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The scattering of a cylindrical TEM wave by two parallel, identical conducting circular cylinders is
developed as a special case of a theoretical analysis which treats the scattering by an arbitrary array of cyl-
inders. Only the case with the incident E-vector parallel to the axes of the cylinders is considered, and
attention is focused on the mutual effects present when the cylinder diameter and spacing are comparable

to a wavelength.

The approximations made in the theory are tested experimentally using 3 cm microwaves in a parallel
plate region. Significant departures from the results of the independent scattering hypothesis as predicted

by the theory have been confirmed experimentally.

1. INTRODUCTION

ITHIN recent years a number of papers'— have
been published dealing with various theoretical
and experimental aspects of the diffraction of electro-
magnetic waves by a planar grating of parallel conduct-
ing wires. In the main, the results of the theoretical
analyses have been directed towards obtaining informa-
tion about gratings of elements whose size and spacing
are either small compared with a wavelength, or
spacings large enough to allow mutual effects between
elements to be neglected. Several workers®®"® have
formulated their particular problems for quite general
element size and spacings but have later specialized the
results to the aforementioned cases. This paper reports
a preliminary investigation into the effect of mutual
coupling in a planar grating of parallel identical conduct-
ing cylinders where the cylinder diameters and spacing
are comparable to a wavelength. In view of the interest
that this problem has generated recently, it is interesting
at this point to take a brief look at the work that has
been done on it in the past.

It is interesting to note that about 60 years ago the
development of reliable spark oscillators which radiated
barely useful amounts of energy in the decimeter wave-
length range stimulated interest in the problem of
diffraction of electromagnetic waves by the planar
grating. J. J. Thompson! and Rayleigh!! both worked on
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limited aspects of the problem and H. Lamb** applied
the technique of conjugate functions to the successful
calculation of the transmission coefficient of gratings of
closely spaced small cylinders or thin strips. His results
were confirmed experimentally by Schaefer and
Laugwitz.®® Ignatowsky® was the first to develop a
general theory of scattering from an infinite planar
grating of identical elements using a formal solution of
Mazxwell’s field equations satisfying the appropriate
boundary conditions. The periodic nature of the bound-
ary conditions allowed the field to be represented in a
series of propagating and evanescent plane waves.
Ignatowsky’s work received little attention until quite
recently when the mode or waveguide type of expansion
has been used in connection with a variational principle
to calculate the mode coefficients. Here again results
have been presented only for small cylinders.

Concurrently with Ignatowsky, Zaviska* developed
an analysis of diffraction from an arbitrary array of
parallel cylinders by expanding the scattered field in a
series of Hankel functions representing cylindrical
waves radiating from each cylinder. The results of this
analysis were applied to scattering by two small cy-
linders. However, the method of analysis is interesting
and is essentially the method employed in this paper.
It has an advantage in the directness with which various
approximations may be introduced at the end of the
rigorous analysis.

Wessel’s theory is restricted to small wires from the
outset, and as such, requires no futher mention here
except to say that his results have been recently con-
firmed experimentally by Esau, Ahrens, and Kebbel.?

Twersky’s” novel grating analysis by the use of
“multiply scattered” waves is essentially an iteration
process based on systematically improving the results
of the independent scattering hypothesis. The method
has not been applied in the case of large cylinders so far
as this writer is aware. The problem discussed here is
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ELECTROMAGNETIC SCATTERING BY CYLINDERS

first set up for scattering of an incident cylindrical
TEM wave (with the electric vector oriented parallel to
the cylinder axes) by an arbitrary configuration of paral-
lel cylinders, and later specialized to the case of a planar
grating of identical cylinders. Owing to the complexity
of the results the problem is reduced a step further by
considering only two identical cylinders. The choice
of a cylindrical incident wave, rather than the con-
ventional plane wave excitation, is to facilitate com-
parison of the theoretical results with measurements
made on the diffraction of 3.2 cm microwaves by two
cylinders in a parallel plate region.

2. OUTLINE OF THE THEORY

In the following only scalar scattering by circular
cylinders is considered since this results in a mathe-
matically tractable problem; although from Lamb’s?
work on the grating of closely spaced small wires or
strips it is expected that for small scattering elements
the precise form of their boundary is secondary in
determining their scattered field in directions away from
the source of radiation. The theory assumes a current
distribution on the surface of each perfectly conducting
cylinder; the total field is then calculated through the
use of one of Green’s theorems. Application of the
boundary conditions gives a series of integral equations
for the current on each cylinder which takes into account
arbitrary excitation and coupling between all the ele-
ments. The unknown surface current on each cylinder is
then expanded in a complex Fourier series whose
coefficients may be evaluated using the usual ortho-
gonality property of the trigonometric functions. The
resulting system of linear algebraic equations in the
unknown coefficients may be written as an infinite
matrix equation. The problem then remaining is to solve
this system of linear algebraic equations. Various
methods of numerical solution may be used, depending
on the number of terms and accuracy required in the
final result. For small cylinders the terms off the princi-
pal diagonal are small, and the meaning of the term
“small” may be evaluated readily in estimating the
importance of higher mode currents contributing to the
scattered field. The results obtained at this point in the
analysis are similar in form to those of Zaviska* who
started by assuming a spectrum of scattered cylindrical
waves and determining the spectral amplitudes from a
consideration of the boundary conditions. There is also
a formal analogy to the results of Twersky’s” multiple
order scattering analysis.

This theory is readily specialized to the case of a
plane wave incident on an infinite planar grating of
small wires. If the effects of higher order current modes
are neglected, this result becomes identical with that of
Wessel! who considered a uniform current distribution
on the surface of the wires in his analysis.
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Fi1c. 1. Geometry for scattering from an
arbitrary array of cylinders.

3. GENERAL THEORY (ARBITRARY CONFIGURATION
OF PARALLEL CYLINDERS)

Figure 1 shows the general arrangement of line source
and scattering cylinders. The axes of the cylinders and
line source are all parallel to the z-axis so that all rele-
vant electromagnetic field quantities may be derived
from the single scalar quantity E,, the electric field
intensity in the 2-direction, for convenience written as
¥(x,y). With the customary time dependence exp(—iwf)
suppressed throughout, and k=2x/), ¢(x,y) satisfies

(Vz, v2+ kz)‘l, (x’y) = 07

subject to the appropriate boundary conditions and the
radiation condition at infinity.

If a Green’s function G(x,y;#’,y") is defined as a
solution of the inhomogeneous wave equation

(Vau+B)G(2y; 2y) = —8(x~2)0 (y—¥),

and substituted into Green’s scalar identity

f V-GV do'= f (w— G—— ac’,

N G
V()= f (G——w—)dc',
on n

is readily found, where the line integral is taken over a
closed contour containing the source and all the
cylinders. By imposing the boundary condition =0 on
the surface of each cylinder and making the convenient
definition

the result

oy

1
T (),
an

27a,

on nth cylinder

where I,(¢,) may be considered as the surface current
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on the nth cylinder, the previous result can be reduced
to ) o
VO=0+— L [ L@I6Eis, O

2r = 0
where yi2°(r) is the field that would exist at the point r
if no scattering obstacles were present.

Application of the boundary condition ¥ (r) =0 where
r is on the surface of each cylinder and use of the appro-
priate two dimensional Green’s function leads to the
following integral equation for the surface current on
each cylinder,

‘binc(r)

r on cylinder

1: 2
-y f L(é)He® (K |t~ | dgn
81!' " )

r,r’ on cylinders
(2)

The problem now is to find a set of I,(¢,) which
satisfy this set of simultaneous integral equations. One

'th_—_f
0

2

Ipinc (l')

and

i 27 27
Ktmmz:—'—f f exp(ispn) HoW (k|r—1'|)
8o Yy

have been used.

ROW

method of solution is to expand the unknown function
in a complete set of ortho-normal functions appropriate
to the geometry of the particular problem and then to
determine the resulting unknown coefficients. Follow-
ing this method a natural choice here is to expand the
surface current on each cylinder in the complex Fourier
series

L.(¢n)= 2 @, exp(ispn).

By assuming the 7,(¢,) to have a sufficiently regular
behavior and using the orthogonal properties of the set of
functions exp(isda), it is possible to reduce the problem
of finding the a., to the solution of an infinite set of
linear inhomogeneous simultaneous algebraic equations
in which the a,, are the unknowns.

If the mth integral equation is multiplied by exp (ét,,)
(where £ is any integer including zero), and both sides
are integrated with respect to ¢, from 0 to 2 it follows

that:
Yitm= _Z Z Ktmnsans (3)

where the definitions

€xp ( - ﬂd’m)d‘ﬁrm

r on mth cylinder

@
€Xp ( - itd’ﬂl)dd’nd‘ﬁm

r on mth cylinder
r’ on nth cylinder

The incident field characteristic of a uniform line source may be represented as

yine(t)=AHo® (k|x]),

where 4 is a complex constant. With this choice of excitation the expressions for ¥;, and Kymas as evaluated in the

Yim=2wAT (kam)H D (k| tn|) exp[—it(Om+m)]

Appendix are

_ H,O (kan).;
e
Ktmnc = _Z'Jt(kam)

r,r’ on mth cylinder

®)

Jo(kan)H o s® (k| bm—bn|) exp(itanmtisonm)

For any given values of the parameters &, a,, 6, and

[bn—Db.|; Yim and Kimas may be evaluated using

existing tables of the Bessel and Neumann functions.
Finally, the total field may be calculated from formula

m,
Yo xy) =yine(x,y)

+i 55 andd o (kan) HaO (BR,) explists). (6)

Here the reader familiar with Twersky’s” multiple
scattering analysis will notice a formal analogy be-
tween Eq. (6) and his formula for the scattered field.

r,t’ on different cylinders

At this point it is convenient to show the connection
between the analysis of this paper and the work of
Wessel' on diffraction of a plane incident wave by a
planar grating of small wires.

If the constant A4 is so chosen as to make the exciting
field a plane wave incident from the direction 6, and
the array is taken as a planar grating of identical
cylinders then b,,=m;,

Qo
Aom =

a7 for m<0

for m>0

and
an=a,
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and from symmetry it is apparent that all the cylinders
have the same current distribution except for the phase
factor exp(ikmb cos(fo—ao)) relative to the zeroth
cylinder. Thus,

@ma=exp(tkmb cos(Bo—ao)) @ 0s

where a’o, is the sth Fourier coefficient on the zeroth
cylinder in the array. It is only necessary to calculate
the current on the zeroth cylinder, thus for m=0 the
system of Eq. (1) becomes

T
4 exp(—it(ﬂo—a) ) =H,V(ka)ao,

+exp(—itag) 3 3 aos exp(iknb cos(@o—ao)

n=0 s

Fisao) s (ka)H,_, VO (k|n|b). (7)

As ¢t ranges through all positive and negative integers,
an infinite number of linear simultaneous equations in
the unknown a’o, is generated. In principle this set of
equations could be solved, but practically it is not
feasible to solve for all the unknowns. For small ka
and b>>¢, it may be seen from the behavior of the
Bessel and Hankel functions involved that the dominant
terms in the right-hand side of the previous expression
are those with =s=0. Thus Eq. (7) becomes

ti={HoW (ka)+ 5 Jo(ka)Ho® (k|n|b)

=0
Xexp[inkb cos(Bo—ao) ]} oy’

This is the same equation as obtained by Wessel for the
current on the zeroth cylinder. Tables of the series
2. 1°Jo(nkb) and 3_°V(nkb) corresponding to normal
incidence have been computed by Ignatowsky® and
Wessel.!

As far as coupling effects and their dependence on
cylinder radius and spacing are concerned, a finite
number of mode coefficients could be computed with a
large amount of labor for the case of an infinite planar
grating using Eq. (7). However, when it comes to com-
paring the theoretical results for the scattered field to
experimental results, it is not feasible to use plane-wave
excitation, and the system of equations for the mode
coefficients for a line source excitation and the infinite
grating are exceedingly complex. Hence, it is expedient
to consider the simplest configuration for which mutual
coupling effects may be calculated with a reasonable
amount of labor. For these reasons the problem of
scattering of a cylindrical wave by two identical cyl-
inders has been chosen as an example to test the general
theory.

4. TWO IDENTICAL CYLINDERS (NORMAL INCIDENCE)

Figure 2 shows the geometrical arrangement of source
and cylinders for scattering of a cylindrical incident
wave by two identical cylinders,
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F16. 2. Geometry for scattering from two identical cylinders
(normal incidence).

The system of Eq. (3) for the unknowns ay,, (for
m=—1) may be written

it
HO (ka)a_l, t+eXp( —7) {Jo(ka)H;(l) (Zkb)dl, 0

43" exp(isn/2)7, (ka) [ Hav (2kb)as s
=1

+H, O (2kb)ay, |} =4H [k (ro+b2)1]
Xexp[—it(r+0-1)]. (8)
It is evident that
Li(¢)=I_1(—¢v),

where I1(¢1) and I_;(—¢,) are the surface currents at
mirror image points on the upper and lower cylinders.
If the Fourier representation for the surface currents is
combined with the above symmetry requirement, the
following identity is readily established,

a1, s=A—1,—g,
for all s.

The system of equations relating the unknowns ob-
tained from Eq. (8) by using this statement of symme-
try and allowing ¢ to range through all positive and
negative integers may be conveniently summarized in
matrix form as,

K-a=4i\

where K is a square (infinite) matrix, whose elements
are the coefficients of the a.,,,, and 4\ is the infinite
matrix of elements on the right-hand side of Eq. (8).

The rigorous solution of the problem requires the
solution of an infinite matrix equation. Except for
certain special cases (in this problem corresponding to
no coupling, i.e., kb— ), the solution to such an infinite
matrix equation is not immediately obvious.

The best that can be done by way of a solution is to
solve by numerical means, a finite number of the equa-
tions represented by Eq. (8). Putting aside any dis-
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670 R. V.

and granting that the approximation is good, how
many, and which equations should be chosen for solu-
tion? Since the problem of scattering by two cylinders
must reduce to that of scattering by a single cylinder in
the limit of very large spacing between cylinders, the
first question is most readily answered by using the
simple well-known solution to the problem of the
scattering of a plane wave by an isolated cylinder. The
symmetry of the diagonal elements of the K matrix
about the element corresponding to ¢{=s=0 points to
an obvious choice of equations as those with (=0,
+1, &2, -+, £n, and unknowns with s ranging from
—n to +n. The scattered field (for the same orientation
of the incident plane wave as in the two cylinder prob-
lem) from an isolated cylinder may be put in the form

wscatt (f,¢) = — i esiﬁ'l sin6. (ka)
=0

X exp[—18,) (ka) JH, @ (kr) coss¢

2
0.9496

s 0 1
| sin 8,(Ka)| 0.5680 0.7222
and s=6 is the largest index giving an appreciable term
in the field summation. Hence in the two cylinder prob-
lem at least 6 modes must be solved for, corresponding
to t=0, 1, &2, 43, -+ 6. There is an enormous
amount of labor involved in solving such a system of
equations with complex coefficients, however, for a spac-
ing of one wavelength between centers, such a system of
equations has been solved exactlyforthe case Ka=1.253,
and approximately for Ka=2.0 and 2.5, for ¢ ranging
between values determined by the above procedure.
Methods of solving such systems of equations on a
desk calculator are well known,} but except for ke <1.3
the labor required to solve such a system by hand
methods limits the usefulness of the theory. However,
the solution of a “block” out of the matrix equation
yields results in excellent agreement with the measure-
ments to be discussed later.

0.4977

Jo(ka) H, D[k (r+ %) ¥]H,© (ER,) exp[is(¢.—01)]

ROW
where .
H,®(ka)=—iC,(ka) exp[id,(ka)]
and
1,s=0
€= .
2, s#0

In the far zone the amplitude of H,® (k) changes slowly
with increasing s, and thus the change of amplitude of
each term corresponding to a change in index s is

“essentially proportional to |sing,(ka) coss¢|. The term

coss¢ is one at most and from the tables for §,(ka)
it is seen that sind,(ka) tends to zero with increasing
s (for s greater than a certain integer). Thus, by
reference to these tables, it is possible to pick out the
greatest integer s for which any significant contribution
will be made to the summation for the scattered field.
This maximum integer may then be used as a guide in
deciding upon the number of equations to be solved in
the two cylinder problem. Thus, for ka=3.0{2a/A~1),

4 5 6 7
0.1426 0.02251 0.002094 0.000175

In view of the computational difficulties encountered
in solving a large number of linear algebraic equations
with complex coefficients, it is desirable to have a simple
approximation to the solutions for the unknowns a,’, so
that some of the major characteristics of the scattering
by two cylinders may be more readily seen. The most
obvious approximation, and the one to be discussed
here, is suggested by the fact that the diagonal elements
in the K matrix increase without bound with increasing
¢, and at the same time the off-diagonal terms tend to
zero. Hence it seems reasonable as a first approximation
to neglect all off-diagonal terms. The success of this
approximation will be discussed later in connection with
the experimental measurements.

The final expression for the scattered field using the
diagonal approximation is readily found to be

R == T go (-

In the limit as kb and kro—oo this expression (except
for a constant) is identical with Seitz’s!® expression for
the field scattered by an isolated conducting cylinder

| "The contribution of each mode in Eq. (9) depends
principally on the quantity

1 For the exact solution of 22 (real) linear equations Crout’s
method [P. D. Crout, Am. Inst. Elec. Engrs. 60, (1941)] requires
5634 machine operations including a check column. For 1 percent
accuracy (ka=1.253, b/A=1.0) the Gauss-Seidel iteration method
[See Whittaker and Robinson, Calculus of Observations (Blackie
and Son Limited, London, England), fourth edition], requires 4
iterations totaling 2134 operations.

18 W, Seitz, Ann. Physik 16, 746 (1905), and Ann. Physik 19,
544 (1908).
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H,®(ka)+-J ;(ka)Hz, ™ (2kb)

7,(ka)
H,® (ka)+J,(ka) Hay® (2kb)

As s increases, and for ke, kb>>1 and ke, kb<s the
approximations for the Bessel and Hankel'® functions
yield for Eq. (11), the following asymptotic form,

a,(ka,kb)= (10)

7

2\% 71 \Py2s\%
) +Go) )

ka 2rs kb

16 G. N. Watson, Bessel Functions (Macmillan Company, New
York, 1948), second edition, pp. 243, 198.

a,(ka,kb)~
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Fic. 3. Scattering coefficient |a,| and |a| for two coupled
cylinders (diagonal terms only), and an isolated cylinder as a
function of spacing between centers for Ka=2.0 and normal
incidence.

where the right-hand term in the denominator contains
the coupling effect. From this last expression it is
apparent that since & 2o that the two cylinders in-
fluence each other to a decreasing extent as the mode
index s increases. This behavior is most strikingly
demonstrated by the graphical plot in Fig. 3 of |a]
computed from Eq. (10) as a function of spacing for
ka=2.0. In addition |e,?], the corresponding quantity
for an isolated cylinder is plotted for comparison along
with |a,|. From this curve it is apparent that mutual
effects tend to diminish slowly with increasing separa-
tion.

To compare the predictions of the diagonal approxi-
mation to measurable field quantities Eq. (9) has been
used to calculate the scattered field. For a large
separation between source and cylinders the follow-

o
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F1G. 4. Experimental and theoretical results of diffraction by
two cylinders as a function of probe position for k¢=0.313 and

spaced 1.0 wavelength between centers,
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ing representation is used for the Hankel function
2,9 (k(ré-+5)Y)

H,® (ku) (2 )i [(k z W)]
oD ()~ — Y
“ wku P 2 4
1\?
X[S,(1>(ku)—l—0(~) ]
ku
where = (ro>+5%)* and

SV (ku)= pf (DAt
"
m=0 (2tku)™m T (s— m+1)

Since in practice k7>>s and k= 2w/}, the incident field
at x=x and y=01is

Yine(x,0) ~exp(—im/4)/m((ro+x)/N)}-exp[ik(ro+=)].

T T r 1 . r 1 1.
| - 1.253,% - 1994
2.0
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© A
—
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F16. 5. Experimentally measured diffracted field from two
cylinders and comparison with various theoretical approximations
for Ka=1.253, as a function of probe position. (One wavelength
between centers.)

Using the definition
‘//tot - 'l/i nc_*_#, scatt,

and dividing this expression by the incident field at the
reference point x=x, y=0 gives for the normalized total
field.

lxmotnorm (x:y) =E,=1- [(fo‘l‘x)/ (’02+ bz) *]i
Xexp[ ik (r?+ ) —ik(ro+x) X 3 i

n=zkl s=—c0

X exp (mis/2) {a. (ka,kb)S, Ok (re+ b)Y 1H,® (kR,)
Xexp[is(p.—01)]}.

This formula has been used in calculating the theoretical
results labeled, diagonal terms only in Figs. 7, 9, 10,
and 11,
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F1e. 6. Theoretical and experimental diffraction curves for
scattering from two identical closely coupled cylinders, radius
a=0.3185X and spacing between centers=1.0A.

The factor [ (r+x)/(ri-+b?)¥]? represents an ampli-
tude correction owing to the use of a line source in
place of a plane wave, and the factor ik(rs*4-5%)? in the
exponent plays the role of a phase correction factor.
Inside the summation the term S,[k(r+0%)*]
corrects for the line source excitation for each mode.

5. EXPERIMENTAL RESULTS

The parallel plate region and associated field-probing
equipment described by the author in an earlier paper"”
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Fi1c. 7. Amplitude of field scattered by two identical cylinders,
for fixed probe location and spacing 25/A=1.0 as a function of
radius of cylinders (line sourceg).

17 R, Row, J. Appl. Phys. 24, 12 (1953).
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have been used to measure the electric field scattered
by two identical highly conducting cylinders with a
uniform line source for the primary excitation (at
normal incidence) as sketched in Fig. 2.

These measurements are designed as a check on the
validity of the approximations made in the theory de-
veloped in the preceding sections, and to compare the
predictions of the independent scattering hypothesis
with the field distributions actually measured. The
results labeled “independent” scattering were deter-
mined in the following way. E,i®¢(r) is the incident
electric field at a point r and E,%%(r) is the total
electric field with cylinder 1 in place, then

Ezl scatt(r) = Ethot (r) — Ezinc (l’) .

®
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Fic. 8. Experimentally measured independent and coupled
scattering from two identical cylinders with K¢=1.253 as a func-
tion of spacing. Probe position fixed.

Similarly, if cylinder 1 is removed and cylinder —1 is
put in place:

Ez_‘scatt(r) = E_ltot(r) — Ezinc (l') .

According to the independent scattering hypothesis the
total field with both cylinders in place is given by

Eztot(r) = Ezinc(r)_{_Ezlacatt (t)‘*'Ez_l seatt (l')
— Ez_ltot(r)+Ez_ltot (l') — E’ine(r) s

The actual results presented required a measurement of
amplitude and phase of the total scattered fields and the
incident field. Brass cylinders % inch thick and machined
to the required diameters were used as the scatterers in
the parallel plate region. In all cases the experimental
results are reproducible to within 2 percent.

Figures 4 through 6 show the total field as measured
by a probe moving along a line paralle]l to, and two
wavelengths from (on the side away from the source),
the line joining the centers of the cylinders; for a fixed
center-to-center spacing of one wavelength and equal
to 0.05), 0.20), and 0.318\. Figure 7 shows the total
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field at the point =2\, y=0 for a fixed center spacing
of 1.0 wavelength as an increase from 0.0 to 0.477
wavelength. Figures 8 through 11 show the field at the
same point as a function of spacing for a equal to 0.20),
0.24X, 0.318), and 0.477\.

In all cases the corresponding theoretical quantities
are also shown on the same graph for comparison.

6. CONCLUSIONS

A study of Figures 5 through 11 shows that over a
fairly large range or radii and spacings the independent
scattering hypothesis may be used to predict large
scale trends in the results. Thus for the probe fixed,
and a constant spacing of 1.0 wavelength between

08—
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z—f’ SPACING BETWEEN CENTERS OF CYLINDERS

Fic. 9. Experimentally measured independent and coupled
scattering from two identical cylinders with £e¢=1.50 as a function
of spacing. Probe position fixed.

centers (see Fig. 7), the trend in the measured field as
the radius increases is closely predicted by the inde-
pendent scattering hypothesis for ka ranging from zero
to approximately 1.5.

In all the measurements taken there is practically no
detailed agreement between the independent scattering
data and the results obtained with both cylinders
present. As is to be expected the larger the radius, and
the smaller the spacing, the poorer becomes the detailed
agreement between the predictions of the simple inde-
pendent scattering hypothesis and the corresponding
measurements.

Attention will now be focused on the results of the
theory developed in Sec. 4.

For small cylinders only the zeroth mode or uniform
current mode is of significance in calculating the scat-
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F16. 10. Experimentally measured independent and coupled
scattering from two identical cylinders with Ke=2.0, as a func-
tion of spacing. Probe position fixed.

tered field. The range of radii and spacing over which
this mode alone is sufficient is determined primarily by
the radius,} since here this parameter determines the
number of modes required.

Thus, with a fixed probe and a constant spacing of
1.0 wavelength between centers, Fig. 8 shows that the
uniform current distribution gives excellent agreement
with experiment for k¢ less than 0.3. The next step is
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Fic. 11. Experimentally measured independent and coupled
scattering from two identical cylinders with Kg=3.0 as a func-
tion of spacing. Probe position fixed.

} For cylinder diameters and spacings much less than a wave-
length, the problem can be handled by the electrostatic approxi-
mation much as Lamb (see reference 12) treated the problem of a
planar grating of small wires.
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CASE WHERE n=m

ath cYLINDER

CASE WHERE n#m

F16. 12. Geometry for calculation of K¢mna.

to keep all the modes required for good convergence in
the problem of diffraction by a single isolated cylinder.
Owing to the amount of computing required, the effect
of solving a finite number of equations for a fewer or
greater number of modes has not been thoroughly
investigated. However in one case, that for ke equal to
1.253 with a spacing of 1.0 wavelength (see Fig. 6), a
finite “‘block” from the matrix equation was solved
keeping at first three modes, and then four modes.
Both cases lead to results in about equally close agree-
ment with experiment. In all cases where the number of
modes solved for was the same as required by the single
cylinder problem, the detailed agreement between
theory and experiment is excellent.

ROW

Without the use of large scale automatic computing
machinery, it would be impractical to compute the
solutions to the system of Egs. (8) for any appreciable
range of radii and spacings. Therefore, the diagonal
approximation has. been used to compute the total
field at a point equidistant from each cylinder and two
wavelengths behind the line joining their centers (see
Figs. 7, 9 through 11).

From these results it is apparent that the diagonal
approximation yields a satisfactory approximation to
the detailed shape of the experimental curves. In com-
paring the experimental data with the theory for con-
stant radius there is noted a progressive shift in the
peaks and valleys of the theoretical curves towards
smaller spacings as the radius increases, and for ke
equal to 3.0 the initial valley in the experimental curve
is absent in the theory. These effects indicate the in-
creasing need for considering interactions between
modes of different order in the theory as the radius is
increased ; that is, the mode coefficients must be ob-
tained as the solutions to a block from the matrix
equation.

Computations based on the diagonal approximation
involve very little additional labor above that required
by the independent scattering hypothesis and give much
better results than this latter hypothesis, over a limited
range, of course. Consequently, this method might be
considered in examining other problems where the
independent scattering hypothesis does not yield
satisfactory results.

The author wishes to thank Professor J. E. Storer for
his illuminating discussions on the theory, and Miss M.
Tynan, Miss E. Miller, and Mrs. M. Amith for their
assistance with the computations. Mr. E. Roffey
modified the parallel plate apparatus to allow measure-
ments to be made of the scattering by two cylinders.

APPENDIX

Evaluation of the Integrals v, and K.,

With reference to Fig. 1

r =[rn2+a.2—

on mth cylinder

and

27 @ COSOm—+1— Pm) 11,

7= (76 b+ 2robm cOS (B0—atom) I

Using the addition theorem for cylinder functions,

HoyM(Kr)= i Ji(Kan)H,® (K1) explil(@mt7—0m) ];
=00

then
27

Ym=A T f Ji(Kaw)H\® (Ktm) exp(il@mt+m) — ildm— itm)dbm,

0
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where interchanging the order of summation and integration is assumed to be valid. The orthogonality relations
for the trigonometric functions enable . to be evaluated explicitly, hence

Yim=2wAT (Kam)HD (K1) exp[ —it(@n+m)].

It should be noted that for cylinders with centers above the line 4 — B in Fig. 1, 6,, is to be taken as positive, and
for those with centers below 4 — B, it is negative.

The computation of K;mx, must proceed in two steps. The first case is that in which the indices m and » are
equal, corresponding to » and #’ lying on the surface of the same cylinder.

With reference to Fig. 12 for the case n=1m,

[t—1'| = @[ 1—cos(@m—ou") 2.

Using the above addition theorem for the cylinder functions gives us

1: 2r 2T 1I"I:
Ktmns=8_ 2 f f €Xp (i5¢m_it¢m)Jl(Kam)Hl(l) (Kam) exP[il(‘i’m—‘bml)]dd’md(ﬁm’=;]t(Kam)Ht(l) (KG'M)BM:
T b Jg VYo

where
1 for s=t
6at=

0 for s+t

We turn now to the evaluation of K;ms, when zs=m. From Fig. 12 it may be seen that
l r—r’ I = (snm2+an2— anman Cos[1r+anm_¢n+3nm]) i'

Again, applying the same addition theorem,

i 2 2%
K=o % f f exXP(i5$n— o) T (i) 1 (kS ) XDLiH(T - cam— tn— ) b b
T L Jy 0

Carrying out the ¢, integration, we get
i

27
Ktmns = ;f exp(-— il¢m)J.s (kan)Ha(l) (ksnm) eXp[‘iS (7r+anm+ﬂnm):ld¢m-
0

Both s, and 8., are dependent on ¢, so that in order to perform the remaining integration, the more general
addition theorem

H,V(Ksnm) exp(isBam)= i Jo(Kam)H oy g™ (K[bm_bnl) exp['iQ(anm_‘f’m)]
g=—0

must be used whence it may readily be shown that
)
Ktmnaz ?];(kam)], (ka,.)H;_,“) (k ‘ bm— bﬂl ) exp(-—-il‘a,.m-}-isa,m).

Summarizing,
Yim=2wAT (kam)H D (krn) exp[ —it(@n+m)]
H,O(kan)bs, n=m

i
Klmns=_J¢(kaM) .
2 Jo(ka)H ;@ (k| bn—ba|) exp(—ilanmtisanm), n=m.
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