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The aim of this paper is to review the existing formulations of ‘Trefftz method’.
The Trefftz formulations are classified into the direct and the indirect
formulations and then, compared with other boundary-type solution procedures,
such as boundary element, singularity, charge simulation and surface charge
methods, in order to establish the identity of the method.
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1 INTRODUCTION

The method known as ‘Trefftz method’ was firstly
presented by Trefftz' in 1926 and since then, many
researchers have studied it. The Trefftz method can be
classified into the category of the boundary-type
solution procedures. The problem can be solved by the
boundary discretization alone when the object is
governed by the linear and homogeneous differential
equation. Therefore, input data generation is much
easier than the domain-type solution procedures. More-
over, the Trefftz formulation is regular and thus, easier
than the boundary element method of singular property.
Although the Trefftz method has the above-mentioned
various advantages, it is less popular than the other
solution procedures such as finite difference, finite
element and boundary element methods. The aim of
this paper is to overview the existing Trefftz formula-
tions and to compare them with the other boundary-
type solution procedures in order to establish the
identity of the ‘Trefftz method’.

The Trefftz formulations can be classified into the
indirect and the direct ones. In the indirect for-
mulation,"®” which is thought to be the original one
presented by Trefftz, the solution of the problem is
approximated by the superposition of the functions
satisfying the governing equation and then, the
unknown parameters are determined so that the
approximate solution satisfies the boundary condition
by means of the collocation. the least square or the

Galerkin method. In the direct formulation, which is
relatively new one presented by Cheung and his co-
workers,>® the weighted residual expression of the
governing equation is derived by taking the regular
function satisfying the governing equation as the
weighting function and then, the boundary integral
equation is obtained by applying twice the Gauss—
Green formula to it. The integral equation, like the
boundary element method, is discretized and solved for
the boundary unknowns. In this paper, these formula-
tions will be explained briefly in order to compare with
the other boundary-type solution procedures. Finally,
we should recognize that the indirect and the direct
formulations of the Trefftz method are closely related to
the direct and indirect ones of the ordinary boundary
element method. By the way, in this paper, the
terminology ‘boundary element method’ denotes the
conventional boundary element method (or boundary
integral equation method) alone and the terminology
‘boundary-type solution procedure’ is used as a general
term including the boundary element, the singularity,
the charge simulation, the surface charge and the Trefftz
methods.

In Sections 2 and 3, the indirect and the direct Trefftz
formulations will be explained briefly. In Section 4, the
Trefftz method is compared with the other boundary-
type solution procedures. Section 5 is the conclusion and
then, the similarities and the differences between the
boundary element method and the Trefftz method will
be discussed once more.
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2 INDIRECT TREFFTZ METHOD

2.1 T-complete function

We shall consider the two-dimensional potential prob-

lem in the bounded region. The governing equation and
the boundary condition are given by

Viu=0 (inQ) (1)
and
u=1 (onT))
Ou (2)

m(=a=q (only

where u and ¢ are the potential and its derivative in the
normal direction (flux), respectively. €, I'; and T,
denote the object domain, its potential- and flux-
specified boundaries. respectively. n denotes the unit
outward normal vector on the boundary and (7) the
specified value on the boundary.

In the indirect formulation of the Trefftz method, the
solution of the problem is approximated by the T-
complete functionst satisfying the governing eqn (1).
For the Laplace equation in the two-dimensional
bounded domain, the T-complete function u* is
represented as2$2731:40.70

{ur}={r"e’*}  (w=0.1..., (3)

where j denotes the imaginary unit and r and 6 the plane
polar coordinates.

2.2 Residual related to boundary condition

In the indirect Trefftz method, the potential u(P) at an
arbitrary point P is approximated by the superposition
of the T-complete functions as follows

w(Py~u(P) = ayuj + asus + -+ ayux
=a'u'(P) (4)

where N is the total number of the T-complete functions
and a = {a,,a,,....ay}’ denotes the vector of the
unknown parameters.

Differentiating eqn (4) in the normal direction, we
have the approximate expression of the flux

- ou( P s )
q(P):q(P)=%:a’q () (5)
n

Since eqns (4) and (5) satisfy eqn (1) but do not satisfy
eqn (2), the residuals yield;

Pely: Ri=ia—ua=a u(P)-alP)#0
‘ (6)
PeTy Ry=q-g=2a'q(P)~g(P)#0
where R, and R, denote the residuals on I'y and I'>,
respectively.

1The term ‘T-complete function’ is due to Herrera.”’

N. Kamiya

In the indirect formulation, the unknown parameter a
is determined so that the residuals R, and R, are
minimized simultaneously by the means of the collo-
cation, the least square, the Galerkin method or the
other.

2.3 Collocation-method formulation

In the collocation method, the residual at the point P; is
forced to vanish. Equation (6) leads to

P, el R(P)=u(P)Ta—a(P)=0)

> (7
P ely Ry(P)=q(P) a—g(P)=0

(i=1...,M;)

7

where M| and M, are the numbers of the collocation
points placed on I'; and I',, respectively. Rearranging
the above-equations, we have

Piel: a(P)Ta=a(P)

) ®)
« _
P ely: q°(P) a=g(P)
Using the matrix expression, we have
[ uh uty iy ] (@ )
x* * * —
U Up -~ UQN U
a
Uar M2t Uaw ! ty, [ 9
. . . 0=y - )
qn qi2 0 qIN : 9
43 43 - @N ay 92
* * * —
| dm1 AMy2 0 4N | L 9M; )
or,
Ka="f (10)

where @(P;) = i;, g(P;) = §;, u/ (P;) = ujj, qf (P;) = g}
The coefficient matrix of eqn (10) is the size of M x N
(M = M, + M,). Therefore, if M = N, eqn (10) can be
solved directly but if M # N, eqn (10) is solved by the
help of, say, the least square method.

2.4 Least-square-method formulation

The following function is defined by the sum of the
square of the residuals.

F(a):J Rﬁdr+aJ R}dI’
r T

= J (wTa—a)dl + aJ (q'Ta—g)*dr (11)
I I,

where o is a weighting parameter which preserves the
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numerical equivalence between the first and the second
terms at the right hand side of the above equation. In
the least square method, the derivative of the above
equation with respect to a is forced to vanish.

OF 3 ATo o2 J AT, o2
6a_6aUr,(u a—u)°dl' + a r;(q a—gq)dr

= 2J w(u’la—u)dl + 2aJ q(qTa—g)dr
I, I,

=0

Rearranging the above equations, we have

“ u*u*TdI‘+aJ q*q*TdFJa
r, I

= J u'i dF+(1J q"gdr (12)
r, T,
or,
Ka="1 (13)
where
kij = J u'u dI + a[ g/ q; dI' (14)
T, ’ T
f,:J u,-*ﬁdF+aJ g'qdl (15)
r, T,

In this formulation, it is very difficult to specify the
adequate value of the weighting parameter « in advance.

2.5 Galerkin-method formulation

By taking ¢ and —a as the weight functions of the
residuals R; and R;, respectively, we have the weighted
residual equation

J qudl“-J #R,dl = 0 (16)
T, I,

Substituting eqns (4) and (5) into the above equation, we
have

j qTa(uTa—a)dr - J ulalg’a—g)dl' =0
T, T-

aT“ q(u’a—a)dl - [ vwiqla-g) dl‘} =0
T, Jr.
Therefore,
J q'(u’a—a)dr - J viqgla—gdr=0 (17
I I

Rearranging this equation, we have

U q*u*TdF—J u*q'TdF]a
I, I,

=J q*adF—J ugdrlr (18)

I I

or
Ka

Il
—y
—_
—
N=}
=

where
ki} = JF qi*uj* dF - J‘F" u,'*qj* dF (20)
fi= J gradl - J u'§ dT (21)
I, l"z

Cheung er al.>® proved the symmetry of the matrix K
in eqn (19). Subtracting the element k;; from the element
k;;, we have

kij— ki = J g/u dl —J u'gj dl
’ T, T,

- fu dr — u’q; dI’
(Jrl e Jrz 74 )

= J g u’ dI’ - J u'qtdl =0
I'+r, I'h+Ty
or
ki j = k ji

Cheung er al>® mentioned that since the above-
mentioned formulation ensures the symmetry of the
coefficient matrix, the accuracy and the computational
efficiency are higher than the other formulations.

Hochard & Proslier”3 presented another Galerkin-
method formulation. In this case, § and # are taken as
the weight functions of the residuals R; and R,
respectively. So we have

[ GR,dTl + J #Rydl =0 (22)
Jr, T»

Hochard & Proslier” proved that this formulation
ensures the uniqueness of the solution.

2.6 Variational formulation

Zienkiewicz et al.3%%" presented the variational formula-

tion based on the energy functional

@z[%qudF—J uqu—J (u— i) g dl’ (23)
Jre r, r

Substituting eqns (4) and (5) into eqn (23), we have
o= J Ha"q)T(a"w) dr - J (a"w)Tgdr
r- r

- J (a"w’ — )T (aTq") dI
I
= aTJ lq*u'" dI'a — aTJ lu'q’" dl'a
T, T
— aTj gu’* dI‘+aTJ aq*dl’ (24)
T, r,

Vanishing the first variation of this equation, we have

0P = 6ar[ J q'u’ dra - J u'q*’ dl'a
T, r,

—J gu* dT +J aq dl‘} —0 (25)
r, I,
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or

“ qu’dr —J u*q*TdF]a
T, r,
= J gu dr' — J aq"dl’ (26)
r2 F.

This equation is the same as eqn (18) derived by the
Galerkin-method formulation.

2.7 Modified Trefftz formulation

Oliveira®® and Patterson & Sheikh®® presented
another indirect Trefftz formulation. In this formula-
tion, the approximate solution is represented by the
linear combination of the singular fundamental solution
and then, the unknown parameters are determined so
that the approximate solution satisfies the boundary
conditions by the means of the collocation method. This
formulation was named as ‘modified Trefftz method’ by
Patterson & Sheikh.5*®

The fundamental solution of the two-dimensional
Laplace problem is given as®®

1 1
(P,Q)==—In{ —— 27)
u ( 7Q) 27Tn(r(P,Q)> ( /
where P and Q are the integral and the source points,
respectively and r(P,Q) is the distance between the
points P and Q;

r(P,Q) = [ (xp — xg)* + (3 — ¥g)? (28)

The fundamental solution has the singularity at
P = Q. Thus, the source points are placed on the
imaginary boundary surrounding the (real) boundary
outside the object region and u(P) is approximated as
follows

u(P) ~a(P)=ayu™(P,Qy) + au” (P, Q>)
+ o +ayu' (P, Q)

=a'u'(P) (29)

where N is the total number of the source points.
Differentiating eqn (29) in the normal direction, we have
i du( P . ‘
q(P):q(P)=%=aTq (P) (30)
n
Since eqns (29) and (30) do not satisfy the boundary
conditions, the residuals yield;

Pel: Riy=a—a=alu(P)—aP)#0
(31)

Pely Ry=Gg—g=alq(Pj—GP)#0
In the collocation-method formulation, eqn (31) are

forced to vanish at the boundary collocation points. So
we have

Ka=f (

This equation is solved for a.

()

Interpolating function :
T-complete function or fundamental solution
Y
Approximation of solution by
superposition of interpolating functions

4

Residuals of boundary conditions

U
Minimizing residuals
Collocation method: R; =0, Ry =0
Least square method: F(a) = ]1“ R3T + a/ R2dT
'

I

Galerkin method: /I‘ GRydl _/r‘ URdl =0
1 ]
¥
Solving a system of equations:

Ka=f

Fig. 1. Indirect Trefftz formulation.

Governing equation
Y
Weighted residual expression
by taking T-complete function

4
Boundary integral equation
Y
Discretization

Y

Solving a system of equations

Fig. 2. Direct Trefftz formulation.
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The process of the indirect Trefftz formulation is
explained briefly in Fig. 1.

3 DIRECT TREFFTZ FORMULATION
3.1 Boundary integral equation

Considering the weight function v, the weighted residual
equation of eqn (1) is derived as:

JQ(VZu)vdﬂzo (33)

Performing the integration by parts for the left hand side
twice, we have

J v%an:j [qv—u@] dl“+j uViedQ =0
Q T on 0
(34)

In the direct formulation of the boundary element
method, the singular fundamental solution, eqn (27), is
taken as the weight function. On the other hand, in the
direct Trefftz formulation, the regular T-complete
function, eqn (4), is taken as the weight function;

iy (35)

V=ayu +aus + ... ayuy = a

The T-complete function taken as the weighting func-
tion satisfies the governing equation:

Viv=alViu =0 (36)
Therefore, substituting eqns (36) and (35) to eqn (34),

we have

J (ga’w’ —ua’q ) dl =a’ [ (gu —uq")dl =0
T Jr
(37)

Since this equation is valid for the arbitrary a, we have
L(qu* —uq")dl =0 (38)
u and ¢ are approximated by the linear combination

of the interpolating function with the nodal values;
U=y + o+ + Ony =0’ u
G~G=01q1+bg2+ -+ ongy =0'q

where ¢ denote the interpolation function vector and u
and q the nodal value vectors of potential and flux,
respectively. Substituting the above equations into eqn
(38), the residual R yields;

R=| (gu" —aq)dl
Jr

= F(@Tqu" —o'ug")dl

= u*éTqu—J q' o' dl'u (39)
Jr r

3.2 Collocation-method formulation

In the collocation-method formulation, the residuals at
the boundary collocation points are forced to vanish.
Taking the nodes to approximate # and ¢ as the
collocation points, i.e. setting R=0 at eqn (39), we
have

J uw¢’ dlq — j Q¢ dlu=0 (40)
r r

Discretizing this equation, we have
Gq = Hu (41)

Applying the boundary condition and collecting the
unknowns at the left hand side, we have

G, Gﬂ{ﬁ‘}:ml Hﬂ{‘f‘}
Uy q2

-H, Gz}{ql}=[—cl Hz]{':ll}
u; q2

Ax=b

which is solved for the unknowns.
The process of the direct Trefftz formulation is
explained briefly in Fig. 2.

4 OVERVIEW
4.1 Indirect Trefftz method

4.1.1 Collocation, least square and Galerkin formulations
In the indirect formulation, the solution of the problem
is approximated by the superposition of the functions
satisfying the governing equation and then, the
unknown parameters are determined so that the
approximate solution satisfies the boundary condition
equation by means of the collocation, the least square
and the Galerkin methods.

The collocation-method formulation has the simplest
algorithm among them and thus, its computational
efficiency is also the highest. However, the formulation
i1s done so that the approximate solution satisfies the
boundary condition at the boundary collocation points
alone. Therefore, the solution may include relatively
large errors at the other points than the collocations
points although the computational accuracy is relatively
high at the collocation points. The least-square-method
formulation is more accurate than the collocation-
method formulation because the residuals are minimized
on the whole boundary in the sense of the least square.
However, for the boundary value problem with the
mixed boundary condition, it is very difficult to specify
the adequate value of the weighting parameter, which
preserves the numerical valance between the residuals.
Therefore, the Galerkin-method and the variational
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formulations are thought to be the best from the
viewpoint of the accuracy. In these formulations, since
the weighted residual expressions of the boundary
conditions are minimized on the whole boundary, the
computational accuracy is better than the collocation
method. Moreover, unlike in the least square method,
the arbitrary parameter is not included in the
formulation.

4.1.2 Interpolating function

The T-complete function is the power function of r (the
distance between the collocation points and the origin of
the coordinates). Therefore, as the magnitude of r
increases, the condition number of the matrix increases
and the computational accuracy goes down. For over-
coming this difficulty, the coordinate transformation
technique were often employed.”>™'*>®! Since, how-
ever, this technique is also not sufficient for the slender
object region, the subdomain partitioning technique is
also presented.®*®*85 Besides, the convergency and
the uniqueness of the approximate solution are mainly
studied by Herrera.!*8

On the other hand, when employing the fundamental
solution, the source points must be placed outside the
object region in order to avoid the singularity of the
integral equation. So Heise!®!! emphasizes that the
profile of the imaginary boundary placed on the source
points can be taken regardless of the (real) boundary
profile of the object region and thus, the computational
efficiency can be improved fairly by taking the simple
profile of the imaginary boundary (e.g. a circle imaginary
boundary). However, it is obvious that the computa-
tional accuracy is strongly dependent on the profile of
the imaginary boundary and therefore, the adequate
placement of the source points is very significant for the
accurate calculation.

The polynomials of the space coordinates is employed
as the interpolating function in some studies.”>%"®" In
this case, unlike the T-complete function, a family of the
interpolating function can not be given by the general
expression. Since the solution is approximated by the
relatively low-order polynomials alone, the computa-
tional accuracy may not be so high.

4.2 Indirect Trefftz method and indirect BEM

We consider the object region §2 and its boundary I'. In
the indirect boundary element method, the imaginary
boundary I'’ is taken so that I'' surrounds whole I'. The
potential #(P) at the arbitrary point P(€ Q) in the
object region is represented as

u(P) =J

r

u*(P,Q)a(Q) dT (42)

where a(Q) denotes the unknown density function on
I''. The derivative of the above equation in the normal

direction on the boundary leads to

- Ou(P) _J ou™(P,Q)

q(P) =~ = o a(Q) dT’

on
= |, 4" (P.@)a(@) ar (43)

The singular integral equations are very often used in
the indirect boundary element formulation. By taking
the limit of I'’ to I at eqns (42) and (43), we have

uP) = | w*(P.Q)al@)dr @)

o(P) = ~c(PalP)+ | 4'(P.QJa@)dr (49

Discretizing eqns (42) and (43) or (44) and (45) by the
adequate boundary elements, we have

u(P) = U(P,Q)a(Q) + - + U(P,Qn)a(Qn) (46)
q(P) = Q(P,Q1)a(Q1) + -+ Q(P,Qn)a(Qn) (47)

where N is the total number of the collocation points.
U(P,Q;) and Q(P, Q;) are represented by the product of
the fundamental solution and the employed interpola-
tion function. By the collocation-method formulation,
the above equations and (2) leads to

Ka =f (48)

This is solved for a.

In the field of the elastic analysis, Kupradzesg
presented the ‘singularity method’ in 1965 and then,
many researchers expanded to it the other fields.!"’>*
This method is thought to be identical to the indirect
boundary element method. Besides, the ‘charge simula-
tion method’ and the ‘surface charge method’, which are
often applied to the electromagnetic analysis, are based
on eqns (42) and (43) and eqns (44) and (45),
respectively. Therefore, they are also classified into the
indirect boundary element method.

The representations of #(P) and ¢(P) in the indirect
boundary element method, eqns (46) and (47), are very
similar to those in the modified Trefftz formulation. The
difference between them is the calculation of the
coefficient matrix; namely, in the indirect boundary
element method, the coefficient matrix is calculated from
the fundamental solution and the interpolating function,
while the value itself of the fundamental solution is
employed in the modified Trefftz method. Therefore,
one can say that the modified Trefftz method is basically
identical to the indirect boundary element method based
on the regular integral equation in which the source
points are placed outside the region.

4.3 Direct Trefftz formulation
The direct Trefftz formulation was firstly presented by

Cheung, Jin & Zienkiewicz® in the two-dimensional
potential problem and extended to the two-dimensional
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Table 1. Trefftz and boundary element formulations

Indirect formulation

T-complete Function

Indirect Trefftz method

Direct formulation

Direct Trefftz method

Modified Trefftz method
Indirect BEM

Fundamental solution

Singularity method

Direct BEM

Charge simulation method
Surface charge method

Helmholz problem,* the two-dimensional elastic problem’®
and the plate bending problem.® Thus, this is a relatively
new formulation.

As mentioned in Section 3, in the direct formulation,
the T-complete function is taken as the weight function
and then, the integral equation is derived from the
governing equation. On the other hand, the original
formulation presented by Trefftz, i.e. the indirect Trefftz
method, is based on the superposition of the functions
satisfying the governing equation. The mathematical
bases of them are fairly different. Readers may consider
that the direct Trefftz method is the direct boundary
element method formulated by introducing the regular
T-complete function, instead of the fundamental solution.

The boundary-type solution procedures may be
classified by the indirect or the direct formulation and
the interpolating or the weight function to be employed.
From this point of view, the procedures can be classified
as shown in Table 1.

5 CONCLUSIONS

The Trefftz formulations can be classified into the indirect
and the direct formulations. While the former is the
original one presented by Trefftz, the latter is a relatively
new one presented by Cheung, Jin & Zienkiewicz.

In the indirect formulation, the solution of the problem
is approximated by the superposition of the functions
satisfying the governing equation. Then, the unknown
parameters are determined so that the approximate
solution satisfies the boundary condition by means of
the collocation, the least square or the Galerkin
method. The regular T-complete function or the funda-
mental solution is employed as the approximate sol-
ution. In this paper, we pointed out that the indirect
Trefftz method using the fundamental solution, which is
named the ‘modified Trefftz method” by Patterson &
Sheikh® %8 s very similar to the indirect boundary
element method. On the other hand, in the direct
formulation, the integral equation is derived from the
governing equation by taking the T-complete function
as the weight function. The integral equation, like the
direct boundary element method, is discretized and
solved for the unknowns on the boundary. Therefore,
this formulation is thought to be the direct boundary

element method formulated by introducing the T-
complete function.

It follows from what has been said that the Trefftz
method and the boundary element method have close
connections and that the modified Trefftz method is
basically identical to the indirect boundary element
method based on the regular integral equation. There-
fore, it does not seem to be essential that the boundary-
type solution procedures are classified by the names such
as the boundary element method, the Trefftz method,
the singular method and so on. It is more adequate to
classify the boundary-type solution procedures into the
direction and indirect ones. The indirect one is the
boundary-type solution procedure in which the solution
of the problem is approximated by the superposition of
the functions satisfying the governing equation. Thus,
this category should include the following schemes; the
indirect (ordinary) boundary element method, the
singularity method, the charge simulation method, the
surface charge method and the indirect and modified
Trefftz methods. On the other hand, the direct one is
based on the boundary integral equation derived from
the weighted residual expressions of the governing
equation and physical quantities on the boundary are
taken as the unknowns. The indirect (ordinary) bound-
ary element and the Trefftz methods should be included
into this category.

The object of this paper is to overview the existing
formulations of the Trefftz method in order to establish
the identity of the method. Therefore, the applications
of the Trefftz method were not discussed although
there exist some interesting studies; the coupling of the
Trefftz method with the finite element method,®%%
special element formulation for the stress concen-
tration,>¥9271-"81 qual hybrid Trefftz formulation,
the eigenvalue determination®>>* and the sensitivity
analysis.”>®! Readers who are interested in the such
applications of the Trefftz method can refer to the other
papers included in this issue.
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