1.(25%) $\mathbf{x} = (x_1, x_2, x_3)^T$ and $\mathbf{y} = (y_1, y_2, y_3)^T$ are three-dimensional column vectors. The superscript T denotes the transpose.

(a)(5%) Write the 3×3 matrix $\mathbf{x}\mathbf{y}^T$.

(b)(10%) Let $\mathbf{A} = \mathbf{I}_3 + \mathbf{x}\mathbf{y}^T$, where \mathbf{I}_3 is a third order unit matrix. Under what condition that \mathbf{A} is invertible.

(c)(10%) If the above condition holds, derive \mathbf{A}^{-1} in terms of $\mathbf{x}\mathbf{y}^T$ and $\mathbf{y}^T\mathbf{x}$, the latter of which is the inner product of \mathbf{x} and \mathbf{y} .

2.(30%) (a)(10%) $y_1 = 1$ is a particular solution of the following Riccati differential equation:

$$y' = \frac{1}{x}y^2 + \frac{1}{x}y - \frac{2}{x}, \quad x > 0.$$
 (1)

Let $y(x) = y_1 + z(x)$ to derive the general solution of Eq. (1).

(b)(10%) Under the variable transformation

$$y = \frac{-xu'}{u}, \quad x > 0 \tag{2}$$

can you derive the corresponding second order differential equation for u(x). What is the particular solution $u_1(x)$ of the equation you derived, and please use the reduction of order method to find another particular solution $u_2(x)$. Do they pass the Wronskian test? (c)(10%) Employ the inverse operator method to solve

$$(D^2 + 2D + 1)y = x\sin x.$$

3.(45%) ∇ is the del operator. \mathbf{A} , \mathbf{B} are vector fields and ϕ is a scalar field. The cross product of \mathbf{A} and \mathbf{B} is written as $(\mathbf{A} \times \mathbf{B})_i = \varepsilon_{ijk} A_j B_k$, and the curl of \mathbf{A} is written as $(\nabla \times \mathbf{A})_i = \varepsilon_{ijk} A_{k,j}$, where ε_{ijk} is the permutation symbol, and $A_{k,j} = \partial A_k / \partial x_j$. Note the $\varepsilon - \delta$ identity: $\varepsilon_{ijk} \varepsilon_{kmn} = \varepsilon_{kij} \varepsilon_{kmn} = \delta_{im} \delta_{jn} - \delta_{in} \delta_{jm}$. Derive (a)(5%) $\nabla \times (\nabla \phi) = \mathbf{0}$.

(b)(5%) $\nabla \cdot (\nabla \times \mathbf{A}) = 0.$

(c)(10%) $\mathbf{A} \times (\nabla \times \mathbf{A}) = \nabla \|\mathbf{A}\|^2 / 2 - (\mathbf{A} \cdot \nabla) \mathbf{A}$, where $\|\mathbf{A}\|$ is the norm of \mathbf{A} .

 $(\mathbf{d})(10\%) \nabla \times (\mathbf{A} \times \mathbf{B}) = (\mathbf{B} \cdot \nabla)\mathbf{A} - \mathbf{B}(\nabla \cdot \mathbf{A}) - (\mathbf{A} \cdot \nabla)\mathbf{B} + \mathbf{A}(\nabla \cdot \mathbf{B}).$

(e)(15%) Consider the Navier-Stokes equation for a fluid of constant density and viscosity:

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\nabla \left(\frac{p}{\rho}\right) + \nu \nabla^2 \mathbf{u}.$$
 (3)

By using the results in (a)-(d), derive the vorticity equation:

$$\frac{\partial \boldsymbol{\omega}}{\partial t} + (\mathbf{u} \cdot \boldsymbol{\nabla}) \boldsymbol{\omega} = (\boldsymbol{\omega} \cdot \boldsymbol{\nabla}) \mathbf{u} + \nu \boldsymbol{\nabla}^2 \boldsymbol{\omega}, \tag{4}$$

where $\boldsymbol{\omega} = \boldsymbol{\nabla} \times \mathbf{u}$.