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STRESS INTENSITY SOLUTIONS FOR CRACKED PLATES
BY THE DUAL BOUNDARY METHOD

A. Sahli, D. Boutchicha, A. Belarbi, UDC 539.4
and O. Rahmani

We describe the application of the dual boundary element method for the determination of stress
intensity factors in plate bending problems. The loadings considered include internal pressure, and
also combined bending and tension. Mixed mode stress intensity factors are evaluated by a crack
surface displacement extrapolation technique and the J-integral technique. The boundary element
results for the case studies considered in the paper have been compared with either analytical or
finite element results and in all cases good agreement has been achieved.

Keywords: stress intensity factor, boundary element method, plate bending, J-integral.

Introduction. Stress intensity factor solutions for several simple plate geometries loaded by tension and
bending are available in a parametric form [1, 2]. However, for more general cases involving more complex geometry,
numerical methods such as the boundary element method (BEM) or the finite element method (FEM) must be used for
evaluation of fracture mechanics parameters. Therefore, there have been considerable developments in the use of the
BEM for fracture analysis and there are many examples of its use for linear elastic fracture mechanics (LEFM) [3, 4].
An alternative approach is to use the dual boundary element method (DBEM) with a single region being used in the
analysis and one crack face being modeled using the displacement boundary integral equation and the other crack
face being modeled using the traction boundary integral equations. The DBEM therefore requires no subregioning
and eliminates the singular algebraic equations.

The purpose of the present paper is to illustrate the effectiveness of the DBEM for the LEFM analysis of
plate bending problems. The DBEM is used to analyze several crack configurations in plates, including center crack,
edge crack and cracks emanating from a hole in a finite width plate loaded by either bending and tension or uniform
pressure, and the Ky, Ky, and Ky stress intensity factors are presented. The results for the case studies discussed in
this paper have been compared with either analytical or finite element results and in all cases the boundary element
results are in good agreement with the results from alternative sources.

1. Plate Bending Equations. Reissner’s [5, 6] plate bending equations are used to obtain the fundamental
solutions for the boundary integral equations:
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where Aj; is the Navier operator and can be expressed as
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where V2 is the Laplace operator and b; represents the loading on the plate,
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In Egs. (1), (2a)—(2e), v is Poisson’s ratio, ¢ is the distributed load on the plate surface, 50&[3 is the Dirac delta
function, and D and A are given by the following equations:

Eh®
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in which £ is Young’s module and % is the plate thickness.

2. The Dual Boundary Integral Equations. The dual equations, on which the dual boundary element
method is based, are the displacement and the traction boundary integral equations. The displacement boundary
integral equations for Reissner plate model were reported in [7]. The traction integral equations for Reissner plates
have been reported independently in [8] and [9]. In this paper, these boundary integral equations are used. The
boundary integral representation of the displacement components w; can be written for an internal source point X’
as
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where w,, are rotations of x- and )-axes, respectively, w; is out of plane displacement, p ; are bending moment and
shear tractions, respectively, and g5 is internal pressure. Roman indices vary from 1 to 3 and Greek indices vary

from 1 to 2. The values P; (X', x) and W; (X', x) represent the Reissner plate fundamental solutions at the

boundary point x.

The above integrals are regular provided r #0. If the point X’ is placed at the boundary, thatis X’ — x" T,
the distance 7 tends to zero and, in the limit, the fundamental solutions exhibit singularities. Assuming that the
displacements w; satisfy the Holder continuity, Eq. (4) for the source points on the boundary can be written as
follows:
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where the integral in the left hand side denotes a Cauchy principal value integral, x’ xel are source and field

points, respectively, and c; (x ) are the jump terms. The term ¢;; (x ) is equal to 78 when x” is located on a

smooth boundary.
By applying the divergence theorem, the last domain integral in (5) can be transferred to boundary integral, in
the case of a uniform load (¢; =const) to give:

\% * , * , \% x .,
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where V"

;o are the particular solutions of the equation V 00 =

The stress resultant components are obtained by differentiation of equation (4) with respect to the coordinate
of the source point X’ and then substituting them into the stress displacement relations for Reissner plate theory to
give:

Mg (X')= j%gk(x X) py (1)l (x) - JPaBuX X)W (1)l (x) + ¢ j Oopp (X, X)dr(x)+ﬁqsa[3,
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where M, g and Qg are bending moment and shear force stress resultants, respectively

The kernels 7 i P,]k are obtained from linear combination of derivatives of W- and PU , respectively, and

O3 — from linear combination of derivatives of W,-3 and Wie,e~

By moving the source point X~ to the boundary and multiplying all the terms by the unit outward normal ng
to the boundary at the source point x’, the traction integral equations are obtained as follows:
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where p, =Mygng and p3 =QOpgng. The second integral in the left hand side stands for the Hadamard principal
value integral.

Equations (8)—(9) represent three traction integral equations, and together with the three displacement
integral equations in Eq. (5) form the dual boundary integral formulation.

3. Numerical Implementation. In order to implement the DBEM numerically, the boundary including crack
surfaces are discretized into elements. The general modelling strategies used in this work are similar to those used in
[10] and can be summarized as follows:
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Fig. 1. Dual boundary element model [(D) displacement equation; (7) traction equation; (®) element node].

(i) crack boundaries are modelled with discontinuous quadratic elements, as shown in Fig. 1 to satisfy
continuity conditions of displacements and its derivatives in all nodes for the existence of principal value integrals; in
such a way that each node of one of the crack surfaces is coincident with the node on the opposite surface;

(i1) the traction equations (8)—(9) are applied for collocation on one of the crack surfaces;

(ii1) the displacement equation (5) are applied for collocation on the opposite crack surface and the other
non-crack boundaries;

(iv) continuous quadratic elements are applied along the remaining boundary of the body, except at the
intersection between a crack and an edge, where discontinuous or semidiscontinuous ones are required on the edge, in
order to avoid a common node at intersection, and also at boundary corner, where semidiscontinuous elements are
preferred, in order to avoid a common node at the corner.

This simple strategy is robust and allows the DBEM to effectively model general edge or embedded crack
problems; on the other hand, crack tips, crack- edge corners and crack kinks require no special treatment, since they
are not located at nodal points where the collocation is carried out.

4. Stress Intensity Factors Evaluation. The stress resultant intensity factors K, K,, and K5 are usually

used instead of the stress intensity factors Ky, Ky, and Ky;. The relationship between the stress resultant intensity
factors and the stress intensity factors are [11]:

2
12z 12z 3 2z
Ky=—K;, Ky ZhTKza Ky = 1—() K. (10

The stress resultant intensity factors can be evaluated in several ways. In this work, the J-integral technique is
employed to calculate the stress resultant intensity factors. The path independent J-integral is defined for plate
bending as [12]:

Job =I(Wh — qw3 )ngdl’ —Jpl-wi,adf + fq,s%dﬂ- (11)
T T Q

The strain energy density for plate bending, W, is defined as

1 W, ; + W ,
W, =2|:Moc[5 (‘”‘ZB“}Q& (% +wm>}, (12)

where w; ; is the strain tensor, and n, are the components of the unit outward normal to the contour path.

To decouple the related stress intensity factors of a mixed mode problem from J-integral, an extension of a
simple procedure which has been developed in [13] based on the decomposition of the elastic fields into symmetric
and anti-symmetric mode component is used (Fig. 2). Using this procedure, only one component of J-integral is

required.
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Fig. 2. Symmetric and anti-symmetric moment and shear force stress resultants at two points
located symmetrically relative to the crack axis.

The relationship between the component of J-integral in x; direction and the stress resultant intensity factors
for plate bending is given as

_ 121 2 2 h2 2
Jip _Eh3 K +K; +E(I+V)K3 . (13)
The decompositions of the elastic fields are as follows:
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Applying the decomposition procedure, the integral J; can be represented by the sum of two integrals as
follows:

Jy=J7 I, (15)

where the superscript indicates the pertinent deformation mode.
Finally, the stress intensity factors are obtained from the following relationship:

12nK >
S 1 1
Jip=J =
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To split mode II and mode III components from Jf;)s , the displacement ratio as proposed in [14] are used

48
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Substituting Eq. (19) into Eq. (16) the following relations hold:
) 2
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To implement this procedure into the boundary element analysis, a circular contour path around the crack tip
is defined as a set of internal points located at symmetrical positions relative to the crack plane, as shown in Fig. 3. The
numerical integration along the contour path is accomplished using the trapezoidal rule.

5. Case Studies.

5.1. Square Plate with a Central Crack and Edge Twisting Moments (Fig. 4). An infinite plate subjected to
twisting moments, as shown in Fig. 4, is considered in this case study. Because of the symmetrical nature of the
loading and geometry, only half of the plate was analyzed, with the line of symmetry being perpendicular to the crack.
The boundary conditions on the line of symmetry were assumed to be x; =0, ¢, = M;; =w=0.

In this case study, Young’s modulus was assumed to be 2-10° MPa with Poisson’s ratio being set to zero.
Results are given in Fig. 5 for the quarter point and the J-integral methods for a range of crack lengths and one plate
thickness for the normalized moment and shear force intensity factors F, and F;, which are obtained from the
following equations:

P =t
v (22)
C(+V)hK,

7 My10a (23)

The DBEM results are also compared in Fig. 5 with Sih’s [2] analytical results. The J-integral results for F,
and F; are also presented in Table 1.

5.2. Cantilever Rectangular Plate with Edge Moment, Central Crack, and Central Hole (Fig. 6).

Results are given in Fig. 7 for this case study for a range of crack lengths and two plate thicknesses. The
results for the F| normalized intensity factors have been obtained using the quarter point and the J-integral methods.
The DBEM results have been verified using a 500-eclement FEM model. The J-integral results for this case study are
also shown in Table 2.

The normalized stress intensity factor, F, is related to the moment intensity factor K; by the expression

__ K
e 4

5.3. Rectangular T-Shaped Plate with Edge Moment and Edge Cracks (Fig. 8).

This case study comprises a cantilever T-shaped plate subjected to a uniformly distributed bending moment
with perpendicular edge cracks at the junction of the T as shown in Fig. 8. DBEM quarter point, stress extrapolation
and J-integral results for the F; normalized intensity factor for a range of crack lengths and a single plate thickness
are presented in Fig. 9. The J-integral results for this case study are also given in Table 3.

£y
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TABLE 1. Normalized Moment and Shear Force Intensity Factors for a Cracked Plate
Subjected to Twisting Moment Calculated from J-Integral Paths

L F2 F3
a/10 Path 1 Path 2 Path 3 Path 1 Path 2 Path 3
0.100 0.2301 0.2207 02123 0.1242 0.1191 0.1146
0.125 0.2794 02727 0.2663 0.1253 0.1223 0.1194
0.250 0.4164 0.4141 0.4126 0.1056 0.1050 0.1046
0.500 0.5961 0.5933 0.5932 0.0684 0.0681 0.0681
0.750 0.7166 0.7132 0.7136 0.0457 0.0455 0.0455
1.000 0.7942 0.7905 0.7911 0.0305 0.0303 0.0304
1.250 0.8295 0.8254 0.8260 0.0198 0.0197 0.0197
1.500 0.8321 0.8279 0.8282 0.0126 0.0125 0.0125

A

i %2

My

Fig. 3 Fig. 4

Fig. 3. Local crack tip coordinate reference system and contour path for the J-integral.
Fig. 4. Plate with edge twisting moments.
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Fig. 5. Normalized intensity factors for plate with edge twisting [lines correspond [11];
(A) quarter point; ([J) J-integral].
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TABLE 2. Normalized Moment Intensity factors for a Plate with a Central Crack and a Hole
Subjected to Edge Moment Calculated from J-Integral Paths

a h h
. _= 10 —_— = 01
d a10 a10

Path 1 Path 2 Path 3 Path 1 Path 2 Path 3
0.1 1.1841 1.1852 1.1853 1.3265 1.3338 1.3372
0.2 1.0965 1.0973 1.0974 1.3122 1.3146 1.3147
0.3 1.0671 1.0672 1.0672 1.3219 1.3229 1.3245
04 1.0658 1.0659 1.0658 1.3495 1.3493 1.3493
0.5 1.0845 1.0844 1.0927 1.3926 1.3928 1.4028
0.6 1.1230 1.1228 1.1313 1.4591 1.4591 1.4689
0.7 1.1890 1.1977 1.0846 1.5623 1.5754 1.4050
0.8 1.3088 1.3177 1.1981 1.7355 1.7482 1.5668
0.9 1.5883 1.4657 - 2.1172 1.9153 -

ST AT SRIE | i E3EwACT e FI
d
2.0+
ala
| b
1.5 4+
b
O O 1.0
F R T R R E E E E R E R R R
M, 0 ald
Fig. 6 Fig. 7

Fig. 6. Cantilever plate with internal crack and internal hole.
Fig. 7. Normalized intensity factors for a plate with internal crack and internal hole [([J) quarter point;
(A) FEM; lines correspond J-integral: (/) h/d\/ﬁ =10; (2) h/d\/ﬁ =01].

6. Discussion of Results. Results are presented graphically in Figs. 5, 7, and 9 for the various normalized
intensity factors for the case studies shown in Figs. 4, 6, and 8. Plates with a range of crack lengths, loading
conditions, plan forms and boundary conditions were analyzed to investigate the effectiveness of the DDEM for the
evaluation of the stress intensity factors in cracked plates. The displacement extrapolation, quarter point, stress
extrapolation and J-integral methods have been used to calculate the moment and shear force intensity factors and in
all cases the DBEM results are in close agreement with each other. Moreover, the DBEM results for the first case
study (Fig. 4) are in good agreement with results obtained by Sih [2], who used the FEM in conjunction with the
J-integral method to evaluate the stress intensity factors at the crack tip. However, for the third case study (Fig. 8), the
FEM model with its 500 elements compares unfavourably with the DBEM model, which required only 40 boundary
elements. Quarter point elements were used at the crack tip for the finite element study and the J-integral approach
was used to evaluate the stress intensity factors at the crack tip. For this case study, the DBEM and the FEM results
are in good agreement. Tables 1-3 give details of the normalized intensity factors for the various case studies
investigated. The results show a high degree of stability for each J-integral path for all crack lengths, plate thicknesses,
loading conditions and boundary conditions. The values of the normalized crack tip intensity factors which are
presented in this paper can be converted to bending moment, twisting moment, and shear force intensity factors,
K, K,, and K3, from which Eq. (10) can be used to evaluate the stress intensity factors, K;, Ky, and Ky, at the
crack tip.
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TABLE 3. Normalized Moment Intensity for a Cantilever T-Shaped Plate Calculated for J-Integral Paths

a £
b Path 1 Path 2 Path 3
0.1 0.2828 0.2862 0.2828
0.2 0.3112 0.3114 0.3142
0.3 0.3489 0.3481 0.3539
04 0.3758 0.3753 0.3788
0.5 0.3980 0.3978 0.4003
0.6 0.4171 0.4168 0.4195
0.7 0.4354 0.4349 0.4377
0.8 0.4565 0.4561 0.4590
0.9 0.4841 0.4837 0.4865
0.5393
A
2 b=6m F
A h/b= 0.2 ® Quarter point
T 3 0.5 — J-integral
4im| |B B A Stress extr.
l ' “i_ 4 | :: M, X1 04
e _i_l 2b : 0 >
Y
G —
¥ LN 0.3
e— Sm —>
0.2 : .
«— Sm —> 0 0.2 0.4 0.6 0.8 alb
Fig. 8 Fig. 9

Fig. 8. T-shaped cantilever plate.
Fig. 9. Normalized intensity factors for a T-shaped cantilever plate.

Conclusions. The application of the DBEM for the LEFM analysis of plate bending problems is discussed.
The method has been extended in this paper to enable the stress intensity factors in plate bending problems to be
evaluated. In particular, the displacement ratio approach for the evaluation of J-integrals for three-dimensional
fracture analysis has been developed further to deal with J-integrals arising in the fracture analysis of plate bending
problems. Results for the normalized intensity factors for a number of case studies, including plates with cracks at
boundary discontinuities are presented. The displacement, bending moments and twisting moments for the plates
under consideration were evaluated using the DBEM. These DBEM results were then used in conjunction with the
J-integral method to determine the normalized stress intensity factors at the crack tips. The crack tip stress intensity
factors can then be evaluated from the normalized intensity factors. The BEM results were compared with either
analytical or finite element results and in all cases the DBEM results were in good agreement with the results from
alternative sources.
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