國立海洋大學河海工程學系1998 工程數學 (四) 期中考 OPEN BOOK

1. Consider the Cauchy problem

$$yu_x - xu_y = 0$$

with two Cauchy data

$$u(\cos(\theta),\sin(\theta))=g(\theta),-\frac{\pi}{2}<\theta<\frac{\pi}{2}$$

$$u(0,y) = f(y), -1 < y < 1$$

- (a). Does the solution exist for any f(y) and $g(\theta)$? (10 %)
- (b). If (a) is not correct, then what is the condition of f(y) and $g(\theta)$ which can confirm that there is a solution. Also, solve the solution u(x, y). (10 %)
- 2. Consider the nonlinear first order PDE as shown below:

$$u_x u_y = 1$$

- (a). Find the Monge cone. (10 %)
- (b). Given the Cauchy data, u(s,s) = 2.5s, find all the solutions. (10 %)
- **3.** Solve the nonlinear first order PDE as shown below (15 %):

$$u_t + uu_x + 2ux = 0$$
, $0 < x < 1, 0 < t$

Given the Cauchy data,

$$u(x,0) = 4 - x^2, \ 0 < x < 1$$

 $u(0,t) = 1, \ t > 0$

- 4. Explain the characteristic value, characteristic vector, characteristic line(or curve) and characteristic strips. (10 %)
- **5.** Determine the family of circles for Mohr-Columb failure criterion envelope. (10 %)

$$\tau = c + \sigma \tan(\phi)$$
, c and ϕ are constants

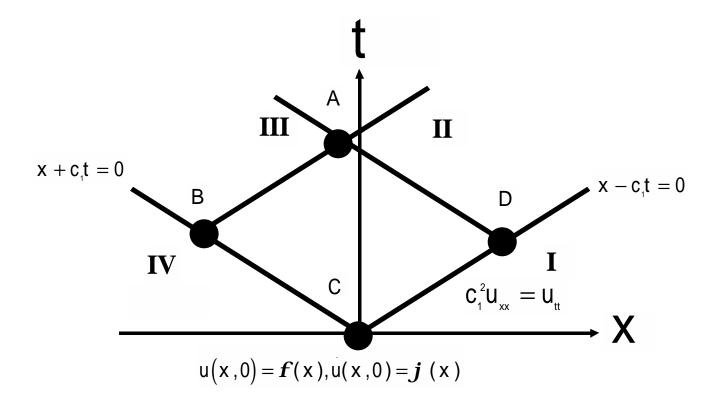
6. Derive the D'Alembert solution (15 %):

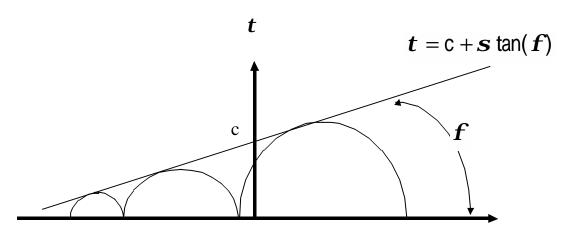
Governing equation

$$u_{tt} = c_1^2 u_{xx}, -\infty < x < \infty, \ t > 0$$

where c_1 is wave velocity and the Cauchy data are

$$u(x,0) = \phi(x), \ \dot{u}(x,0) = \psi(x),$$


D'Alembert's solution:


$$u(x,t) = \frac{1}{2}\phi(x+c_1t) + \frac{1}{2}\phi(x-c_1t) + \frac{1}{2c_1}\int_{x-c_1t}^{x+c_1t} \psi(x)dx$$

7. Prove the diamond rule. (10 %)

$$u_A + u_C = u_B + u_D$$

8. Explain the paradox in the course using the results of 6 and 7. (10 %)

