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Abstract

In this paper, the radiation and scattering problems with circular boundaries are studied by using the null-field integral equations in
conjunction with degenerate kernels and Fourier series to avoid calculating the Cauchy and Hadamard principal values. In implemen-
tation, the null-field point can be located on the real boundary owing to the introduction of degenerate kernels for fundamental solution.
An adaptive observer system of polar coordinate is considered to fully employ the property of degenerate kernels. For the hypersingular
equation, vector decomposition for the radial and tangential gradient is carefully considered. This method can be seen as a semi-analyt-
ical approach since errors attribute from the truncation of Fourier series. Neither hypersingularity in Burton and Miller approach nor the
CHIEF concepts were required to deal with the problem of irregular frequencies. Four gains, well-posed model, singularity free, bound-
ary-layer effect free and exponential convergence are achieved using the present approach. A fast convergence rate in exponential order
than algebraic one in BEM stems from the series expansions. Three examples were demonstrated to see the validity of the present for-
mulation and show the better accuracy than BEM.
� 2007 Published by Elsevier B.V.
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1. Introduction

It is well known that boundary integral equation meth-
ods have been used to solve exterior acoustic radiation and
scattering problems for many years. The importance of the
integral equation in the solution, both theoretical and prac-
tical, for certain types of boundary value problems is uni-
versally recognized. One of the problems frequently
addressed in BIEM/BEM is the problem of irregular fre-
quencies in boundary integral formulations for exterior
acoustics and water wave problems. These frequencies do
not represent any kind of physical resonance but are due
to the numerical method, which has non-unique solutions
at characteristic frequencies associated with the eigenfre-
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quency of the interior problem. Burton and Miller
approach [1] as well as CHIEF technique have been
employed to deal with these problems [2].

Numerical examples for non-uniform radiation and
scattering problems by using the dual BEM were provided
and the irregular frequencies were easily found [3]. The
non-uniqueness of radiation and scattering problems are
numerically manifested in a rank deficiency of the influence
coefficient matrix in BEM [1]. In order to obtain the unique
solution, several integral equation formulations that pro-
vide additional constraints to the original system of equa-
tions have been proposed. Burton and Miller [1]
proposed an integral equation that was valid for all wave
numbers by forming a linear combination of the singular
integral equation and its normal derivative. However, the
calculation for the hypersingular integration is required.
To avoid the computation of hypersingularity, an alterna-
tive method, Schenck [2] used the CHIEF method, which
al approach for radiation and scattering ..., Comput. Methods
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employs the boundary integral equations by collocating the
interior point as an auxiliary condition to make up defi-
cient constraint condition. Many researchers [5–7] applied
the CHIEF method to deal with the problem of fictitious
frequencies. If the chosen point locates on the nodal line
of the associated interior eigenproblem, then this method
fails. To overcome this difficulty, Wu and Seybert [5,6]
employed a CHIEF-block method using the weighted
residual formulation for acoustic problems. For water
wave problems, Ohmatsu [8] presented a combined integral
equation method (CIEM), it was similar to the CHIEF-
block method for acoustics proposed by Wu and Seybert.
In the CIEM, two additional constraints for one interior
point result in an overdetermined system to insure the
removal of irregular frequencies. An enhanced CHIEF
method was also proposed by Lee and Wu [7]. The main
concern of the CHIEF method is how many numbers of
interior points are selected and where the positions should
be located. Recently, the appearance of irregular frequency
in the method of fundamental solutions was theoretically
proved and numerically implemented [9]. However, as far
as the present authors are aware, only a few papers have
been published to date reporting on the efficacy of these
methods in radiation and scattering problems involving
more than one vibrating body. For example, Dokumaci
and Sarigül [10] had discussed the fictitious frequency of
radiation problem of two spheres. They used the surface
Helmholtz integral equation (SHIE) and the CHIEF
method to find the position of fictitious frequency. In our
formulation, we are also concerned with the fictitious fre-
quency especially for the multiple cylinders of scatters
and radiators. At the same time, we may wonder if there
is one approach free of both Burton and Miller approach
and CHIEF technique.

For the problems with circular boundaries, the Fourier
series expansion method is specially suitable to obtain the
analytical solution. The interaction of water waves with
arrays of vertical circular cylinders was studied using the
dispersion relation by Linton and Evans [11]. If the depth
dependence is removed, it becomes two-dimensional Helm-
holtz problem. For membrane and plate problems, analyt-
ical treatment of integral equations for circular and
annular domains were proposed in closed-form expressions
for the integral in terms of Fourier coefficients by Kitahara
[12]. Elsherbeni and Hamid [13] used the method of
moments to solve the scattering problem by parallel con-
ducting circular cylinders. They also divided the total scat-
tered field into two components, namely a noninteraction
term and a term due to all interactions between the cylin-
ders. Chen et al. [3] employed the dual BEM to solve the
exterior acoustic problems with circular boundary. Grote
and Kirsch [14] utilized multiple Dirichlet to Neumann
(DtN) method to solve multiple scattering problems of cyl-
inders. DtN solution was obtained by combining contribu-
tions from multiple outgoing wave fields. Degenerate
kernels were given in the book of Kress [15]. The mathe-
matical proof of exponential convergence for Helmholtz
Please cite this article in press as: J.T. Chen et al., A semi-analytic
Appl. Mech. Eng. (2007), doi:10.1016/j.cma.2007.02.004
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problems using the Fourier expansion was derived in [16].
According to the literature review, it is observed that exact
solutions for boundary value problems are only limited for
simple cases, e.g. a cylinder radiator and scatter, half-plane
with a semi-circular canyon, a hole under half-plane, two
holes in an infinite plate. Therefore, proposing a systematic
approach for solving BVP with circular boundaries of var-
ious numbers, positions and radii is our goal in this article.

In this paper, the boundary integral equation method
(BIEM) is utilized to solve the exterior radiation and scat-
tering problems with circular boundaries. To fully utilize
the geometry of circular boundary, not only Fourier series
for boundary densities as previously used by many
researchers but also the degenerate kernel for fundamental
solutions in the present formulation is incorporated into
the null-field integral equation. All the improper boundary
integrals are free of calculating the principal values (Cau-
chy and Hadamard) in place of series sum. In integrating
each circular boundary for the null-field equation, the
adaptive observer system of polar coordinate is considered
to fully employ the property of degenerate kernel. To avoid
double integration, point collocation approach is consid-
ered. Free of worrying how to choose the collocation
points, uniform collocation along the circular boundary
yields a well-posed matrix. For the hypersingular equation,
vector decomposition for the radial and tangential gradi-
ents is carefully considered, especially for the eccentric
case. Fictitious frequencies in the multiple scatters and
radiators are also examined. Nonuniform radiation and
scattering problems are solved for a single circular cylinder.
Finally, a five-scatters problem in the full plane was given
to demonstrate the validity of the present method. The
results are compared with those of analytical solution,
BEM, FEM and/or other numerical solutions.
2. Problem statement and integral formulation

2.1. Problem statement

The governing equation of the acoustic problem is the
Helmholtz equation

ðr2 þ k2ÞuðxÞ ¼ 0; x 2 D; ð1Þ

where $2, k and D are the Laplacian operator, the wave
number, and the domain of interest, respectively. Consider
the radiation and scattering problems containing N ran-
domly distributed circular holes centered at the position
vector c

�j
ðj ¼ 1; 2; . . . ; NÞ as shown in Fig. 1a and b,

respectively.
2.2. Dual boundary integral formulation

Based on the dual boundary integral formulation of the
domain point [17], we have
al approach for radiation and scattering ..., Comput. Methods
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Fig. 1. Problem statement: (a) problem statement for 2-D exterior radiator problem and (b) problem statement for 2-D exterior scattering problem.
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2puðxÞ ¼
Z

B
T iðs; xÞuðsÞdBðsÞ �

Z
B

U iðs; xÞtðsÞdBðsÞ; x 2 D [ B; ð2Þ

2ptðxÞ ¼
Z

B
M iðs; xÞuðsÞdBðsÞ �

Z
B

Liðs; xÞtðsÞdBðsÞ; x 2 D [ B; ð3Þ

where s and x are the source and field points, respectively,
B is the boundary. Eqs. (2) and (3) are quite different from
the conventional formulation since they are valid not only
for the point in the domain D but also for the boundary
points if the kernels are properly expressed as the interior
(superscript i) degenerate kernels. The set of x in Eqs. (2)
and (3) is closed since x 2 D [ B. The flux tðsÞ is the direc-
tional derivative of uðsÞ along the outer normal direction at
s. For the interior point, tðxÞ is artificially defined. For
example, tðxÞ ¼ ou=ox1, if n

�
ðxÞ ¼ ð1; 0Þ and tðxÞ ¼ ou=ox2,

if n
�
ðxÞ ¼ ð0; 1Þ where ðx1; x2Þ is the coordinate of field point

x. The Uðs; xÞ; T ðs; xÞ; Lðs; xÞ and Mðs; xÞ represent the four
kernel functions [3]

Uðs;xÞ¼�ipH ð1Þ0 ðkrÞ
2

; ð4Þ

T ðs;xÞ¼ oUðs;xÞ
ons

¼�ikpH ð1Þ1 ðkrÞ
2

yini

r
; ð5Þ

Lðs;xÞ¼ oUðs;xÞ
onx

¼ ikpH ð1Þ1 ðkrÞ
2

yi�ni

r
; ð6Þ

Mðs;xÞ¼ o2Uðs;xÞ
onxons

¼�ikp
2
�k

H ð1Þ2 ðkrÞ
r2

yiyjni�njþ
H ð1Þ1

r
ni�ni

" #
;

ð7Þ

where H ð1Þn ðkrÞ ¼ J nðkrÞ þ iY nðkrÞ is the nth order Hankel
function of the first kind, and Jn is the Bessel function Yn
Please cite this article in press as: J.T. Chen et al., A semi-analytic
Appl. Mech. Eng. (2007), doi:10.1016/j.cma.2007.02.004
E
D

is the modified Bessel function, r ¼ jx� sj; yi ¼
si � xi; i2 ¼ �1; ni and �ni are the ith components of the out-
er normal vectors at s and x, respectively. Eqs. (2) and (3)
are referred to singular and hypersingular boundary inte-
gral equation (BIE), respectively.
2.3. Null-field integral formulation in conjunction the

degenerate kernel and Fourier series

By collocating x outside the domain (x 2 DE, comple-
mentary domain), we obtain the null-field integral equa-
tions as shown below [18]:

0 ¼
Z

B
T eðs; xÞuðsÞdBðsÞ �

Z
B

U eðs; xÞtðsÞdBðsÞ; x 2 DE [ B;

ð8Þ

0 ¼
Z

B
M eðs; xÞuðsÞdBðsÞ �

Z
B

Leðs; xÞtðsÞdBðsÞ; x 2 DE [ B;

ð9Þ

where the collocation point x can locate on the outside of
the domain as well as B if kernels are substituted into prop-
er exterior (superscript e) degenerate kernels. Since degen-
erate kernels can describe the fundamental solutions in two
regions (interior and exterior domain), the BIE for a do-
main point of Eqs. (2) and (3) and null-field BIE of Eqs.
(8) and (9) can include the boundary point. In real imple-
mentation, the null-field point can be pushed on the real
boundary since we introduce the expression of degenerate
kernel for fundamental solutions. By using the polar coor-
dinate, we can express x ¼ ðq;/Þ and s ¼ ðR; hÞ. The four
al approach for radiation and scattering ..., Comput. Methods
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4 J.T. Chen et al. / Comput. Methods Appl. Mech. Engrg. xxx (2007) xxx–xxx

CMA 8213 No. of Pages 12, Model 5+

10 March 2007 Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

kernels, U, T, L and M can be expressed in terms of degen-
erate kernels as shown below [3]:

Uðs;xÞ ¼
U Iðs;xÞ ¼ �pi

2

P1
m¼0

emJmðkqÞH ð1Þm ðkRÞcosðmðh�/ÞÞ; R P q;

UEðs;xÞ ¼ �pi
2

P1
m¼0

emH ð1Þm ðkqÞJmðkRÞcosðmðh�/ÞÞ; q> R;

8>><
>>:

ð10Þ

T ðs;xÞ ¼
T Iðs;xÞ ¼ �pki

2

P1
m¼0

emJmðkqÞH 0ð1Þm ðkRÞcosðmðh�/ÞÞ; R> q;

T Eðs;xÞ ¼ �pki
2

P1
m¼0

emH ð1Þm ðkqÞJ 0mðkRÞcosðmðh�/ÞÞ; q> R;

8>><
>>:

ð11Þ

Lðs;xÞ ¼
LIðs;xÞ ¼ �pki

2

P1
m¼0

emJ 0mðkqÞH ð1Þm ðkRÞcosðmðh�/ÞÞ; R> q;

LEðs;xÞ ¼ �pki
2

P1
m¼0

emH 0ð1Þm ðkqÞJ mðkRÞcosðmðh�/ÞÞ; q> R;

8>><
>>:

ð12Þ

Mðs;xÞ ¼
M Iðs;xÞ ¼ �pk2i

2

P1
m¼0

emJ 0mðkqÞH 0ð1Þm ðkRÞcosðmðh�/ÞÞ; R P q;

MEðs;xÞ ¼ �pk2i
2

P1
m¼0

emH 0ð1Þm ðkqÞJ 0mðkRÞcosðmðh�/ÞÞ; q> R;

8>><
>>:

ð13Þ
where em is the Neumann factor

em ¼
1; m ¼ 0;

2; m ¼ 1; 2; . . .1:

�
ð14Þ

Since the potentials resulted from T ðs; xÞ and Lðs; xÞ are dis-
continuous cross the boundary, the potentials of T ðs; xÞ
and Lðs; xÞ for R! qþ and R! q� are different. This is
the reason why R ¼ q is not included in the expression
for the degenerate kernels of T ðs; xÞ and Lðs; xÞ. The analyt-
ical evaluation of the integrals for harmonic boundary dis-
tribution is listed in the Appendix and they are all non-
singular. The degenerate kernels simply serve as the means
to evaluate regular integrals analytically and take the limits
analytically. The reason that Eqs. (2) and (8) yield the same
algebraic equation when the limit is taken from the inside
or from the outside of the region is that both limits repre-
sent the algebraic equation that is an approximate counter-
part of the boundary integral equation, that for the case of
a smooth boundary has in the left-hand side term puðxÞ or
ptðxÞ rather than 2puðxÞ or 2ptðxÞ for the domain point or 0
for the point outside the domain. Besides, the limiting case
to the boundary is also addressed. The continuous and
jump behavior across the boundary is well captured by
the Wronskian property of Bessel function Jm and Ym bases

W ðJ mðkRÞ;Y mðkRÞÞ ¼ Y 0mðkRÞJ mðkRÞ � Y mðkRÞJ 0mðkRÞ ¼ 2

pkR
ð15Þ

as shown belowZ 2p

0

ðT Iðs; xÞ � T Eðs; xÞÞ cosðmhÞRdh ¼ 2p cosðm/Þ; x 2 B;

ð16ÞZ 2p

0

ðT Iðs; xÞ � T Eðs; xÞÞ sinðmhÞRdh ¼ 2p sinðm/Þ; x 2 B;

ð17Þ

where TI and TE are the interior and exterior expressions
for the T kernel in degenerate form. After employing
Please cite this article in press as: J.T. Chen et al., A semi-analytic
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Eqs. (16) and (17), (2) and (8) yields the same linear alge-
braic equation when x is exactly pushed on the boundary
from the domain or the complementing domain. A proof
for the Laplace case can be found [18].

In order to fully utilize the geometry of circular boundary,
the potential u and its normal flux t can be approximated by
employing the Fourier series. Therefore, we obtain

uðsÞ ¼ a0 þ
X1
n¼1

ðan cos nhþ bn sin nhÞ; s 2 B; ð18Þ

tðsÞ ¼ p0 þ
X1
n¼1

ðpn cos nhþ qn sin nhÞ; s 2 B; ð19Þ

where a0; an; bn; p0; pn and qn are the Fourier coefficients
and h is the polar angle which is equally discretized. Eqs.
(8) and (9) can be easily calculated by employing the
orthogonal property of Fourier series. In the real computa-
tion, only the finite P terms are used in the summation of
Eqs. (18) and (19).

2.4. Adaptive observer system

Since the boundary integral equations are frame indiffer-
ent, i.e. rule of objectivity is obeyed. Adaptive observer sys-
tem is chosen to fully employ the property of degenerate
kernels. Fig. 2 shows the boundary integration for the cir-
cular boundaries. It is worthy noted that the origin of the
observer system can be adaptively located on the center
of the corresponding circle under integration to fully utilize
the geometry of circular boundary. The dummy variable in
the integration on the circular boundary is just the angle (h)
instead of the radial coordinate (R). By using the adaptive
system, all the boundary integrals can be determined ana-
lytically free of principal value.

2.5. Vector decomposition technique for the potential

gradient in the hypersingular formulation

Since hypersingular equation plays an important role for
dealing with fictitious frequencies, potential gradient of the
field quantity is required to calculate. For the eccentric
al approach for radiation and scattering ..., Comput. Methods
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case, the field point and source point may not locate on the
circular boundaries with the same center except the two
points on the same circular boundary or on the annular
cases. Special treatment for the normal derivative should
be taken care. As shown in Fig. 3 where the origins of
observer system are different, the true normal direction ê1

with respect to the collocation point x on the Bj boundary
should be superimposed by using the radial direction ê3

and angular direction ê4. We call this treatment ‘‘vector
decomposition technique’’. According to the concept,
Eqs. (12) and (13) can be modified as
T

P
R

O
O

F

306

308308

309
310
311
312
313

Lðs; xÞ ¼
LIðs; xÞ ¼ �pki

2

P1
m¼�1

J 0mðkqÞH ð1Þm ðkRÞ cosðmðh� /ÞÞ cosð/c � /jÞ;� m
kq JmðkqÞH ð1Þm ðkRÞ sinðmðh� /ÞÞ sinð/c � /jÞ; R > q;

LEðs; xÞ ¼ �pki
2

P1
m¼�1

H 0ð1Þm ðkqÞJmðkRÞ cosðmðh� /ÞÞ cosð/c � /jÞ � m
kq JmðkqÞH ð1Þm ðkRÞ sinðmðh� /ÞÞ sinð/c � /jÞ; q > R;

8>><
>>:

ð20Þ

Mðs; xÞ ¼
M Iðs; xÞ ¼ �pki

2

P1
m¼�1

J 0mðkqÞH 0ð1Þm ðkRÞ cosðmðh� /ÞÞ cosð/c � /jÞ � m
kq JmðkqÞH 0ð1Þm ðkRÞ sinðmðh� /ÞÞ sinð/c � /jÞ; R P q;

MEðs; xÞ ¼ �pki
2

P1
m¼�1

H 0ð1Þm ðkqÞJ 0mðkRÞ cosðmðh� /ÞÞ cosð/c � /jÞ � m
kq JmðkqÞH 0ð1Þm ðkRÞ sinðmðh� /ÞÞ sinð/c � /jÞ; q>R:

8>><
>>:

ð21Þ
R
R

E
C

2.6. Linear algebraic equation

In order to calculate the 2P þ 1 unknown Fourier coef-
ficients, 2P þ 1 boundary points on each circular boundary
are needed to be collocated. By collocating the null-field
point exactly on the kth circular boundary for Eqs. (8)
and (9) as shown in Fig. 4a, we have

0¼
XN

j¼1

Z
Bj

T ðs;xkÞuðsÞdBðsÞ�
XN

j¼1

Z
Bj

Uðs;xkÞtðsÞdBðsÞ; xk 2DE[B;

ð22Þ

0¼
XN

j¼1

Z
Bj

Mðs;xkÞuðsÞdBðsÞ�
XN

j¼1

Z
Bj

Lðs;xkÞtðsÞdBðsÞ; xk 2DE[B;

ð23Þ
where N is the number of circles. It is noted that the path is
anticlockwise for the outer circle. Otherwise, it is clockwise.
U
N

C
O

( , )x ρ φ=

1ê : True normal direction 

2ê : True tangential direction 

3ê : Radial derivative direction 

4ê : Angle derivative direction

1̂e

c
ρ
cφ

c jφ φ−
2 c j

π φ φ− +

j
ρ

jφ

3ê4ê
2ê

Fig. 3. Vector decomposition for potential gradient in the hypersingular
equation.
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For the Bj integral of the circular boundary, the kernels of
Uðs; xÞ; T ðs; xÞLðs; xÞ and Mðs; xÞ are respectively expressed
in terms of degenerate kernels of Eqs. (10), (11), (20) and
(21) with respect to the observer origin at the center of
Bj. The boundary densities of uðsÞ and tðsÞ are substituted
by using the Fourier series of Eqs. (18) and (19), respec-
tively. In the Bj integration, we set the origin of the obser-
ver system to collocate at the center cj of Bj to fully utilize
the degenerate kernel and Fourier series. By locating the
null-field point on the real boundary Bk from outside of
the domain DE in numerical implementation, a linear alge-
315315
E
D

braic system is obtained

½U �ftg ¼ ½T�fug; ð24Þ
½L�ftg ¼ ½M�fug; ð25Þ

where ½U �; ½T�; ½L� and ½M� are the influence matrices with a
dimension of N � ð2P þ 1Þ by N � ð2P þ 1Þ and ftg and
fug denote the vectors for tðsÞ and uðsÞ of the Fourier coef-
ficients with a dimension of N � ð2P þ 1Þ by 1. where,
½U �; ½T�; ½L�; ½M�; fug and ftg can be defined as follows:

½U � ¼ ½Uab� ¼

U11 U12 � � � U1N

U21 U22 � � � U2N

..

. ..
. . .

. ..
.

UN1 UN2 � � � UNN

2
664

3
775;

½T� ¼ ½Tab� ¼

T11 T12 � � � T1N

T21 T22 � � � T2N

..

. ..
. . .

. ..
.

TN1 TN2 � � � TNN

2
664

3
775; ð26Þ

½L� ¼ ½Lab� ¼

L11 L12 � � � L1N

L21 L22 � � � L2N

..

. ..
. . .

. ..
.

LN1 LN2 � � � LNN

2
664

3
775;

½M � ¼ ½Mab� ¼

M11 M12 � � � M1N

M21 M22 � � � M2N

..

. ..
. . .

. ..
.

MN1 MN2 � � � MNN

2
664

3
775; ð27Þ

fug ¼

u1

u2

u3

..

.

uN

8>>>><
>>>>:

9>>>>=
>>>>;
; ftg ¼

t1

t2

t3

..

.

tN

8>>>><
>>>>:

9>>>>=
>>>>;
; ð28Þ
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Fig. 4. Boundary integral formulation: (a) null-field integral equation (x
move to B from DE) and (b) boundary integral equation for the domain
point.
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Ewhere the vectors fukg and ftkg are in the form of
f ak

0 ak
1 bk

1 � � � ak
P bk

P g
T and f pk

0 pk
1 qk

1 � � �
pk

P qk
Pg

T; the first subscript ‘‘a’’ (a ¼ 1; 2; . . . ;N ) in the

½Uab� denotes the index of the ath circle where the colloca-
tion point is located and the second subscript ‘‘b’’
(b ¼ 1; 2 . . . ;NÞ denotes the index of the bth circle where
the boundary data fukg or ftkg are specified. N is the num-
ber of circular holes in the domain and P indicates the
highest harmonic of truncated terms in Fourier series.
The coefficient matrix of the linear algebraic system is par-
titioned into blocks, and each diagonal block (U pp; p no
sum) corresponds to the influence matrices due to the same
circle of collocation and Fourier expansion. After uni-
formly collocating the point along the ath circular bound-
ary, the sub-matrix can be written as

½U ab� ¼

U 0c
abð/1Þ U 1c

abð/1Þ U 1s
abð/1Þ � � � UPc

abð/1Þ U Ps
abð/1Þ

U 0c
abð/2Þ U 1c

abð/2Þ U 1s
abð/2Þ � � � UPc

abð/2Þ U Ps
abð/2Þ

U 0c
abð/3Þ U 1c

abð/3Þ U 1s
abð/3Þ � � � UPc

abð/3Þ U Ps
abð/3Þ

..

. ..
. ..

. . .
. ..

. ..
.

U 0c
abð/2P Þ U 1c

abð/2P Þ U 1s
abð/2P Þ � � � U Mc

ab ð/2P Þ U Ms
ab ð/2P Þ

U 0c
abð/2Pþ1Þ U 1c

abð/2Pþ1Þ U 1s
abð/2Pþ1Þ � � � U Mc

ab ð/2Pþ1Þ U Ms
ab ð/2Pþ1Þ

2
666666666664

3
777777777775
;

ð29Þ
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½T ab� ¼

T 0c
abð/1Þ T 1c

abð/1Þ T 1s
abð/1Þ � � � T Pc

abð/1Þ T Ps
abð/1Þ

T 0c
abð/2Þ T 1c

abð/2Þ T 1s
abð/2Þ � � � T Pc

abð/2Þ T Ps
abð/2Þ

T 0c
abð/3Þ T 1c

abð/3Þ T 1s
abð/3Þ � � � T Pc

abð/3Þ T Ps
abð/3Þ

..

. ..
. ..

. . .
. ..

. ..
.

T 0c
abð/2P Þ T 1c

abð/2P Þ T 1s
abð/2P Þ � � � T Pc

abð/2P Þ T Ps
abð/2P Þ

T 0c
abð/2Pþ1Þ T 1c

abð/2Pþ1Þ T 1s
abð/2Pþ1Þ � � � T Pc

abð/2Pþ1Þ T Ps
abð/2Pþ1Þ

2
666666666666664

3
777777777777775

;

ð30Þ

½Lab� ¼

L0c
abð/1Þ L1c

abð/1Þ L1s
abð/1Þ � � � LPc

abð/1Þ LPs
abð/1Þ

L0c
abð/2Þ L1c

abð/2Þ L1s
abð/2Þ � � � LPc

abð/2Þ LPs
abð/2Þ

L0c
abð/3Þ L1c

abð/3Þ L1s
abð/3Þ � � � LPc

abð/3Þ LPs
abð/3Þ

..

. ..
. ..

. . .
. ..

. ..
.

L0c
abð/2P Þ L1c

abð/2P Þ L1s
abð/2P Þ � � � LPc

abð/2P Þ LPs
abð/2P Þ

L0c
abð/2Pþ1Þ L1c

abð/2Pþ1Þ L1s
abð/2Pþ1Þ � � � LPc

abð/2Pþ1Þ LPs
abð/2Pþ1Þ

2
666666666666664

3
777777777777775

;

ð31Þ

½Mab� ¼

M0c
abð/1Þ M1c

abð/1Þ M1s
abð/1Þ � � � MPc

abð/1Þ MPs
abð/1Þ

M0c
abð/2Þ M1c

abð/2Þ M1s
abð/2Þ � � � MPc

abð/2Þ MPs
abð/2Þ

M0c
abð/3Þ M1c

abð/3Þ M1s
abð/3Þ � � � MPc

abð/3Þ MPs
abð/3Þ

..

. ..
. ..

. . .
. ..

. ..
.

M0c
abð/2P Þ M1c

abð/2P Þ M1s
abð/2P Þ � � � MPc

abð/2P Þ MPs
abð/2P Þ

M0c
abð/2Pþ1Þ M1c

abð/2Pþ1Þ M1s
abð/2Pþ1Þ � � � MPc

abð/2Pþ1Þ MPs
abð/2Pþ1Þ

2
666666666666664

3
777777777777775

ð32Þ

It is noted that the superscript ‘‘0s’’ in Eq. (29) disappears
since sinð0hÞ ¼ 0. And the element of ½U ab�; ½T ab�; ½Lab� and
½Mab� are defined as
Unc
ab ¼

Z
Bk

Uðsk; xmÞ cosðnhkÞRk dhk; n ¼ 0; 1; 2 . . . ; P ; ð33Þ

Uns
ab ¼

Z
Bk

Uðsk; xmÞ sinðnhkÞRk dhk; n ¼ 0; 1; 2 . . . ; P ; ð34Þ

T nc
ab ¼

Z
Bk

T ðsk; xmÞ cosðnhkÞRk dhk; n ¼ 0; 1; 2 . . . ; P ; ð35Þ

T ns
ab ¼

Z
Bk

T ðsk; xmÞ sinðnhkÞRk dhk; n ¼ 0; 1; 2 . . . ; P ; ð36Þ

Lnc
ab ¼

Z
Bk

Lðsk; xmÞ cosðnhkÞRk dhk; n ¼ 0; 1; 2 . . . ; P ; ð37Þ

Lns
ab ¼

Z
Bk

Lðsk; xmÞ sinðnhkÞRk dhk; n ¼ 0; 1; 2 . . . ; P ; ð38Þ

Mnc
ab ¼

Z
Bk

Lðsk; xmÞ cosðnhkÞRk dhk; n ¼ 0; 1; 2 . . . ; P ; ð39Þ

Mnc
ab ¼

Z
Bk

Lðsk; xmÞ cosðnhkÞRk dhk; n ¼ 0; 1; 2 . . . ; P ; ð40Þ
where /m;m ¼ 1; 2 . . . ; 2P þ 1 is the polar angle of the col-
locating points xm around boundary. After obtaining the
al approach for radiation and scattering ..., Comput. Methods
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346
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BIE for the domain point [Eq.2]

Helmholtz problems with 

circular boundaries 

Expansion 

Collocating to the null-field point 

and matching of B.C.

Algebraic system 

Adaptive observer system 

Obtain unknown Fourier 

coefficients 

Fundamental solution

Degenerate kernel 

[Eqs. (10), (11), (20) and (21)] 

Circular boundary density

Fourier series 

[Eqs. (18) and (19)] 

Null-field integral equation  [Eq. 

(8) and (9)]

Fig. 5. The flowchart of the present method.

Table 1
The difference between the present method and BEM

Method System

Boundary density discretization Auxiliary syst

Present method Degenerate k

BEM Fundamental
solution

where RPV, CPV and HPV denote Riemann principal value, Cauchy principa

J.T. Chen et al. / Comput. Methods Appl. Mech. Engrg. xxx (2007) xxx–xxx 7

CMA 8213 No. of Pages 12, Model 5+

10 March 2007 Disk Used
ARTICLE IN PRESS

Please cite this article in press as: J.T. Chen et al., A semi-analytic
Appl. Mech. Eng. (2007), doi:10.1016/j.cma.2007.02.004
unknown Fourier coefficients, the origin of observer system
is set to cj in the Bj integration as shown in Fig. 4b to ob-
tain the interior potential by employing Eq. (2). The flow-
chart of the present method is shown in Fig. 5 and the
difference with BEM is shown in Table 1.
348
349

350
351

352
353
354

356356
R
O

O
F

3. Numerical results and discussion

Example 1. Nonuniform radiation problem for one radi-
ator (Neumann boundary condition).

A non-uniform radiation problem from a sector of a cyl-
inder is considered (Neumann boundary) as shown in
Fig. 6. The analytical solution is [19]

uðr; hÞ ¼ � 2

pk

X1
n¼0

sin na
n

H ð1Þn ðkrÞ
H 0ð1Þn ðkaÞ

cos nh;

r P a; 0 6 h 6 2p: ð41Þ
E
D

P

Fig. 6. Nonuniform radiator problem (Neumann).

em Coordinate system Boundary integral Formulation

ernel Adaptive observer
system

No principal value Null-field integral
equations

Fixed observer
system

Principal values
(CPV, RPV and
HPV)

Boundary integral
equation for
boundary point

l value and Hadamard principal value.

al approach for radiation and scattering ..., Comput. Methods

PYChen
反白

PYChen
註解
Eq. (2)



F

357
358
359
360
361
362
363

364
365
366
367
368
369
370
371

372
373

374
375
376

0 5

0

1

2

3

0.5

1.5

2.5

3.5
Present method (P=15)
BEM(Element=63)

k

R
el

at
iv

e 
er

ro
r 

exact

exact

u

uu −

1 2 3 4 6 7

Fig. 7. The error analysis between the present method and BEM.

Fig. 9. Sketch of the scattering problem (Dirichlet condition) for a
cylinder.
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We select a ¼ p=9 and ka ¼ 1:0. Fig. 7 shows the error
analysis for the present method and BEM after comparing
with the analytical solution. It can be found that the pres-
ent method is superior to BEM. The analytical solution is
obtained by using 15 terms in the series representations.
By adopting the truncated Fourier series ðP ¼ 15Þ in our
formulation, the contour plot is obtained. Sixty-three con-
U
N

C
O

R
R

E
C

T

Incident SH-wave ( sin cos )
0

ik x yB e β θ θ+

or 

hard: 0

soft 0:

t

u

=

=

=

θ

Fig. 8. The decomposition of superposition of scattering pro
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stant elements are adopted in the dual BEM [3]. It is found
that we can obtain the acceptable results by using fewer
numbers of degrees of freedom in comparison with BEM
results. The comparison seems unfair for the problems with
circular boundaries. But the main gains of the present
method are the exponential convergence and free of bound-
ary layer effect where two references [20,21] can support
this point.

Example 2. Scattering problem for one scatter (Dirichlet
boundary condition).

For the scattering problem subject to the incident wave,
this problem can be decomposed into two parts, (a) inci-
dent wave field and (b) radiation field, as shown in
Incident SH-wave ( sin cos )
0

ik x yB e β θ θ+

+

or  I It u

 or  R I R It t u u= − = −

θ

(a) Incident wave field 

(b) Radiation field 

blem into (a) incident wave field and (b) radiation field.
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Fig. 11. The plane wave scattering by five circular cylinders with the
center positions ((0, 0), (1.5, 1.5), (�1.5, 1.5), (�1.5, �1.5), (1.5, �1.5)) and
the corresponding radii (0.5, 0.4, 0.3, 0.6, 0.3), (1) k ¼ p and (2) k ¼ 8p,
incidence angle cfh ¼ p
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Fig. 12. The positions of irregular values using different methods of center
circle.
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Fig. 10. The error analysis between present method and BEM.
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Fig. 8. By matching the boundary condition, the radiation
boundary condition in part (b) is obtained as the minus
quantity of incident wave function, e.g. tRa ¼ �tIn for hard
scatter or uRa ¼ �uIn for soft scatter, respectively where the
superscripts Ra and In mean radiation and incidence,
respectively.

Plane wave scattering for a soft circular cylinder (Dirich-
let boundary condition) is considered in Fig. 9. The analyt-
ical solution is

uðr; hÞ ¼ � J 0ðkaÞ
H ð1Þ0 ðkaÞ

H ð1Þ0 ðkrÞ

� 2
X1
n¼1

in J nðkaÞ
H ð1Þn ðkaÞ

H ð1Þn ðkrÞ cos nh;

P a; 0 6 h 6 2p: ð42Þ

Fig. 10 shows the error analysis for the present method and
BEM. It can be found that the present result is superior to
Please cite this article in press as: J.T. Chen et al., A semi-analytic
Appl. Mech. Eng. (2007), doi:10.1016/j.cma.2007.02.004
E
D

Pthat of BEM. Large errors in the irregular case by using
BEM are found. The analytical solution is obtained by
using fifteen terms in the series representations. By adopt-
ing the truncated Fourier series ðP ¼ 15Þ in our formula-
tion, the contour plot is obtained. Sixty-three constant
elements are adopted in the dual BEM. Similarly, less de-
gree of freedom is required in our formulation (31 points)
to have the good accuracy after comparing with the data
of BEM (63 elements) [3].

Example 3. Scattering problem for five scatters (Dirichlet
boundary condition).

To demonstrate the generality of our approach for arbi-
trary number of radiators and scatters, plane wave scatter-
ing by five soft circular cylinders (Dirichlet boundary
condition) is considered in Fig. 11. This problem was
solved by using the multiple DtN approach [13]. In
Fig. 12, irregular frequencies do not appear by using the
present method but osculation of irregular frequencies
occur by using BEM. Numerical instability of zero divided
by zero in case of irregular values is overcome due to the
semi-analytical nature of the present method [3,4]. For
the purpose of comparisons, we choose the data on the
artificial boundary versus h with respect to each cylinder
as show in Figs. 13 and 14. Good agreement is made.
Regarding to calculation of the higher-order Hankel func-
tion, it may need special treatment. In this case, the
maximum order is twenty. The computation using IMSL
package for the higher-order Hankel function is
feasible.
4. Conclusions

For the radiation and scattering problems with circular
boundaries, we have proposed a BIEM formulation by
al approach for radiation and scattering ..., Comput. Methods
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Fig. 13. The real part of total field for the data for the five artificial boundaries versus h by using different methods for k ¼ p.
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Uusing degenerate kernels, null-field integral equation and
Fourier series in companion with adaptive observer sys-
tems and vector decomposition. This method is a semi-ana-
lytical approach for problems with circular boundaries
since only truncation error in the Fourier series is involved.
The method shows great generality and versatility for the
problems with multiple scatters or radiators of arbitrary
radii and positions. Neither hypersingular formulation of
Burton and Miller approach nor CHIEF method are
required to overcome the fictitious frequencies. An acoustic
Please cite this article in press as: J.T. Chen et al., A semi-analytic
Appl. Mech. Eng. (2007), doi:10.1016/j.cma.2007.02.004
problem of five scatters in the infinite plane was solved and
the results were compared well with those of Grote and
Kirsch.
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NAppendix 1

Analytical evaluation of the integrals for the kernels
ðT ðs; xÞ and Lðs; xÞÞ and their limit across the boundary.
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