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Abstract

In many engineering problems, boundaries with sharp corners or abrupt changes in the boundary
conditions and/or the material properties give rise to singularities of various types which tend to slow down
the rate of convergence with respect to decreasing the mesh size of any standard numerical method used for
obtaining the solution. In this paper, in order to develop a method which overcomes this difficulty, the
singular solutions of isotropic and anisotropic Helmholtz-type equations with homogeneous Dirichlet and/
or Neumann boundary conditions in the neighbourhood of a singular point are derived. The standard
boundary element method (BEM) is then modified to take account of the form of singularity, without an
appreciable increase in the computational effort and at the same time keeping a uniform discretization.
Three examples are carefully investigated and the numerical results presented show an excellent
performance of the approach developed.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

In many practical engineering problems governed by elliptic partial differential equations, such
as crack initiation and propagation, failure of adhesive joints, edge diffraction, etc., the solution
and its derivatives may have unbounded values if the boundary of the solution domain is non-
smooth, e.g., sharp re-entrant corners in the boundary, the boundary conditions change abruptly,
or there are discontinuities in the material properties. All these situations give rise to singularities
of various types and standard numerical methods for solving the boundary value problems
(BVPs) in this case exhibit slow convergence and inaccurate approximations to the exact solution
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in the neighbourhood of the singularity, see Refs. [1–9]. It is now a classical result, see Ref. [10]
and the references given therein, that the singular solution uðSÞ of an elliptic equation at a corner
associated to a singularity exponent l admits an expansion of the form

uðSÞðr; yÞ ¼
XN
p¼0

upðr; yÞ; upðr; yÞ ¼
XQ

q¼0

rlþp logq r � fp;qðyÞ; ð1Þ

where ðr; yÞ are the local polar co-ordinates at the corner and fp;qðyÞ are smooth angular
functions. Here the term u0 represents the principal term, whilst the remaining terms correspond
to the non-principal part of the elliptic operator and of the boundary conditions, and the
curvature of the boundary at the corner tip. The singularity exponents l are defined by the roots
of the characteristic equation associated to the local configuration at the corner tip given by the
corner geometry, boundary conditions and material properties.
There are important studies regarding the numerical treatment of singularities for BVPs in the

literature. Motz [1] has investigated the removal of the singularity for the Laplace and the
biharmonic equations using the finite difference method (FDM). Later, Symm [2] and Wait [3]
have solved singular direct problems for the Laplace equation by employing the boundary element
method (BEM) and the finite element method (FEM), respectively. Modified BEMs that take into
account the singularities caused by an abrupt change in the boundary conditions and the presence
of a sharp re-entrant corner in the boundary of the solution domain have been developed for the
time-dependent diffusion equation and the anisotropic steady state heat conduction problem by
Lesnic et al. [4] and Mera et al. [5], respectively. The singular function boundary integral method
has been applied for the solution of the Laplace equation in an L-shaped domain by Elliotis et al.
[6] who have approximated the solution by the leading terms of the local solution expansion and
have weakly enforced the boundary conditions by means of Lagrange multipliers. With respect to
singularities in elastostatics, the pioneering theoretical work of Williams [7], who has developed
explicit expressions for singular solutions for the problems of single free–free, clamped–clamped
and clamped–free isotropic elastic corners, should be mentioned. From the numerous numerical
investigations in fracture mechanics, the papers by Portela et al. [8] and Helsing and Jonsson [9]
are mentioned who have employed the Williams basis functions in conjunction with the dual BEM
and a modified Fredholm second-kind integral together with the Nystr .om method, respectively, in
order to study the behaviour of the stress field in domains with traction–free re-entrant corners.
The Helmholtz equation arises naturally in many physical applications related to wave

propagation and vibration phenomena. It is often used to describe the vibration of a structure, see
Refs. [11–13], the acoustic cavity problem, see Refs. [14–16], the radiation wave, see Refs. [17,18],
and the scattering of a wave, see Refs. [19,20]. Another important application of Helmholtz-type
equations is the problem of heat conduction in fins, see e.g., Refs. [21–23].
Many authors have treated singularities occuring in the Helmholtz equation. Time-harmonic

waves in a membrane which contains one or more fixed edge stringers or cracks have been
investigated by Chen et al. [13] who have employed the dual BEM in order to obtain an efficient
solution of the Helmholtz equation in the presence of geometric singularities. Chen and Chen [14]
have used the dual integral formulation for the Helmholtz equation to determine the acoustic
modes of a two-dimensional cavity with a degenerate boundary. Huang et al. [17] have
investigated the electromagnetic field due to a line source radiating in the presence of a
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two-dimensional composite wedge made of a number of conducting and dielectric materials by
employing the Fourier transform path integral method. A hybrid asymptotic/FEM for computing
the acoustic field radiated or scattered by acoustically large objects has been developed by
Barbone et al. [20]. Schiff [24] has computed the transverse electric (TE) and transverse magnetic
(TM) mode eigenvalues for ridged and other waveguides by using super-elements for the FEM, a
refined local mesh and basis functions at the corner tip. The method of the auxiliary mapping, in
conjunction with the p-version of the FEM, has been used by Cai et al. [25] and Lucas and Oh [26]
in order to remove the pollution effect caused by singularities in the Helmholtz equation. Both
Laplace- and Helmholtz-type BVPs with singularities have been considered by Wu and Han [27]
who have solved these problems using the FEM and by introducing a sequence of approximations
to the boundary conditions at an artificial boundary and then reducing the original problems to
BVPs away from the singularities. Xu and Chen [28] have used the FDM and higher order
discretized boundary conditions at the edges of perfectly conducting wedges for TE waves to
retrieve accurately the field behaviour near a sharp edge.
In the case of the anisotropic Helmholtz equation, the differential operator has the form

Kij@xi
@xj

þ k2; where Kij is a symmetric, positive-definite matrix and k is the so-called wave
number. The principal and non-principal parts of the Helmholtz operator are defined by the
second order differential operator Kij@xi

@xj
and the zeroth-order operator k2; respectively. Thus,

the singularity exponents and the principal term u0 in Eq. (1) are independent of k: The singularity
exponents and principal terms associated to multi-material corners in the case of anisotropic
potential problems, which represent the limiting case with k ¼ 0; have been recently investigated
in a comprehensive way and the reader is referred to MantiW et al. [29].
An accurate analysis of Helmholtz-type equations in the presence of two-dimensional wedges

requires the knowledge of the singular local behaviour of the solution in the neighbourhood of the
corner tip in order to improve the accuracy of the numerical solution. The analytical method
developed in the present work permits the study and analysis of BVPs with singularities for both the
Helmholtz (k real number) and the modified Helmholtz (k imaginary number) equations. Due to
the fact that solutions of the two-dimensional Helmholtz equation have a discontinuous limit when
k-0; the case k ¼ 0; studied in Refs. [5,29], has been excluded from the scope of the present work.
For the sake of brevity, the present paper is based on the closely related paper by MantiW et al. [29],
which has allowed several proofs and expressions presented therein to be omitted here and
appropriate references to be given. In addition, the present method can be generalized to the wave
propagation in elastic isotropic and anisotropic corners. The method proposed in this paper has
been implemented numerically by accommodating the standard BEM for the Helmoltz-type
equations to take account of the form of the singularity, without appreciably increasing the amount
of computation involved, as well as without refining the mesh in the vicinity of the singular point.

2. General solution of Helmholtz-type equations in polar co-ordinates

2.1. Isotropic Helmholtz-type equation

In this section, some well-known results on the solution of the homogeneous Helmholtz-type
equation using the separation of variables in polar co-ordinates are revised, and the notation used
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in the present work is introduced. If k ¼ aþ ib is a fixed non-zero complex number (a; bAR) then
the isotropic Helmholtz-type equation in a plane domain OCR2 is defined as

DuðxÞ þ k2uðxÞ ¼ 0; xAO; ð2Þ

where k is called the wave number when it is real and positive.
Let the polar co-ordinate system ðr; yÞ be defined in the usual way with respect to the Cartesian

co-ordinates ðx1;x2Þ ¼ ðr cos y; r sin yÞ: For r > 0; Eq. (2), written in polar co-ordinates takes the
following form:

ð@2r þ r�1@r þ r�2@2y þ k2Þuðr; yÞ ¼ 0: ð3Þ

If it is assumed that the solution in O of Eq. (2) can be written using the separation of variables

uðr; yÞ ¼ f ðrÞgðyÞ; ð4Þ

then the Helmholtz-type Eq. (2) recasts as

ðf 00ðrÞ þ r�1f 0ðrÞ þ k2f ðrÞÞgðyÞ þ r�2f ðrÞg00ðyÞ ¼ 0: ð5Þ

If f ðrÞgðyÞa0 then the following ratio must be a constant, defined here as l2:

f 00ðrÞ þ r�1f 0ðrÞ þ k2f ðrÞ
r�2f ðrÞ

¼ �
g00ðyÞ
gðyÞ

¼ l2; ð6Þ

yielding the following linear homogeneous ordinary differential equations in r and y; respectively:

f 00ðrÞ þ r�1f 0ðrÞ þ k2 �
l2

r2

� �
f ðrÞ ¼ 0; ð7Þ

g00ðyÞ þ l2gðyÞ ¼ 0: ð8Þ

For a given value of l; the general solution of Eq. (8) can be written as

gðyÞ ¼ ac cosðlyÞ þ as sinðlyÞ; ð9Þ

where ac and as are constants. The general solution of Eq. (7) can be written using the linearly
independent Bessel functions of the first kind, Jl; and the second kind (also called Weber or
Neumann functions), Nl; as

flðkrÞ ¼ c1JlðkrÞ þ c2NlðkrÞ; ð10Þ

where c1 and c2 are constants. In the analysis of the solution u the following asymptotic
expansions for complex z-0 are useful:

JlðzÞD
1

Gðlþ 1Þ
z

2

� �l
ðRe lX0Þ; N0ðzÞD

2

p
ln z; NlðzÞD�

GðlÞ
p

2

z

� �l

ðRe l > 0Þ: ð11Þ

Hence, the general solution of Eq. (2) in form (4) can be written as

uðr; yÞ ¼ ðc1JlðkrÞ þ c2NlðkrÞÞðac cosðlyÞ þ assinðlyÞÞ: ð12Þ

2.2. Anisotropic Helmholtz-type equation

In this section, the general solution of the anisotropic Helmholtz-type equation is obtained
following an approach developed by MantiW et al. [29]. The approach is based on a change of
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variables, which transforms the anisotropic Helmholtz-type equation to the canonical form with
the same wave number, and on a subsequent application of the results from the previous section.
It has to be stressed that the final solution expressed in polar co-ordinates defined in the
anisotropic plane does not represent the solution corresponding to the separation of variables, as
given by Eq. (4), due to the presence of the angular variable in the argument of the Bessel
function, a fact that does not happen in the case of an isotropic medium.
Let K be a constant, symmetric and positive-definite matrix which defines the anisotropic

material properties in the domain OCR2: Then, the anisotropic Helmholtz-type equation
recasts as

Kij@xi
@xj

uðxÞ þ k2uðxÞ ¼ 0; xAO: ð13Þ

Let the matrix L be defined as a factor in the symmetric decomposition of the inverse of the
matrix K; i.e.,

K�1 ¼ LTL; K ¼ L�1ðL�1ÞT: ð14Þ

It should be noted that the matrix L is not uniquely defined, see Ref. [29] for a discussion of the
usual definitions of L in the literature. Without any loss of generality it can be assumed that the
determinant jLj is positive. If the transformation of co-ordinates

*xi ¼ Lijxj; ð15Þ

is considered then the general solution of Eq. (13) in O is given by the general solution *uð *xÞ of the
isotropic (modified) Helmholtz-type equation

D *uð *xÞ þ k2 *uð *xÞ ¼ 0; ð16Þ

in the transformed domain *O ¼ LOCR2 via the following representation:

uðxÞ ¼ *uðLxÞ: ð17Þ

The proof of the above statement follows directly from the following relation, see Refs. [29,30]:

Kij@xi
@xj

uðxÞ ¼ D *uð *xÞ: ð18Þ

Consider a curve GC %O and denote by nðxÞ the unit normal vector at xAG then the normal flux
through G at x is given by the conormal derivative

qðxÞ 	 @nuðxÞ ¼ niðxÞKij@xj
uðxÞ: ð19Þ

The unit normal vector *nð *xÞ to the transformed curve *G ¼ LG at *x is expressed as, see Refs. [29,30]

*nð *xÞ ¼
ðL�1ÞTnðxÞ

nK ðxÞ
; where nK ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðxÞTKnðxÞ

q
; ð20Þ

whilst the transformed normal flux through *G at *x associated to problem (16) is given by

*qð *xÞ ¼ ñið *xÞ@ *xi
*uð *xÞ ¼

qðxÞ
nK ðxÞ

: ð21Þ

Consider now the polar co-ordinate system ð*r; *yÞ defined in the transformed plane in the usual
way, i.e. ð *x1; *x2Þ ¼ ð*r cos *y; *r sin *yÞ: Starting from relation (15), it can be easily shown that

*r ¼ *rðr; yÞ ¼ rrðyÞ; *y ¼ *yðyÞ; ð22Þ
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where the radial scaling factor rðyÞ is a smooth periodic function with the period p given by, see
Ref. [29],

rðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðyÞTK�1eðyÞ

q
> 0; ð23Þ

and eðyÞ ¼ ðcos y; sin yÞ: It should be noted that in the particular case of an isotropic material rðyÞ
is constant. Although the value of the transformed angle *y ¼ *yðyÞ depends on the particular choice
of L; its derivative is independent of this choice and it is given by, see Ref. [29],

d*y
dy

¼
1ffiffiffiffiffiffi

jKj
p

r2ðyÞ
: ð24Þ

Substituting expression (12) into representation (17), the general solution of the anisotropic
Helmholtz-type equation (13) is obtained in the form

uðr; yÞ ¼ c1JlðkrrðyÞÞ þ c2NlðkrrðyÞÞfaccosðl*yðyÞÞ þ as sinðl*yðyÞÞg: ð25Þ

3. Corner singularities for Helmholtz-type equations

In this section, a procedure applied by MantiW et al. [29] is generalized in order to obtain the
singularity exponents and the singular solutions of Helmholtz-type equations for anisotropic
materials containing corners.
Let OCR2 denote an anisotropic homogeneous wedge domain of interior angle o; 0oop2p;

with the tip at the origin of co-ordinates and determined by two straight edges of angles y0 and y1;
respectively, where o ¼ y1 � y0: Thus, O ¼ fxAR2j0oroRðyÞ; y0oyoy1g; where RðyÞ is either a
bounded continuous function or infinity. The value of the angle *o of the transformed wedge
domain *O ¼ LO is given by (see Ref. [29]),

*o ¼ *yðy1Þ � *yðy0Þ ¼
Z y1

y0

d*y
dy

dy ¼ pþ sgnðo� pÞarccos �
eTðy1ÞK�1eðy0Þ
rðy1Þrðy0Þ

� �
; ð26Þ

where sgn denotes the signum function. From relation (26), it follows that *o ¼ o for the limit
values o ¼ 0 or o ¼ 2p and also for o ¼ p: If o ¼ p=2 or o ¼ 3p=2 and the wedge faces are
parallel to the orthotropy axes of the material then *o ¼ o as well.
In what follows, the BVP in O defined by Eq. (13) is considered and homogeneous Neumann or

Dirichlet boundary conditions prescribed along the wedge edges. If it is assumed that Re lX0;
then on taking into account relation (11) with z ¼ krrðyÞ as r-0þ and the finite character of u in a
wedge tip neighbourhood, c2 ¼ 0 is obtained in Eq. (25). Hence the basis function of singular
solutions to the above BVP obtained from expression (25) can be written in the general form as

uðSÞðr; yÞ ¼ JlðkrrðyÞÞfac cosðl*yðyÞÞ þ as sinðl*yðyÞÞg; ð27Þ

where l is referred to as the singularity exponent.
The normal flux through a straight radial line defined by an angle y and associated to the

normal vector nðyÞ ¼ ð�sin y; cos yÞ is given, in view of (21), by

qðSÞðr; yÞ ¼ *qðSÞð*r; *yÞnK ðyÞ; where *qðSÞð*r; *yÞ ¼ *r�1@*y *u
ðSÞð*r; *yÞ; ð28Þ
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and, by using Eqs. ð202Þ and (23), it can be shown that

nK ðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nTðyÞKnðyÞ

p
¼

ffiffiffiffiffiffi
jKj

p
rðyÞ: ð29Þ

For the sake of convenience, solution (27) and flux (28) are re-written, respectively, as

uðSÞðr; yÞ ¼ JlðkrrðyÞÞfac cosðlð*yðyÞ � *yðy0ÞÞÞ þ as sinðlð*yðyÞ � *yðy0ÞÞÞg; ð30Þ

qðSÞðr; yÞ ¼
l
ffiffiffiffiffiffi
jKj

p
r

JlðkrrðyÞÞf�ac sinðlð*yðyÞ � *yðy0ÞÞÞ þ as cosðlð*yðyÞ � *yðy0ÞÞÞg: ð31Þ

Possible values of l depend on the boundary conditions prescribed at the wedge edges. In this
study, four configurations of homogeneous Neumann (N) and Dirichlet (D) boundary conditions
at the wedge edges applied to expressions (30) and (31) are considered. Look at the conditions
which allow a nontrivial solution of the resulting system of equations under the assumption
Re lX0:

Case I: N–N wedge

qðSÞðr; y0Þ ¼ qðSÞðr; y1Þ ¼ 0 ) as ¼ 0 and sin l *o ¼ 0 ) l ¼ l
p
*o

for lAN,f0g; ð32Þ

where N is the set of positive integers.
Case II: D–D wedge

uðSÞðr; y0Þ ¼ uðSÞðr; y1Þ ¼ 0 ) ac ¼ 0 and sin l *o ¼ 0 ) l ¼ l
p
*o

for lAN: ð33Þ

Case III: N–D wedge

qðSÞðr; y0Þ ¼ uðSÞðr; y1Þ ¼ 0 ) as ¼ 0 and cos l *o ¼ 0 ) l ¼ l �
1

2

� �
p
*o

for lAN: ð34Þ

Case IV: D–N wedge

uðSÞðr; y0Þ ¼ qðSÞðr; y1Þ ¼ 0 ) ac ¼ 0 and cos l *o ¼ 0 ) l ¼ l �
1

2

� �
p
*o

for lAN: ð35Þ

It can be noticed that the above singularity exponents l are real and simple, and they coincide in
cases I and II, and III and IV, respectively. Using the above results, the general asymptotic
expansions for the singular solution of the anisotropic Helmholtz-type equation for a single wedge
corresponding to homogeneous Neumann and Dirichlet boundary conditions on the wedge edges
are obtained in the following form:

Case I: N–N wedge

uðSÞðr; yÞ ¼
XN
l¼0

alu
ðSÞ
l ðr; yÞ ¼

XN
l¼0

alJl
p
*o
ðkrrðyÞÞcos l

p
*o
ð*yðyÞ � *yðy0ÞÞ

n o
: ð36Þ

Case II: D–D wedge

uðSÞðr; yÞ ¼
XN
l¼1

alu
ðSÞ
l ðr; yÞ ¼

XN
l¼1

alJl
p
*o
ðkrrðyÞÞsin l

p
*o
ð*yðyÞ � *yðy0ÞÞ

n o
: ð37Þ
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Case III: N–D wedge

uðSÞðr; yÞ ¼
XN
l¼1

alu
ðSÞ
l ðr; yÞ ¼

XN
l¼1

alJðl�1=2Þp= *oðkrrðyÞÞcos l �
1

2

� �
p
*o
ð*yðyÞ � *yðy0ÞÞ

� 

: ð38Þ

Case IV: D–N wedge

uðSÞðr; yÞ ¼
XN
l¼1

alu
ðSÞ
l ðr; yÞ ¼

XN
l¼1

alJðl�1
2
Þ p*o
ðkrrðyÞÞsin l �

1

2

� �
p
*o
ð*yðyÞ � *yðy0ÞÞ

� 

: ð39Þ

4. Modified boundary element method

Consider a two-dimensional bounded domain O with a piecewise smooth boundary @O which
contains a singularity at the origin O ¼ ð0; 0Þ that may be caused by a change in the boundary
conditions at the origin and/or a re-entrant corner at the origin. For the simplicity of the following
explanations, it is assumed that the singularity point is located at the intersection of the Dirichlet and
Neumann boundary parts, see Fig. 1, although the method presented herein can easily be extended to
other local configurations or boundary conditions. Hence the problem to be solved recasts as

Kij@xi
@xj

uðxÞ þ k2uðxÞ ¼ 0; xAO;

uðxÞ ¼ *uðxÞ; xAGu;

qðxÞ 	 @nuðxÞ ¼ *qðxÞ; xAGq;

8><
>: ð40Þ

where %Gu, %Gq ¼ @O; Gu;Gqa|; Gu-Gq ¼ |; OA %Gu- %Gq; *u and *q are the prescribed boundary
potential solution and flux, respectively, and we denote the closure of a set by an overbar.
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In order to avoid numerical difficulties arising from the presence of the singularity in the
potential solution at O; it is convenient to modify the original problem before it is solved by
the BEM. Due to the linearity of the Helmholtz operator and the boundary conditions, the
superposition principle is valid and the potential solution u and the flux q can be written as

uðxÞ ¼ ðuðxÞ � uðSÞðxÞÞ þ uðSÞðxÞ ¼ uðRÞðxÞ þ uðSÞðxÞ; xA %O ¼ O,@O;

qðxÞ ¼ ðqðxÞ � qðSÞðxÞÞ þ qðSÞðxÞ ¼ qðRÞðxÞ þ qðSÞðxÞ; xA %O ¼ O,@O; ð41Þ

where uðSÞðxÞ is a particular singular potential solution of the original problem (40) which
satisfies the corresponding homogeneous boundary conditions on the parts of the boundary
containing the singularity point O and qðSÞðxÞ 	 @nuðSÞðxÞ is its conormal derivative. If appropriate
functions are chosen for the singular potential solution and its conormal derivative then the
numerical analysis can be carried out for the regular potential solution uðRÞðxÞ and its conormal
derivative qðRÞðxÞ 	 @nuðRÞðxÞ only. In terms of the regular potential solution uðRÞðxÞ; the original
problem (40) becomes

Kij@xi
@xj

uðRÞðxÞ þ k2uðRÞðxÞ ¼ 0; xAO;

uðRÞðxÞ ¼ *uðxÞ � uðSÞðxÞ; xAGu;

qðRÞðxÞ 	 @nuðRÞðxÞ ¼ *qðxÞ � qðSÞðxÞ; xAGq:

8><
>: ð42Þ

The modified boundary conditions ð422Þ and ð423Þ introduce additional unknowns into the
problem, which are the constants of the particular potential solution used to represent the singular
potential solution. It should be noted that these constants are similar to the stress intensity factors
corresponding to an analogous problem for the Lam!e system and, in what follows, they will be
referred to as ‘‘flux intensity factors’’. Since the flux intensity factors are unknown at this stage of
the problem, they become primary unknowns.
In order to obtain a unique potential solution of the regular problem (42), it is necessary to

specify additional constraints which must be as many as the number of the unknown flux intensity
factors, i.e., one for each singular solution/eigenfunction included in the analysis. These extra
conditions must be applied in such a way that the cancellation of the singularity in the regular
potential solution is ensured. This is achieved by constraining the regular potential solution and/
or its conormal derivative directly in a neighbourhood of the singularity point O

uðRÞðxÞ ¼ 0; xAGq-BðO; eÞ and=or qðRÞðxÞ ¼ 0; xAGu-BðO; eÞ; ð43Þ

where BðO; eÞ ¼ x ¼ ðx1;x2ÞAR2j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
1 þ x2

2

q
oe

n o
and e > 0 is sufficiently small.

For example, for problem (42) the singular potential solution and its normal derivative are
expressed, in terms of the polar co-ordinates ðr; yÞ; as

uðSÞðxÞ 	 uðSÞðr; yÞ ¼
XL

l¼0

alu
ðSÞ
l ðr; yÞ; qðSÞðxÞ 	 qðSÞðr; yÞ ¼

XL

l¼0

alq
ðSÞ
l ðr; yÞ; ð44Þ

respectively, where u
ðSÞ
l ðr; yÞ is given by Eq. (39), q

ðSÞ
l ðr; yÞ is obtained by taking the conormal

derivative of u
ðSÞ
l ðr; yÞ; al ; l ¼ 1;y;L; are the unknown flux intensity factors and the following

convention has been made u
ðSÞ
0 ðr; yÞ 	 0 and q

ðSÞ
0 ðr; yÞ 	 0:
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The Helmholtz-type Eq. (421) can also be formulated in integral form, see Refs. [31,32]

cðxÞuðRÞðxÞ þ _@O@nðyÞEðx; yÞuðRÞðyÞ dGðyÞ ¼
Z
@O

Eðx; yÞqðRÞðyÞ dGðyÞ; xA %O; ð45Þ

where the first integral is considered in the sense of the Cauchy principal value, cðxÞ ¼ 1 for xAO;
cðxÞ ¼ 1

2
for x at smooth parts of @O and an explicit expression of cðxÞ for a corner point xA@O can

be taken from MantiW and Par!ıs [30], and E is the fundamental solution for the Helmholtz-type
equation, which in two-dimensions is given by

Eðx; yÞ ¼
i

4
ffiffiffiffiffiffi
jKj

p H
ð1Þ
0 ðkRÞ; R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� yÞTK�1ðx� yÞ

q
; ð46Þ

with H
ð1Þ
0 the Hankel function of order zero of the first kind. It should be noted that the BVPs for

Helmholtz-type equations are not always well-posed, in the sense that the integral equation (45)
does not necessarily have a unique solution for all wave numbers k; see Ref. [31]. More
specifically, the eigenvalues of the Laplacian operator need to be removed in order for the BVPs
associated with Helmholtz-type equations to be well-posed and, consequently, have a unique
solution. However, the wave numbers k for which the solution of the integral equation (45) is not
unique have been avoided for the examples presented and analyzed in the next section. A BEM
with constant boundary elements, see e.g. Refs. [33,34], is used in order to discretize uniformly the
problem given by the system of linear equations (42). If the boundaries Gu and Gq are uniformly
discretized into N1 and N2 constant boundary elements, respectively, such that N ¼ N1 þ N2; then
on applying (45) at each node on @O and using the boundary conditions ð422Þ and ð423Þ; the
following relation is arrived at

�
XN1

j¼1

Bijq
ðRÞ
j þ

XN

j¼N1þ1

Aiju
ðRÞ
j ¼ �

XN1

j¼1

Aij *uj �
XL

l¼1

alu
ðSÞ
lj

 !
þ
XN

j¼N1þ1

Bij *qj �
XL

l¼1

alq
ðSÞ
lj

 !
; ð47Þ

where A ¼ ðAijÞ1pi;jpN and B ¼ ðBijÞ1pi;jpN are matrices which depend solely on the discretisation
of the boundary @O and the material parameters. Eq. (47) represents a system of N linear
algebraic equations for ðN þ LÞ unknowns, namely the discretised fluxes q

ðRÞ
j ; j ¼ 1;y;N1;

and solutions u
ðRÞ
j ; j ¼ N1 þ 1;y;N; as well as the intensity factors al ; l ¼ 1;y;L; which can be

recast as

�
XN1

j¼1

Bijq
ðRÞ
j þ

XN

j¼N1þ1

Aiju
ðRÞ
j þ

XL

l¼1

al �
XN1

j¼1

Aiju
ðSÞ
lj þ

XN

j¼N1þ1

Bijq
ðSÞ
lj

 !

¼ �
XN1

j¼1

Aij *uj þ
XN

j¼N1þ1

Bij *qj; iAf1;y;Ng: ð48Þ

Since system (48) is underdetermined, it is completed by L more equations which represent the
discretised versions of relation (43), i.e.,

u
ðRÞ
N1þj ¼ 0; jAf1;y;Lg; or q

ðRÞ
N1þ1�j ¼ 0; jAf1;y;Lg; or

u
ðRÞ
N1þðjþ1Þ=2 ¼ 0; jAf1;y;Lg; j odd; and q

ðRÞ
N1þ1�j=2 ¼ 0; jAf1;y;Lg; j even ð49Þ
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with the mention that in Eq. (49) the singular point O is located between the nodes N1 and
ðN1 þ 1Þ:

5. Numerical results and discussion

In this section, the numerical results obtained using the modified BEM proposed in Section 4
are illustrated by considering the following examples for both the isotropic Helmholtz and the
isotropic modified Helmholtz equations containing singularities:

Example 1. Consider the following mixed BVP in the rectangle O ¼ ð�1; 1Þ 
 ð0; 1Þ; see Ref. [26]
and Fig. 2(a),

DuðxÞ � uðxÞ ¼ 0; x ¼ ðx1;x2ÞAO;

qðxÞ 	 @nuðxÞ ¼ 0; x ¼ ðx1;x2ÞAGq ¼ ð0; 1Þ 
 f0g;

uðxÞ ¼ r�1=2sinh rð Þcos y=2
� �

; x ¼ ðx1;x2ÞAGu ¼ @O\Gq:

8><
>: ð50Þ

This problem has a singularity at the origin O ¼ ð0; 0Þ and its analytical solution is given by

uðanÞðr; yÞ ¼ r�1=2 sinhðrÞ cosðy=2Þ; ðr; yÞAO: ð51Þ

Example 2. Let O ¼ ð�1; 1Þ 
 ð0; 1Þ,ð�1; 0Þ 
 ð�1; 0� be an L-shaped domain and consider the
following Dirichlet BVP for the modified Helmholtz equation in O; see Ref. [27] and Fig. 2(b),

DuðxÞ � uðxÞ ¼ 0; x ¼ ðx1;x2ÞAO;

uðxÞ ¼ uðanÞðxÞ; x ¼ ðx1;x2ÞAGu ¼ @O;

(
ð52Þ

where

uðanÞðr; yÞ ¼ u
ðSÞ
1 ðr; yÞ � 1:30 u

ðSÞ
2 ðr; yÞ � 1:70 u

ðSÞ
4 ðr; yÞ; ðr; yÞAO ð53Þ

is the exact solution of problem (52) with u
ðSÞ
l ðr; yÞ; l ¼ 1; 2; 4; given by relation (37).

Example 3. Let O be the same as in the previous example, see Fig. 2(b), and consider the following
Dirichlet BVP for the Helmholtz equation in the domain O:

DuðxÞ þ uðxÞ ¼ 0; x ¼ ðx1;x2ÞAO;

uðxÞ ¼ uðanÞðxÞ; x ¼ ðx1;x2ÞAGu ¼ @O;

(
ð54Þ

where

uðanÞðr; yÞ ¼ u
ðSÞ
1 ðr; yÞ � 1:30u

ðSÞ
2 ðr; yÞ � 1:70u

ðSÞ
4 ðr; yÞ; ðr; yÞAO ð55Þ

is the exact solution of problem (54) with u
ðSÞ
l ðr; yÞ; l ¼ 1; 2; 4; given by relation (37).

The numerical results presented in this section have been obtained using a uniform discretisation
of the boundary @O with N ¼ 120 and 160 constant boundary elements for Example 1 and
Examples 2 and 3, respectively. These values have been found sufficiently large such that any
further refinement of the mesh size did not significantly improve the accuracy of the numerical
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results. In addition, in what follows, denote by u
ðnumÞ
L and q

ðnumÞ
L the numerical potential solution

and flux, respectively, which are obtained by subtracting the first corresponding L singular
potential solutions/eigenvectors

u
ðnumÞ
L ðxÞ ¼ u

ðRÞ
L ðxÞ þ u

ðSÞ
L ðxÞ ¼ u

ðRÞ
L ðxÞ þ

XL

l¼0

alu
ðSÞ
l ðr; yÞ; xA %O ¼ O,@O;

q
ðnumÞ
L ðxÞ ¼ qðRÞðxÞ þ qðSÞðxÞ ¼ qðRÞðxÞ þ

XL

l¼0

alq
ðSÞ
l ðr; yÞ; xA %O ¼ O,@O ð56Þ
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Fig. 2. The geometry of the domain O and the boundary conditions for the boundary value problems corresponding to

(a) Example 1, and (b) Examples 2 and 3, respectively.
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with the convention that when L ¼ 0 then the numerical potential solution and flux are obtained
using the standard BEM, i.e., without removing the singularity.
The first example investigated contains a singularity at the boundary point O ¼ ð0; 0Þ where

there is a change in the boundary conditions. It should be noted that this singularity is of a form
which is similar to the case of a sharp re-entrant corner of angle o ¼ 2p: This may be seen by
extending the domain O ¼ ð�1; 1Þ 
 ð0; 1Þ using symmetry with respect to the x1-axis. In this way,
a problem is obtained for a square domain and a slit, namely *O ¼ ð�1; 1Þ 
 ð�1; 1Þ\½0; 1� 
 f0g with
zero flux boundary conditions along the slit ½0; 1� 
 f0g and Dirichlet conditions on the remaining
boundary of *O: This problem may also be treated by considering the domain *O described above
with the mention that the singular eigenvectors (36) corresponding to Neumann–Neumann
boundary conditions along the slit must be used. However, the original domain O and the mixed
boundary conditions described in Eq. (50) have been considered in our analysis, i.e., o ¼ p:
Figs. 3(a) and (b) present the numerical potential solution on the boundary ð0; 1Þ 
 f0g and flux

on the boundary ð�1; 0Þ 
 f0g; respectively, obtained for Example 1 when the standard and the
modified BEM are used, in comparison with their analytical values. From these figures it can be
seen that the numerical potential solution and flux do not approximate accurately their analytical
values in the neighbourhood of the singular point O ¼ ð0; 0Þ when no singular potential solutions are
subtracted, i.e., L ¼ 0; with the mention that the numerical flux has an oscillatory behaviour in the
vicinity of the singularity. Once the modified BEM described in Section 4 is applied, the numerical
results for both the potential solution and the flux are considerably improved, even if only the first
singular potential solution corresponding to Dirichlet–Neumann boundary conditions on ð�1; 1Þ 

f0g is removed, i.e., L ¼ 1: The same pattern is observed if one continues to remove higher order
singular potential solutions in the modified BEM, i.e., LAf2; 3g; as can be seen from Fig. 3.
In order to describe quantitatively this phenomenon, define the normalized errors

errðuðxÞÞ ¼
juðnumÞ

L ðxÞ � uðanÞðxÞj
max

yA@ *O juðanÞðyÞj
; errðqðxÞÞ ¼

jqðnumÞ
L ðxÞ � qðanÞðxÞj
max

yA@ *O jqðanÞðyÞj
; ð57Þ

for the potential solution and the flux, respectively, where @ *O denotes the set of the BEM nodes,
since on using these errors divisions by zero and very high errors at points where the potential
solution and/or the flux have relatively small values are avoided. Figs. 4(a) and (b) illustrate the
normalized errors errðuðxÞÞ and errðqðxÞÞ; respectively, on a semi-logarithmic scale for xAð�1; 1Þ 

f0g; obtained for various values of LAf0; 1; 2; 3g: From these figures, as well as from Table 1
which presents the values of the normalized errors defined by Eq. (57) in the neighbourhood of the
singular point O ¼ ð0; 0Þ; it can be seen the major effect in terms of accuracy of the modified
BEM, namely a significant improvement in the accuracy of the numerical potential solution and
flux from Oð10�1Þ to Oð10�15Þ for errðuðxÞÞ and from Oð100Þ to Oð10�14Þ for errðqðxÞÞ: As expected,
the errors in the numerical flux are larger than the errors in the numerical potential solution due to
the first order derivatives occuring in the representation of the flux.
Table 2 presents the numerical flux intensity factors, al ; obtained for Example 1 with various

LAf1; 2; 3g: It can be seen from this table that the values obtained for the flux intensity factors for
l > 1 are close to zero and this fact suggests that the singular potential solution u

ðSÞ
L ðr; yÞ is

dominated by its first term, u
ðSÞ
l ðr; yÞ for l ¼ 1: Hence, in the case of Example 1, it is sufficient to

subtract only the first singular potential solution corresponding to Dirichlet–Neumann boundary
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Fig. 3. (a) The analytical uðanÞ (—) and the numerical u
ðnumÞ
L solutions on the boundary ð0; 1Þ 
 f0g; and (b) the analytical

qðanÞ (—) and the numerical q
ðnumÞ
L fluxes on the boundary ð�1; 0Þ 
 f0g; obtained with N ¼ 120 boundary elements and

by subtracting L ¼ 0 ð?&?Þ; L ¼ 1 ð?O?Þ; L ¼ 2 ð?W?Þ and L ¼ 3 ð?�?Þ singular functions, for Example 1.
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conditions on ð�1; 1Þ 
 f0g; i.e., L ¼ 1; in order to obtain very accurate numerical potential
solution and flux. Although not presented here, it is reported that the numerical potential solution
obtained on the remaining boundary of the domain O has the same accuracy as that presented on
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Fig. 4. The normalized errors (a) errðuðxÞÞ on the boundary ð0; 1Þ 
 f0g; and (b) errðqðxÞÞ on the boundary ð�1; 0Þ 

f0g; on a semi-logarithmic scale, obtained with N ¼ 120 boundary elements and by subtracting L ¼ 0 ð�&�Þ; L ¼
1 ð�O�Þ; L ¼ 2 ð�W�Þ and L ¼ 3 ð���Þ singular functions, for Example 1.
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the boundary adjacent to the singular point, thus approximating very accurately the analytical
potential solution.
Both the second and the third examples investigated in this paper contain a singularity at the

origin O ¼ ð0; 0Þ which is caused by a sharp corner in the boundary, as well as by the nature of the
analytical potential solutions corresponding to these problems, i.e., the analytical potential
solutions are given as linear combinations of the first four singular potential solutions satisfying
homogeneous Dirichlet boundary conditions on the edges of the wedge. The analytical and the
numerical fluxes on the boundaries f0g 
 ð�1; 0Þ and ð0; 1Þ 
 f0g obtained for Example 2 by
subtracting LAf0; 1; 2; 3; 4g singular solutions are illustrated in Figs. 5(a) and (b), respectively. As
expected, the numerical flux obtained using the standard BEM, i.e. L ¼ 0; exhibits very high
oscillations in the neighbourhood of the singular point and hence it represents an inaccurate
approximation for the analytical flux. Moreover, from Fig. 5 it can be seen that oscillations in the
numerical flux occur even far from the singularity, namely in the vicinity of the points x ¼ ð0;�1Þ
and ð1; 0Þ: This problem can be overcome if instead of the standard BEM, the modified BEM
described in the previous section is employed with LX1: From Fig. 5 it can be noticed that the
accuracy in the numerical flux is significantly improved even for L ¼ 1 and a very good accuracy
in the numerical flux on the boundary adjacent to the origin is attained as L approaches four, i.e.,
the number of singular solutions satisfying homogeneous Dirichlet boundary conditions on the
edges of the wedge used in expression (53) for the analytical solution. A similar conclusion can be
drawn from Table 3 which presents the normalized error for the flux in the neighbourhood of the
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Table 1

The values of the normalized error for the numerical solution errðuLðxÞÞ and flux errðqLðxÞÞ; respectively, in the

neighbourhood of the singular point x ¼ ð0; 0Þ obtained with various L; for Example 1

x errðq0ðxÞÞ errðq1ðxÞÞ errðq2ðxÞÞ errðq3ðxÞÞ

ð�0:225; 0:000Þ 0:72
 10�3 0:11
 10�13 0:11
 10�13 0:12
 10�13

ð�0:175; 0:000Þ 0:30
 10�1 0:11
 10�13 0:11
 10�13 0:11
 10�13

ð�0:125; 0:000Þ 0:50
 10�1 0:49
 10�14 0:51
 10�14 0:51
 10�14

ð�0:075; 0:000Þ 0:27
 100 0:14
 10�14 0:98
 10�15 0:70
 10�15

ð�0:025; 0:000Þ 0:57
 100 0:12
 10�14 0:56
 10�15 0:50
 10�14

errðu0ðxÞÞ errðu1ðxÞÞ errðu2ðxÞÞ errðu3ðxÞÞ

ð0:025; 0:000Þ 0:40
 10�1 0:26
 10�15 0:37
 10�16 0:41
 10�15

ð0:075; 0:000Þ 0:21
 10�1 0:74
 10�16 0:37
 10�16 0:93
 10�15

ð0:125; 0:000Þ 0:13
 10�1 0:37
 10�16 0:37
 10�16 0:11
 10�14

ð0:175; 0:000Þ 0:93
 10�2 0:37
 10�15 0:37
 10�15 0:82
 10�15

ð0:225; 0:000Þ 0:64
 10�2 0:74
 10�16 0:11
 10�15 0:14
 10�14

Table 2

The values of the flux intensity factors al obtained with N ¼ 120 boundary elements and various L; for Example 1

L a1 a2 a3

1 0:17724
 101 — —

2 0:17724
 101 0.12423
 10�13 —

3 0:17724
 101 �0.14319
 10�13 0:95353
 10�11
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origin and, in addition, it can be seen from this table that the numerical flux in the vicinity of the
singular point, obtained using the modified BEM with LX4; is very accurate in comparison with
its analytical value.
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Fig. 5. The analytical qðanÞ (—-) and the numerical q
ðnumÞ
L fluxes (a) on the boundary f0g 
 ð�1; 0Þ; and (b) on the

boundary ð0; 1Þ 
 f0g; obtained with N ¼ 160 boundary elements and by subtracting L ¼ 0 ð�&�Þ; L ¼ 1 ð�O�Þ;
L ¼ 2 ð�W�Þ; L ¼ 3 ð���Þ and L ¼ 4 ð� 
 �Þ singular functions, for Example 2.
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The absolute error for the flux intensity factors al ; 1plpL; can also be defined as

ErrðalÞ ¼ jaðnumÞ
l � al j; 1plpL ð58Þ

in order to study the numerical retrieval of the flux intensity factors from a quantitative point of
view. Table 4 presents the absolute errors ErrðalÞ; 1plp4; as functions of the number L of
singular solutions removed using the modified BEM, as well as the numerically retrieved flux
intensity factors a

ðnumÞ
l for 1plp4: From this table it can be concluded that the numerical flux

intensities converge to their exact values as the number L of singular solutions subtracted
increases, with the mention that the value L ¼ 4 is sufficient in the case of Example 2 for obtaining
very accurate numerical estimates for the flux intensity factors.
In Example 3 a singular BVP similar to that presented in Example 2 is analysed, but for the

isotropic Hemholtz equation. Figs. 6(a) and (b) show the analytical and the numerical fluxes on
the boundaries f0g 
 ð�1; 0Þ and ð0; 1Þ 
 f0g; respectively, obtained for Example 3 when the
standard BEM is employed, i.e., L ¼ 0; as well as when the modified BEM is used, i.e.,
LAf1; 2; 3; 4g: Also in this case, the numerical flux obtained when L ¼ 0 is an inaccurate
approximation for the analytical flux, at the same time giving rise to oscillations in the vicinity
of the singular point O ¼ ð0; 0Þ: Again, this problem can be overcome by using the modified
BEM presented in Section 4 and, consequently, the numerical flux q

ðnumÞ
L approaches its analytical
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Table 3

The values of the normalized error for the numerical flux errðqLðxÞÞ in the neighbourhood of the singular point

x ¼ ð0; 0Þ obtained with various L; for Example 2

x errðq0ðxÞÞ errðq1ðxÞÞ errðq2ðxÞÞ errðq3ðxÞÞ errðq4ðxÞÞ errðq5ðxÞÞ

ð0:000;�0:225Þ 0:42
 10�2 0:11
 10�2 0:22
 10�1 0:23
 10�1 0:75
 10�12 0:14
 10�12

ð0:000;�0:175Þ 0:31
 10�1 0:46
 10�2 0:41
 10�2 0:45
 10�2 0:14
 10�12 0:15
 10�13

ð0:000;�0:125Þ 0:45
 10�1 0:46
 10�2 0:58
 10�3 0:52
 10�3 0:19
 10�13 0:45
 10�14

ð0:000;�0:075Þ 0:23
 100 0:28
 10�1 0:19
 10�2 0:19
 10�2 0:63
 10�13 0:16
 10�13

ð0:000;�0:025Þ 0:62
 100 0:80
 10�1 0:23
 10�2 0:23
 10�2 0:80
 10�13 0:14
 10�13

ð0:025; 0:000Þ 0:16
 100 0:11
 10�1 0:20
 10�2 0:20
 10�2 0:73
 10�13 0:25
 10�13

ð0:075; 0:000Þ 0:14
 10�1 0:70
 10�2 0:10
 10�2 0:11
 10�2 0:35
 10�13 0:11
 10�13

ð0:125; 0:000Þ 0:26
 10�1 0:65
 10�2 0:55
 10�3 0:61
 10�3 0:33
 10�13 0:74
 10�14

ð0:175; 0:000Þ 0:23
 10�1 0:53
 10�2 0:15
 10�3 0:21
 10�3 0:97
 10�14 0:14
 10�13

ð0:225; 0:000Þ 0:18
 10�1 0:45
 10�2 0:18
 10�3 0:12
 10�3 0:16
 10�13 0:82
 10�14

Table 4

The values of the flux intensity factors al and the absolute error ErrðalÞ obtained with N ¼ 160 boundary elements and

various L; for Example 2

L a1 Errða1Þ a2 Errða2Þ a3 Errða3Þ a4 Errða4Þ

1 0:88089 0:11
 100 — — — — — —

2 0:99841 0:15
 10�2 �1:31168 0:11
 10�1 — — — —

3 0:99855 0:14
 10�2 �1:31075 0:10
 10�1 �0.03971 0:39
 10�2 — —

4 1:00000 0:52
 10�13 �1:30000 0:42
 10�12 0.00000 0:78
 10�12 �1:69999 0:34
 10�10

5 1:00000 0:16
 10�13 �1:30000 0:20
 10�12 0.00000 0:12
 10�12 �1:70000 0:85
 10�11
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value qðanÞ as L increases, as can be seen from Fig. 6, with the mention that LX4 ensures
very good numerical results for the flux not only far from the singularity, but also in its
neighbourhood.
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Fig. 6. The analytical qðanÞ (—) and the numerical q
ðnumÞ
L fluxes (a) on the boundary f0g 
 ð�1; 0Þ; and (b) on the

boundary ð0; 1Þ 
 f0g; obtained with N ¼ 160 boundary elements and by subtracting L ¼ 0 ð�&�Þ; L ¼ 1 ð�O�Þ;
L ¼ 2 ð�W�Þ; L ¼ 3 ð���Þ and L ¼ 4 ð� 
 �Þ singular functions, for Example 3.
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In Figs. 7(a) and (b) the normalized errors errðqðxÞÞ retrieved for xAf0g 
 ð�1; 0Þ and
xAð0; 1Þ 
 f0g; respectively, when LAf0; 1; 2; 3; 4g singular solutions are subtracted are shown on
a semi-logarithmic scale, whilst Table 5 presents their values obtained using the modified BEM in
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Fig. 7. The normalized error errðqðxÞÞ (a) on the boundary f0g 
 ð�1; 0Þ; and (b) on the boundary ð0; 1Þ 
 f0g; on a

semi-logarithmic scale, obtained with N ¼ 160 boundary elements and by subtracting L ¼ 0 ð�&�Þ; L ¼ 1 ð�O�Þ;
L ¼ 2 ð�W�Þ; L ¼ 3 ð���Þ; L ¼ 4 ð� 
 �Þ and L ¼ 5 ð� þ �Þ singular functions, for Example 3.
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the vicinity of the origin. From both Fig. 7 and Table 5, it can be seen that the numerical flux
converges to its analytical value as L increases, the value LX4 is sufficient for retrieving very good
numerical approximations for the flux and the modified BEM gives rise to numerical fluxes free of
oscillations in the neighbourhood of the singular point O ¼ ð0; 0Þ: In Table 6 is presented the
absolute errors ErrðalÞ; 1plp4; given by Eq. (58) and the numerical flux intensity factors a

ðnumÞ
l ;

1plp4; obtained for Example 3 with various LAf1; 2; 3; 4; 5g: From this table it can be noticed
that the numerical flux intensities converge towards their exact values as L increases and the errors
for these flux intensity factors are significantly improved for LX4:
Overall, from the numerical results presented in this section it can be concluded that the

modified BEM proposed in Section 4 is a very suitable method for solving BVPs exhibiting
singularities caused by the presence of sharp corners in the boundary of the solution domain and/
or abrupt changes in the boundary conditions, for both the Helmholtz and the modified
Helmholtz equations in the isotropic case. The numerical potential solutions and fluxes retrieved
using this singularity subtraction technique are very good approximations for their analytical
values on the entire boundary, they are exempted from oscillations in the neighbourhood of the
singular point and there is no need of further mesh refinement in the vicinity of the singularities.
Although not illustrated numerically here, it should be noted that the proposed modified BEM
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Table 5

The values of the normalized error for the numerical flux errðqLðxÞÞ in the neighbourhood of the singular point

x ¼ ð0; 0Þ obtained with various L; for Example 3

x errðq0ðxÞÞ errðq1ðxÞÞ errðq2ðxÞÞ errðq3ðxÞÞ errðq4ðxÞÞ errðq5ðxÞÞ

ð0:000;�0:225Þ 0:25
 10�2 0:12
 100 0:23
 10�1 0:25
 10�1 0:56
 10�12 0:60
 10�13

ð0:000;�0:175Þ 0:28
 10�1 0:31
 10�1 0:41
 10�2 0:46
 10�2 0:94
 10�13 0:28
 10�15

ð0:000;�0:125Þ 0:46
 10�1 0:54
 10�2 0:79
 10�3 0:76
 10�3 0:23
 10�13 0:11
 10�13

ð0:000;�0:075Þ 0:23
 100 0:20
 10�2 0:20
 10�2 0:21
 10�2 0:49
 10�13 0:80
 10�14

ð0:000;�0:025Þ 0:60
 100 0:42
 10�2 0:23
 10�2 0:25
 10�2 0:62
 10�13 0:15
 10�13

ð0:025; 0:000Þ 0:18
 100 0:81
 10�2 0:15
 10�2 0:17
 10�2 0:46
 10�13 0:80
 10�14

ð0:075; 0:000Þ 0:63
 10�3 0:81
 10�2 0:87
 10�3 0:10
 10�2 0:19
 10�13 0:10
 10�13

ð0:125; 0:000Þ 0:17
 10�1 0:69
 10�2 0:49
 10�3 0:62
 10�3 0:59
 10�14 0:95
 10�14

ð0:175; 0:000Þ 0:15
 10�1 0:54
 10�2 0:19
 10�3 0:31
 10�3 0:35
 10�14 0:40
 10�14

ð0:225; 0:000Þ 0:11
 10�1 0:44
 10�2 0:64
 10�4 0:47
 10�4 0:50
 10�14 0:46
 10�14

Table 6

The values of the flux intensity factors al and the absolute error ErrðalÞ obtained with N ¼ 160 boundary elements and

various L; for Example 3

L a1 Errða1Þ a2 Errða2Þ a3 Errða3Þ a4 Errða4Þ

1 1.11546 0:11
 100 — — — — — —

2 1.00130 0:13
 10�2 �1:31168 0:11
 10�1 — — — —

3 1.00111 0:11
 10�2 �1:30963 0:96
 10�2 �0.03033 0:30
 10�1 — —

4 1.00000 0:32
 10�13 �1:30000 0:30
 10�12 0.00000 0:14
 10�12 �1:70000 0:24
 10�10

5 1.00000 0:11
 10�14 �1:30000 0:88
 10�13 0.00000 0:79
 10�13 �1:70000 0.12 
10�11
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has given very accurate results for some other tested cases, including multiple singularity points
and multiply connected domains for isotropic Helmholtz-type equations.

6. Conclusions

In this paper, the treatment of singularities in both isotropic and anisotropic Helmholtz-type
equations has been investigated. The singular solutions corresponding to isotropic Helmholtz-
type equations have been revised, whilst the singular solutions for the anisotropic case have been
derived using an approach based on a change of variables which reduces the anisotropic
Helmholtz-type equations to the canonical form with the same wave number. It has been shown
that this method is suitable for overcoming the slow convergence rate for the standard BEM due
to singularities caused by the presence of sharp corners in the boundary of the solution domain
and/or the changes in the boundary conditions. Consequently, the standard BEM with constant
elements has been modified in order to take account of the singularity, without an appreciable
computational effort. The main advantages of this method, apart from those derived directly from
the BEM, i.e., the discretization of the boundary only and the reduction of the dimension of the
original problem are: (i) the considerable improvement in the accuracy of the numerical solution
in the neighbourhood of the singular point, (ii) the reduced additional computational effort, (iii)
the possibility of a straightforward implementation for other boundary elements, such as
continuous linear, continuous quadratic, discontinuous linear and discontinuous quadratic
boundary elements and (iv) further mesh refinement in the vicinity of the singularity is not
necessary anymore. The method presented in this study and illustrated by three numerical
examples can be easily and successfully applied to multiple singularity points and multiply
connected domains, as well as to anisotropic Helmholtz-type equations, and it can be extended
to the wave propagation in elastic isotropic and anisotropic corners, but these are deferred to
future work.
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