.
First, it increases the understanding of lattice defects, thereby providing valuable insight into the strengthening
and hardening mechanism of materials [1–5]. Second, the solution of a single dislocation in solids can serve
as the kernel function in an integral equation formulation for a crack, hole or finite defect [6,7].

As a typical intelligent material, piezoelectric materials are used widely in modern technologies such as
high-power sonar transducers, electromechanical actuators, piezoelectric power supplies and micropositioners
due to their useful electromechanical coupling effect. The presence of various defects embedded in piezoelectric
materials, such as dislocations, cracks, cavities and inhomogeneities can greatly influence the performance of
such piezoelectric devices and structures. A thorough understanding of the electroelastic coupling behavior of
these devices requires accurate knowledge of both the electric and mechanical fields produced by these defects
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in piezoelectric materials. The investigation of the electroelastic interaction of dislocations and inclusions is
thus significant [8–12].

In various studies [8–12] involving the electroelastic interaction of dislocations with inclusions in piezo-
electric solids, the basic assumption was made that the bonding along the interface of two dissimilar materials
is perfect. This is an idealization of the complex practical problem. In fact, this condition effectively ignores the
presence of interfacial damage between the inclusion and the matrix, for example, damage arising from imper-
fect adhesions, microcracks, and microvoids. It was realized that the significance of damage or imperfection
of the interface, in any mechanical analysis, is paramount in understanding the physical behavior of composite
materials. One of most widely used models of an imperfect interface is based on the assumption that tractions
are continuous but that displacements are discontinuous across the interface [13,14]. More precisely, jumps
in the displacement components are assumed to be proportional, in terms of spring-factor-type interface para-
meters, to their respective interface traction components. Using this model (the spring-layer interface model),
Fan and Wang [15], and Sudak [16,17] incorporated the effects of an imperfect interface into the analysis of
a screw dislocation interacting with a circular inclusion. Recently, the problem of the interaction between an
edge dislocation and a circular inclusion with imperfect interface was investigated by Wang [18].

In the present work, we consider the problem of the electroelastic interaction between multiple screw
dislocations and a circular inclusion with an imperfect interface under anti-plane shear and in-plane electrical
field loadings in a piezoelectric material. As regards the interface bonding imperfection, in addition to the
spring-layer model adopted in the literature [14], we further employ a similar linear relationship between the
discontinuities of electric potential and electric displacement [19]. By using the complex-variable method,
the analytic solutions of electroelastic fields and image forces exerted on piezoelectric screw dislocations
are derived. The impact of the interface imperfection, the material electroelastic mismatch, and the nearby
dislocations on the image force acting on an appointed screw dislocation is examined and discussed when the
dislocation is close to the inclusion.

2 Basic equations and solutions

Consider an infinitely long circular piezoelectric inclusion with a radius of R embedded in another piezoelectric
matrix. The matrix and inclusion are assumed to be transversely isotropic media belonging to a hexagonal
crystal class 6 mm with an isotropic basal xoy-plane in a Cartesian coordinate system xyz and have different
elastic and electric properties, but they are assumed to have the same material orientation in that they have both
been poled along the z-direction [20]. The matrix, assumed to be infinite in all directions, is subjected to remote
uniform anti-plane shear stresses and in-plane electric fields. Several parallel piezoelectric screw dislocations
are located at arbitrary points in either the matrix or the inclusion. Every screw dislocation is assumed to be
straight and infinitely long in the z-direction, suffering a finite discontinuity in the displacement and electric
potential across the slip plane and has a line force and a line charge along its core. The displacement jump
across the slip plane corresponds to the Burgers vector, which is perpendicular to xoy-plane. The jump in
the electric potential (the electric-potential dislocation) corresponds to the electric dipole layer along the slip
plane [21,22]. The regions occupied by the inclusion and the matrix will be referred to as regions 1 and 2,
respectively. The interface between the inclusion and the matrix is imperfect and will be denoted by the curve
L . The imperfect interface is a mechanically compliant and dielectrically weakly conducting interface. For a
mechanically compliant imperfect interface we adopt one of the more useful models, the linear spring model.
For the case of a dielectrically weakly conducting interface, the normal electric displacement is continuous but
the electric potential is discontinuous across the interface. Thus, the jump in the electric potential is proportional
to the normal electric displacement [19].

As the current problem is an anti-plane one, the out-of-plane displacement and in-plane electric field need
to be considered: the displacement w, the strains γzx and γzy , the stresses σzx and σzy , the electric potential ϕ,
the electrical field components Ex and Ey , and the electric displacement components Dx and Dy in the local
Cartesian coordinates. All components are only functions of x and y.

Introducing the following vectors of generalized displacement, stress and strain:

U =
{

w
ϕ

}
, �x =

{
σzx

Dx

}
, �y =

{
σzy

Dy

}
, Yx =

{
γzx

− Ex

}
, Yy =

{
γzy

− Ey

}
(1)
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Referring to work by Chen et al. [23], the generalized displacement, stress and strain can be expressed by
a complex variable vector f(z) = [

fw(z) fϕ(z)
]T.

U = Re [f(z)] (2)

Yx − ıYy = f ′(z) (3)

�x − ı�y = Mf ′(z) (4)

where the prime denotes the derivative with respect to the argument z and M =
[

c44 e15
e15 −ε11

]
can be called

the electroelasticity modulus matrix. And c44, e15 and ε11 denote shear modulus, piezoelectric constant and
dielectric constant of a piezoelectric solid, respectively. In terms of polar coordinates r and θ , Eq. (4) can be
expressed as

�r − i�θ = Mf ′(z)eıθ (5)

where �r = [
σzr Dr

]T and �θ = [
σzθ Dθ

]T.
Therefore, the resultant force and normal components of the electric displacement along any arbitrary arc

AB is

T =
B∫

A

(�x dy − �ydx) = M Im [f(z)]B
A (6)

It is prescribed that the circular inclusion is imperfectly bonded to the matrix along the L by the spring-layer
interface model. The imperfect interface conditions on L are given by [14]

T2(t) − T1(t) = 0 |t | = R (7)

U2(t) − U1(t) = Q�r1(t) = Q�r2(t) |t | = R (8)

where the subscripts 1 and 2 refer to the inclusion and the matrix regions, respectively. Q =
[

1/Kσ 0
0 1/Ke

]
,

Kσ denotes the bonding stiffness constant of the interface and Ke is the electric spring constant [19]. For a
perfect bonded interface Kσ and Ke tend to infinity, while if Kσ = Ke = 0, condition (8) reduces to the case
of a traction-free interface.

Firstly, let us consider the case of a single piezoelectric screw dislocation b1 = [
bz1 bϕ1

]T located at the
point z1(z1 = x1 + ıy1) in the matrix. The dislocation has a line force p1 and a line charge q1 along its core.
The analytical function vector f2(z) in the matrix region can be taken in the form

f2(z) = B1 ln(z − z1) + �z + f20(z) |z| > R (9)

where B1 = 1
2π i

[
bz1
bϕ1

]
+ 1

2π
[M2]−1

[−p1
q1

]
and M2 =

[
c(2)

44 e(2)
15

e(2)
15 −ε

(2)
11

]
can be called the electroelasticity

modulus matrix of the piezoelectric matrix material (region 2). � is determined by the remote shear stresses
σ∞

xz and σ∞
yz and remote electric fields E∞

x and E∞
y :

� = 1

c(2)
44

[
1 −e(2)

15
0 c(2)

44

][
σ∞

xz − ıσ∞
yz

−E∞
x + ıE∞

y

]
(10)

By applying the Riemann–Schwarz symmetry principle, two new complex potentials can be introduced

f2∗(z) = f2(R2/z) |z| < R (11)

f1∗(z) = f1(R2/z) |z| > R (12)

Using Eqs. (9) and (11), f2∗(z) can be expressed as

f2∗(z) = B1 ln

(
R2

z
− z1

)
+ �

R2

z
+ f2∗0(z) |z| < R (13)

where the overbar represents the complex conjugate.
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Obviously, f1(z) is holomorphic in the region |z| < R if no singularities exist, and f1∗(z) is holomorphic
in the region |z| > R.

With the aid of Eqs. (2), (5), (6), (11) and (12), the generalized traction and displacement boundary
conditions in Eqs. (7) and (8) can be written as

[M1f1(t) + M2f2∗(t)]+ = [M2f2(t) + M1f1∗(t)]− |t | = R (14)[
f1(t) − f2∗(t) + QM1f ′

1(t)t/R
]+ = [

f2(t) − f1∗(t) + QM1f ′
1∗(t)t/R

]− |t | = R (15)

where the superscripts + and − denote the boundary values of a physical quantity as z approaches the interface.
Noting Eqs. (9–13) and according to the generalized Liouville theorem [24], Eqs. (14) and (15) lead to

h(z) =
{

M1f1(z) + M2f2∗(z)|z| < R

M2f2(z) + M1f1∗(z)|z| > R
(16)

g(z) =
{

f1(z) − f2∗(z) + QM1f ′
1(z)z/R|z| < R

f2(z) − f1∗(z) + QM1f ′
1∗(z)z/R|z| > R

(17)

with

h(z) = M2B1 ln(z − z1) + M2B1 ln(
R2

z
− z1) + M2�z + M2�

R2

z
(18)

g(z) = B1 ln(z − z1) − B1 ln(
R2

z
− z1) + �z − �

R2

z
(19)

It is found from Eqs. (16) and (17) that

[M1 + M2]f1(z) + M2QM1f ′
1(z)z/R = M2g(z) + h(z) (20)

The first differential equation above can easily be solved by the power-series method as [24]

f1(z) =
∞∑

k=0

ak zk+1 |z| < R (21)

where

a0 = 2
[
M1 + M2 + M2QM1(1 + k)/R

]−1M2

[
� − B1(

1

z1
)

]
(22)

ak = −2
[
M1 + M2 + M2QM1(1 + k)/R

]−1M2B1
1

1 + k
(

1

z1
)k+1 k ≥ 1 (23)

From Eq. (12), it is seen that

f1∗(z) =
∞∑

k=0

ak R2(1+k)z−(k+1) (24)

The complex potential vector f2(z) in the matrix region can be obtained from Eqs. (16) and (24).

f2(z) = B1 ln(z − z1) + B1 ln

(
R2

z
− z1

)
+ �z + �

R2

z
− M−1

2 M1

∞∑
k=0

ak R2(1+k)z−(k+1) (25)

In the absence of the piezoelectric coupling effect, the results of Eqs. (21) and (25) are identical to those of
Sudak [16].

Secondly, as the counterpart problem, let us consider the case of a piezoelectric screw dislocation is inside
the circular inclusion. The solutions valid for the dislocation located inside the inclusion could be used to
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estimate the energy levels involved for a dislocation to cut the inclusion. For the problem under consideration,
the complex potential vectors f1(z) and f2(z) can be taken in the form [25]

f1(z) = A1 ln(z − z1) + f10(z) |z| < R (26)

f2(z) = B1 ln z + f20(z) |z| > R (27)

where A1 = 1
2π i

[
bz1
bϕ1

]
+ 1

2π
[M1]−1

[−p1
q1

]
. The complex function vectors f10(z) and f20(z) are holomorphic

in the regions where they are defined.
The substitution of Eqs. (26) and (27) into Eqs. (11) and (12), respectively, leads to

f1∗(z) = A1 ln(z − R2

z1
) + f1∗0(z) |z| > R (28)

f2∗(z) = B1 ln
R2

z
+ f2∗0(z) |z| < R (29)

Similarly, the generalized traction and displacement boundary conditions in Eqs. (7) and (8) can be written
as

[M1f1(t) + M2f2∗(t)]+ = [M2f2(t) + M1f1∗(t)]− |t | = R (30)[
f1(t) − f2∗(t) + QM1f ′

1(t)t/R
]+ = [

f2(t) − f1∗(t) + QM1f ′
1∗(t)t/R

]− |t | = R (31)

Noting Eqs. (26–29) and according to the generalized Liouville theorem [24], Eqs. (30) and (31) lead to

H(z) =
{

M1f1(z) + M2f2∗(z) |z| < R

M2f2(z) + M1f1∗(z) |z| > R
(32)

G(z) =
{

f1(z) − f2∗(z) + QM1f ′
1(z)z/R |z| < R

f2(z) − f1∗(z) + QM1f ′
1∗(z)z/R |z| > R

(33)

with

H(z) = M1A1 ln(z − z1) + M1A1 ln

(
z − R2

z1

)
− M2B1 ln z (34)

G(z) = A1 ln(z − z1) − A1 ln

(
z − R2

z1

)
+ QM1A1

z

(z − z1)R
+ QM1A1

z

(z − R2/z1)R
+ B1 ln z (35)

From Eqs. (32) and (33) as well as Eq. (26), we have

[M1 + M2]f10(z) + M2QM1f ′
10(z)z/R = [M1 − M2]A1 ln

(
z − R2

z1

)
+ M2QM1A1

z

(z − R2/z1)R
(36)

This equation can also be solved by the power-series method as

f10(z) =
∞∑

k=0

bk zk+1 (37)

where

bk = −[
M1 + M2 + M2QM1(1 + k)/R

]−1[M1 − M2 + M2QM1(1 + k)/R
]
A1

1

1 + k

(
z1

R2

)k+1

(38)

Therefore, the complex potential vectors f1(z) and f2(z) can be obtained as

f1(z) = A1 ln(z − z1) +
∞∑

k=0

bk zk+1 (39)

f2(z) = M−1
2 M1A1 ln(z − z1) − B1 ln z − M−1

2 M1

∞∑
k=0

bk R2(1+k)z−(k+1) (40)
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If we take Kσ = Ke = ∞ (for a perfect bonded interface), the solutions in Eqs. (39) and (40) are identical
to the reduced results in Liu et al. [11].

The analytical solutions of the complex potential vectors have been given in Eqs. (21), (25), (39) and (41).
The explicit solutions of electroelastic fields in the circular inclusion and the matrix regions can be easily
derived from Eqs. (2–4).

Equations (21), (25), (39) and (41) are the explicit expressions of Green’s functions for the current model
subjected to a single piezoelectric screw dislocation located in either the matrix or the inclusion. The solutions
for two or more screw dislocations in the matrix can be easily constructed by the superposition of Green’s
functions.

3 Image forces

The image force [26] on the dislocation is an important physical parameter in understanding the electroelastic
behavior of inhomogeneous material, especially in studying the mobility and so-called trapping mechanism
of the piezoelectric dislocation due to the fact that this mobility is dependent upon the internal forces acting
on the dislocation. According to the generalized Peach–Koehler formula, the image force acting on a screw
dislocation at the point z1 can be obtained as [26]:

fx − ı fy = ı[bz1, bϕ1][�0
x j − ı�0

y j ] + [p1, −q1]
[
M j

]−1[�0
x j − ı�0

y j ] ( j = 1, 2) (41)

where fx and fy are components of the image force along the x and y directions, respectively. �0
x and �0

y
denote the perturbation generalized stress components at the point z1.

The perturbation generalized stress components at the dislocation point are obtained by subtracting those
attribution to the piezoelectric screw dislocation in the corresponding infinite homogeneous medium from
the stress fields calculated using Eq. (4) for the current problem, then taking the limit for z approaches z1.
Referring to the work of Lee et al. [27], they can be written as

�0
x2 − ı�0

y2 = M2B1

(
1

z1 − R2/z1
− 1

z1

)
+ M2� − M2�

R2

z2
1

+ M1

∞∑
k=0

ak R2(1+k)(1 + k)(
1

z1
)k+2 (42)

for the dislocation inside the matrix, and

�0
x1 − ı�0

y1 = −M1

∞∑
k=0

[
M1 + M2 + M2QM1(1 + k)/R

]−1

×[
M1 − M2 + M2QM1(1 + k)/R

]
A1(

z1

R2 )k+1zk
1 (43)

for the dislocation inside the inclusion.
The image forces for the problem of multiple parallel screw dislocations located at arbitrary points in

either the matrix or the inclusion phase can be derived by the superposition method. Consider the case that two
parallel piezoelectric screw dislocations B1 and B2 are located at points z1 and z2 in the matrix, respectively.
The total perturbation generalized stress components at the screw dislocation z1 can be calculated as:

�0
x2−ı�0

y2 = M2B1

(
1

z1−R2/z1
− 1

z1

)
+ M2�−M2�

R2

z2 + M2B2
1

z1 − z2
+ M2B2

(
1

z1−R2/z2
− 1

z2

)

+2M1

∞∑
k=0

[
M1 + M2 + M2QM1(1 + k)/R

]−1M2

[
�δ0k − B1(

1

z1
)k+1

]
R2(k+1)

z(k+2)
1

−2M1

∞∑
k=0

[
M1 + M2 + M2QM1(1 + k)/R

]−1M2B2(
1

z2
)k+1 R2(k+1)

z(k+2)
1

(44)
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Similarly, for the case of two parallel piezoelectric screw dislocations A1 and A2 located at points z1 and
z2 in the inclusion, respectively, we obtain

�0
x1 − ı�0

y1 = −M1

∞∑
k=0

[
M1 + M2 + M2QM1(1 + k)/R

]−1[M1−M2 + M2QM1(1 + k)/R
]
A1(

z1

R2 )k+1zk
1

+M1A2
1

z1 − z2
− M1

∞∑
k=0

[
M1 + M2 + M2QM1(1 + k)/R

]−1

×[
M1 − M2 + M2QM1(1 + k)/R

]
A2(

z2

R2 )k+1zk
1 (45)

Substituting Eqs. (42–45) into Eq. (41), the explicit expressions of the image force on the piezoelectric screw
dislocation can be obtained for different cases. Here we omit the details to save space.

4 Results and discussion

Using the expressions of the image force given in Eq. (41), it is possible to discuss some characteristics of the
problem under consideration. Firstly, we utilize Eq. (41) together with Eq. (42) to illustrate the influence of
various parameters on the image force exerted on the dislocation when a single piezoelectric screw dislocation
is located in the matrix. In the following discussion, without loss of generality, we suppose that the piezoelectric
screw dislocation lies at the point x1 on the x-axis. Additionally, we assume that the remote electroelastic loads
vanish (� = 0) and that the line charge and line force are zero. In this case, fy = 0 and the component of

the normalized image force along the x-axis direction is defined as fx0 = 2π R fx/c(2)
44 b2

z1. Here, we take

the piezoelectric screw dislocation vector b1 = [
bz1 bϕ1

]T = [
1.0 × 10−9m 1.0V

]T and the piezoelectric

matrix material is PZT-5H with the electroelastic properties: c(2)
44 = 3.53 × 1010N/m2, e(2)

15 = 17.0C/m2 and

ε
(2)
11 = 1.51×10−8C2/Nm2 [28]. In addition, let us introduce four convenient nondimensional parameters: m1 =

c(1)
44 /RKσ , m2 = e(1)

15 /RKσ m3 = e(1)
15 /RKe and m4 = ε

(1)
11 /RKe. Here, m j ( j = 1, 2, 3, 4) characterizes the

effectiveness of bonding (degree of interface imperfection) at the interface in transferring load between the
matrix and the inclusion. Physically, a very small value of m j ( j = 1, 2, 3, 4) corresponds to perfect bonding
condition while a very large value of m j ( j = 1, 2, 3, 4) corresponds to a traction-free bonding condition.

Figures 1, 2, and 3 show the variation of the normalized force fx0 with respect to the relative electroelastic
moduli with different parameter m1 for x1/R = 1.2, m4 = 0. From the above definition, it is known that, if
m1 and m4 are known, the values of m2 and m3 can easily be obtained. It is seen from Fig. 1 that the repulsive
force acting on the piezoelectric screw dislocation increases with increasing relative shear modulus c(1)

44 /c(2)
44 .

On the other hand, the attractive force will increase with increasing values of parameter m1. The influence
of the shear modulus of the inclusion on the image force will be very small when m1 is taken to be a large

Fig. 1 fx0 versus c(1)
44 /c(2)

44 for different values of m1(e
(1)
15 = e(2)

15 , ε
(1)
11 = ε

(2)
11 , x1/R = 1.2, m4 = 0)
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Fig. 2 fx0 versus e(1)
15 /e(2)

15 for different values of m1(c
(1)
44 = c(2)

44 , ε
(1)
11 = ε

(2)
11 , x1/R = 1.2, m4 = 0)

Fig. 3 c(1)
44 /c(2)

44 = 0.1 versus ε
(1)
11 /ε

(2)
11 for different values of m1(c

(1)
44 = c(2)

44 , e(1)
15 = e(2)

15 , x1/R = 1.2, m4 = 0)

value. Figure 2 shows that, if m1 is taken to be a small value, the inclusion first attracts the piezoelectric screw
dislocation, and then repels it with increasing absolute value of the ratio e(1)

15 /e(2)
15 . If m1 is taken to be a large

value, the inclusion will always attract the dislocation. By increasing the absolute value of the ratio e(1)
15 /e(2)

15 ,
the influence of the parameter m1 will become more important and will obviously increase. It is observed from
Fig. 3 that, if m1 = 0, the inclusion will repel the dislocation when the value of the ratio ε

(1)
11 /ε

(2)
11 is less than

one. This rule is opposite to that given by either c(1)
44 /c(2)

44 or e(1)
15 /e(2)

15 . Similarly, when the value of m1 is large,

regardless of the value of the ratio ε
(1)
11 /ε

(2)
11 , the inclusion will always attract the dislocation.

Figures 4 and 5 plot the variation of the normalized force fx0 with respect to the relative location of the
dislocation x1/R for different electroelastic property combinations for m1 = m4 = 0.1. It is found from
Fig. 4 that there is no equilibrium position on the x-axis for soft inclusion and the inclusion always attracts
the dislocation. When the inclusion is stiffer than the matrix (e.g., c(1)

44 /c(2)
44 = 2), the dislocation is first

repelled then attracted by the inclusion when the dislocation approaches the inclusion from infinity. In this
case, an unstable equilibrium position will be found on the x-axis. However, if the inclusion is very stiff (e.g.,
c(1)

44 /c(2)
44 = 100), the inclusion will always repel the dislocation and again no equilibrium position is available.

Fig. 5 shows that, if ε
(1)
11 /ε

(2)
11 ≥ 1, the inclusion always attracts the dislocation and no equilibrium position

of the dislocation is available on the x-axis. On the other hand, if ε
(1)
11 /ε

(2)
11 < 1, the dislocation may be first

attracted then repelled by the inclusion and an unstable equilibrium position may be available. However, when
the value of the ratio ε

(1)
11 /ε

(2)
11 is very small (e.g., ε

(1)
11 /ε

(2)
11 = 0.1), the inclusion always repels the dislocation

and no equilibrium position is available on the x-axis.
Secondly, we utilize Eq. (14) together with Eq. (43) to illustrate the impact of various parameters on the

image force when a single piezoelectric screw dislocation is located in the inclusion. The investigation of the dis-
location located inside the inclusion may be helpful in estimating the energy levels involved for a dislocation to
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Fig. 4 fx0 versus x1/R for different values of c(1)
44 /c(2)

44 (e(1)
15 = e(2)

15 , ε
(1)
11 = ε

(2)
11 , m1 = m4 = 0.1)

Fig. 5 fx0 versus x1/R for different values of ε
(1)
11 /ε

(2)
11 (c(1)

44 = c(2)
44 , e(1)

15 = e(2)
15 , m1 = m4 = 0.1)

Fig. 6 fx0 versus x1/R for different values of c(2)
44 /c(1)

44 (e(2)
15 = e(1)

15 , ε
(2)
11 = ε

(1)
11 , m1 = m4 = 0.1)

cut the inclusion. Here, the piezoelectric screw dislocation vector b1 = [
bz1 bϕ1

]T = [
1.0 × 10−9m 1.0V

]T

is also used and the inclusion is taken to be PZT-5H with the electroelastic properties: c(2)
44 = 3.53×1010N/m2,

e(2)
15 = 17.0C/m2 and ε

(2)
11 = 1.51 × 10−8C2/Nm2[28]. Figures 6 and 7 show the variation of the normalized

force fx0 with respect to the relative location of the dislocation x1/R for different electroelastic property
combinations. It is found from Fig. 6 that there is no equilibrium position of the dislocation on the x-axis for
the case of a soft matrix and an imperfect interface. The dislocation will be attracted by the circular interface
when the dislocation approaches the interface from center of the inclusion (original point). When the matrix
is stiffer than the inclusion matrix (e.g., c(2)

44 /c(1)
44 = 5), the dislocation is first repelled then attracted by the

interface. In this case, an unstable equilibrium position will also be found on the x-axis inside the inclusion.
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Fig. 7 fx0 versus x1/R for different values of ε
(2)
11 /ε

(1)
11 (c(2)

44 = c(1)
44 , e(2)

15 = e(1)
15 , m1 = m4 = 0.1)

Fig. 8 fx0 versus x1/R for different values of δ and b2(α = 30◦, M1 = 5M2, m1 = m4 = 1)

However, if the matrix is very stiff (e.g., c(2)
44 /c(1)

44 = 100), the interface will always repel the dislocation and

again no equilibrium position is available. It is seen from Fig. 7 that, if ε
(2)
11 /ε

(1)
11 ≥ 1, the interface always

attracts the dislocation as the dislocation nears the interface. On the other hand, if ε
(2)
11 /ε

(1)
11 < 1, the dislocation

may be first repelled then attracted by the interface and an unstable equilibrium position may be available.
However, when the value of the ratio ε

(2)
11 /ε

(1)
11 is very small (e.g., ε

(2)
11 /ε

(1)
11 = 0.1), the interface always repels

the dislocation and no equilibrium position is available on the x-axis.
In the following, the effect of a closer parallel screw dislocations will be studied. Consider the case that two

parallel piezoelectric screw dislocations b1 and b2 are located at the points z1(z1 = x1) and z2 = (z2 = reıα) in
the matrix, respectively. The piezoelectric matrix material is also taken to be PZT-5H. The relative location of
the dislocation z2 relative to the inclusion is defined as δ = r/R. The normalized image force fx0 with different
values of δ and b2 as a function of x1/R is depicted in Fig. 8 for θ = 30◦, M1 = 5M2 and m1 = m4 = 1.
It can be seen that, when x1/R reaches a critical value, the direction of the image force acting on the screw
dislocation z1 produced by the dislocation z2 can be changed in the two cases b2 = b1 and b2 = −b1. For
the case b2 = −b1, if the two dislocations are close to one another, the unstable equilibrium point of the
dislocation z1 near the inclusion may disappear due to the effect of the nearby dislocation z2. However, if
the distance is larger, a new stable equilibrium point of the dislocation z1 may be produced along the x-axis
direction and there are two equilibrium points when the dislocation z1 approaches the inclusion from infinity.
On the other hand, for the case b2 = b1, the number and stability of equilibrium points of the dislocation will
not be altered, but the position of equilibrium point is variable to consider the effect of nearby dislocations.
The normalized image force fx0 with various values of b2 and m j as a function of θ is shown in Fig. 9 for
x1/R = 1.2, and M1 = 5M2. Figure 9 indicates that the direction of the image force exerted on the dislocation
z1 produced by the dislocation z2 will be altered when the absolute value of the angle α reaches a critical value
for the two cases b2 = b1 and b2 = −b1. The effect of the dislocation z2 on the image force acting on the
dislocation z1 is very obvious when two screw dislocations are both located on the x-axis. The direction of the
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Fig. 9 fx0 versus α◦ for different values of m j and b2(x1/R = 1.2, M1 = 5M2, δ = 1.6)

total image force exerted on the dislocation z1 will be altered when the absolute value of the angle α reaches a
critical value, considering the effect of the interface imperfection for the case b2 = −b1. A new equilibrium
position of the dislocation z1 along the x-axis direction may be produced. However, for the case b2 = b1, the
original equilibrium position of dislocation z1 along the x-axis direction may disappear due to the effect of
the interface imperfection.

5 Conclusions

The problem of the interaction between multiple piezoelectric screw dislocations, located inside either the
inclusion or the matrix, and a circular inclusion with an imperfect interface under remote uniform anti-plane
shear stresses and in-plane electric fields is studied. By the use of the complex-variable method, the explicit
solutions for the electroelastic fields and image forces exerted on the piezoelectric screw dislocations are
calculated. The impact of interface imperfection and material electroelastic mismatch as well as the nearby
parallel screw dislocations on the image force and the equilibrium position of the appointed piezoelectric
screw dislocation are examined and discussed in detail. The results show that the attractive force exerted on
the dislocation produced by the imperfect interface increases with the increment of the degree of interface
imperfection. If the degree of interface imperfection is biggish, the influence of material electroelastic mismatch
on the image force and the equilibrium position of the dislocation is small. The equilibrium positions of the
appointed piezoelectric screw dislocation are strongly influenced by nearby parallel screw dislocations. The
original equilibrium positions of the dislocation may disappear and the new equilibrium positions can be
produced, considering the effect of the nearby dislocations.
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