1. Determine the following integral

$$\int_C \frac{1}{z} dz$$

where C is the line element from  $(r_1, \theta_1)$  to  $(r_2, \theta_2)$  in terms of polar coordinate.

(a). Proof by complex method for

$$\int_C \frac{1}{z} dz = ln(r_2) - ln(r_1) + i(\theta_2 - \theta_1)$$

(b). Proof by real method using the line element  $(x_1, y_1)$  to  $(x_2, y_2)$ 

$$z = x + yi$$

$$dz = dx + dyi$$

$$x_1 = r_1 cos(\theta_1)$$

$$y_1 = r_1 sin(\theta_1)$$

$$x_2 = r_2 cos(\theta_2)$$

$$y_2 = r_2 sin(\theta_2)$$

- (c). Determine the solution for the special case for the line element  $(r_1,0)$  to  $(r_2,0)$  in terms of polar coordinate.
- (d). Determine the solution for the special case for the line element  $(r_1, \pi)$  to  $(r_2, \pi)$  in terms of polar coordinate.
- (e). Determine the solution for the special case for the line element  $(r_1, \pi)$  to  $(r_2, 0)$  in terms of polar coordinate.

——— 海大河工系—1997 by J. T. Chen for complex variable —————

【存檔: e:/ctex/course/math3/m3hw10.te】【建檔:Dec./25/'97】