國立臺灣海洋大學河海工程研究所 1997 工程數學入學考

1. The five ODEs are defined for y(x) as follows:

$$y' = y^{3/5},$$
 (1)

$$y' = (y^2 - 4)(y - 4), (2)$$

$$y' = \frac{2xy}{1+y^2},\tag{3}$$

$$y' = 1 + x + y, \tag{4}$$

$$y = xy' + y'y. (5)$$

Please fill in the Table 1 for its nonlinearity and order. (請將表 1 抄入答案紙, 才予以計分, 填入 YES 或 NO 與階次) (10 %)

Table 1: Solutions mapping to each ODE

ODE	Eq.1	 Eq.3	
linear?			
order?			

- **2.** Given $U(x,y) = ln\sqrt{(x^2+y^2)}$, and polar coordinates $x = r\cos(\theta)$, $y = r\sin(\theta)$, $dA = rdrd\theta$.
- (1). Find **F** where $\mathbf{F} = \nabla U.(5\%)$
- (2). Find $\int \mathbf{F} \cdot \mathbf{n} \, ds$ along the boundary contour ds of unit circle. (5%) (Note that \mathbf{n} is the normal vector on the boundary contour of unit circle).
- (3). Find $\int \nabla \cdot \mathbf{F} \, dA$ on the area of unit circle. (5%)
- (4). Divergence theorem tells us that $\int \int \nabla \cdot \mathbf{F} \ dA = \int \mathbf{F} \cdot \mathbf{n} \ ds$. Are the results of (2) and (3) the same? Why! (5%)
- **3.** The system of ODE equations

$$\dot{x}(t) = x - 2y,$$

$$\dot{y}(t) = 3x - 4y$$

can be formulated as

$$\dot{\mathbf{x}} = A\mathbf{x},$$

where

$$\mathbf{x} = \{x \ y\}^T, \ A = \begin{bmatrix} 1 & -2 \\ 3 & -4 \end{bmatrix}.$$

- (1). Find the eigenvalues and eigenvectors for A. (4%)
- (2). If the initial condition satisfies x(0) = y(0), what is the relation between y and x? (2 %)
- (3). If the initial condition satisfies 3x(0) = 2y(0), what is the relation between y and x? (2%)
- (4). What is the geometric meaning of eigenvector for this problem in the phase plane, i. e., the figure of y(t) versus x(t)? (2 %)
- **4.**(1). Write down the definition of Fourier transform and inverse Fourier transform for f(t). (4 %)
- **4.**(2). $\frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt e^{i\omega t} d\omega = ? (3 \%), \quad \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt e^{-i\omega t} d\omega = ? (3 \%)$

- **5.** Given the sine integral $\int_0^\infty \frac{\sin(x)}{x} dx = \frac{\pi}{2}$.
- (1). Show that the sine integral by using the method of real improper integral, that is integrand having a pole on the real axis. (5 %)
- (2). Show that the sine integral by using the method of Cauchy integral theorem. (7 %)
- (3). Show that the sine integral by using the method of Fourier transform. (8 %)
- (4). Show that the sine integral by using the method of Laplace transform. (5 %)
- **6.**(1). Under what condition the power series can be represented as Taylor's series? (3 %)
- **6.**(2). Derive Taylor's series from the power series. (5 %)
- **6.**(3). Explain the method of Frobenius. (3 %)
- **6.**(4). Write out that the difference and relationship among power series, Taylor's series and Mclaurin's series series, Frobenius's series and Laurent's series. (8 %)
- **6.**(5). Does the Laurent series g(z) at z=0 in a Taylor series where $g(z)=\frac{\sin(z)}{z^3-z}$. (3 %)
- **6.**(6). Compute the residue at all singularity of g(z). (3 %)

