1. (17%) Let

$$\mathbf{A} = \left[\begin{array}{ccc} 89 & 48 & 0 \\ b & 61 & 0 \\ c & 0 & 1 \end{array} \right].$$

- (a) Find the values of b and c such that the eigenvalues of \mathbf{A} are all real and the eigenvectors are orthogonal to each other.
- (b) For such b and c find the eigenvalues of A and the corresponding orthogonal diagonalizing matrix P and also its inverse matrix P^{-1} .
- 2. (16%) Let real-valued functions g(x) and h(x) defined over $0 \le x \le 1$ be expanded as

$$g(x) = \sum_{n=-\infty}^{\infty} G_n e_n(x), \quad h(x) = \sum_{n=-\infty}^{\infty} H_n e_n(x),$$

where $e_0(x) := 1$, $e_n(x) := \sqrt{2}\cos(2n\pi x)$, $e_{-n}(x) := \sqrt{2}\sin(2n\pi x)$ for n = 1, 2, 3, ..., and the coefficients G_n and H_n (n = ..., -2, -1, 0, 1, 2, ...) are real numbers.

- (a) Show that $\{..., e_{-2}(x), e_{-1}(x), e_0(x), e_1(x), e_2(x), ...\}$ are a set of orthonormal functions defined over $0 \le x \le 1$.
- (b) Find a formula relating $\int_0^1 g(x)h(x)dx$ to $\sum_{-\infty}^{\infty} G_nH_n$ and show clearly how to derive the formula.
- 3. (18%) Solve the following initial value problems:
 - (a) (8%) $\frac{dy}{dx} 2y^2 + 3y = 1$, y(0) = 1;
 - (b) (6%) $\frac{dy}{dx} = \frac{x+4y}{x}$, y(0) = 0;
 - (c) (4%) $\frac{dy}{dx} = \frac{x+4y}{x}$, y(0) = 1.
- 4. (15%) Find the steady state temperature distribution in the semicircular region of radius ρ lying in the upper half-plane and centered on the origin, as shown in the figure. The temperature on the straight boundary is u = 0, and that on the semicircular boundary is $u = u_0 \theta(\pi \theta)$.

- 5. (17%) Complex analysis.
 - (a) (7%) State the Cauchy Integral Formula and the Laurent Expansion Theorem.
 - (b) (10%) Find all the possible Laurent series about z=0 for the complex-valued function $f(z)=\frac{1}{1-z}$, (z=x+iy), by using the Laurent Expansion Theorem only.
- 6. (17%) Calculus of variations.
 - (a) (10%) Find the extremal for the functional $v(y(x)) = \int_0^1 \frac{\sqrt{1+(\frac{dy}{dx})^2}}{x} dx$ with boundary conditions y(0) = 1 and y(1) = 0.
 - (b) (7%) Find the transversality condition for the functional $v(y(x)) = \int_0^{x_1} \frac{\sqrt{1+(\frac{dy}{dx})^2}}{x} dx$ with boundary conditions y(0) = 1 and (x_1, y_1) constrained on a given curve $y_1 = \phi(x_1)$.