國立台灣海洋大學河海丁

- 1. Using BEPO2D Program,
 - (1) Determine [U], [T], [L], and [M] matrices.
 - (2) Decompose the four matrices by SVD.
 - (3) Plot the $\tilde{\mathbf{f}}_i$ and $\tilde{\mathbf{y}}_i$ for the *i*-th zero singular value and compare with each other for [U], [T], [L], and [M] cases.
 - (4) Find the generalized inverse of $[U]^{-1}$, $[T]^{-1}$, $[L]^{-1}$, $[M]^{-1}$.
 - (5) Choosing the following two examples, solve it by UT BEM or LM BEM.

$$[A] = \begin{bmatrix} \Phi_{\ell} & \Phi_{r} \end{bmatrix} \begin{bmatrix} \Sigma_{\ell} & 0 \\ 0 & \Sigma_{r} \end{bmatrix} \begin{bmatrix} \Psi_{\ell}^{T} \\ \Psi_{r}^{T} \end{bmatrix}$$

If $\sum_{r} = 0$, we have

$$\begin{cases} [A] = [\Phi_{\ell}] [\Sigma_{\ell}] [\Psi_{\ell}]^T \\ [A]^{-1} = [\Psi_{\ell}] [\Sigma_{\ell}]^{-1} [\Phi_{\ell}]^T \end{cases}$$

(6) By using SVD update terms, decompose

$$\begin{bmatrix} U \\ L \end{bmatrix}$$
, $\begin{bmatrix} T \\ M \end{bmatrix}$ and find y .

- (7) By using SVD updating documents, decompose $\begin{bmatrix} U & T \end{bmatrix}$, $\begin{bmatrix} L & M \end{bmatrix}$ and find \mathbf{f} .
- (8) Truncating the zero singular values due to the degenerate boundary, plot the next zero singular value versus k for the eigenproblem.