Cesaro sum for Fourier series'
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Divergence for Fourier series representation of f/(#) may occur when the termwise differeti-
ation is not permissible.
Two methods can be employed:

(a). Alternative series by considering the jump value of the function. (Stokes’ trans-
formation)

(b). Cesaro sum treatment.
The general C(k,r) Cesaro sum is defined as
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where C* = k!/(r! (k — r)!) and the partial sum is

The C(k,1) sum reduces to the conventional Cesaro sum:
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For the efficiency of computation, the s; terms are changed to the a; terms and the
equation is thus changed to
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Similarly, the C'(k,2) Cesaro sum is
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In the same way, the C'(k,3) and C(k,4) Cesaro sums are respectively
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If the ay term is missing, the C(k, 1) Cesaro sum reduces to
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