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The linear acoustics problem of resonant vibrational modes in a triaxial ellipsoidal acoustic cavity
with walls of arbitrary acoustic impedance has been quasi-analytically solved using the Frobenius
power-series expansion method. Eigenmode results are presented for the lowest two eigenmodes in
cases with pressure-release, rigid-wall, and lossy-wall boundary conditions. A mode crossing is
obtained as a function of the specific acoustic impedance of the wall; the degeneracy is not
symmetry related. Furthermore, the damping of the wave is found to be maximal near the
crossing. ©2004 Acoustical Society of America.@DOI: 10.1121/1.1819391#
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I. INTRODUCTION

The knowledge of analytical acoustic cavity eigenmod
is still important in spite of advances in computation
acoustics.1 Indeed, there remains computational difficulti
in obtaining the eigenmodes of irregular three-dimensio
cavities using techniques such as the boundary-elem
method.2 Nevertheless, the normal modes are known to
analytically obtainable in cavities of various shapes, desc
able in terms of eleven orthogonal curvilinear coordin
systems.3 The solutions for rectangular, cylindrical, an
spherical cavities are now textbook examples.4 Other shapes
that have been solved exactly are the spheroid,5 the elliptic
cylinder,6 the parabolic cylinder,7 and the parabolic rotationa
lens.8 Yet, the most general cavity with a one-coordinate s
face, the triaxial ellipsoid, has not been solved. Neverthel
physical models in acoustics using the latter shape abo
including, for example, for the study of ocean acoustics,9 of
cavitation in bubbles,10 and of the human body;11 these
works have mostly dealt with scattering problems. Inde
the approximation of an irregular body by an ellipsoid~the
so-called Brillouin ellipsoid12! is common. We also note tha
previous work on analytic shapes in acoustics were o
only done for rigid-wall and pressure-release boundary c
ditions. One exception is the discussion in Morse a
Ingard13 for rectangular rooms.

The ellipsoidal cavity is fundamentally important sin
it can be viewed as the limit of a highly distorted spheric
cavity and exact results will still hold even when perturb
tion theory on the sphere is no longer valid. The lower
symmetry compared to a sphere and a spheroid make
ideal as an analytical model of a nonsymmetric cavity.
addition, the one-parameter nature of the bounding sur

a!Electronic mail: willatzen@mci.sdu.dk; phone:145 65 50 16 82; fax:145
65 50 16 60.

b!Electronic mail: llew@wpi.edu; phone11 508 831 5249; fax;11 508 831
5886.
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also allows a straightforward implementation of a unifor
boundary condition. Finally, the cavity might have acousti
characteristics that are more desirable than either the sp
cal or the spheroidal cavity since the mode degenera
present in the latter are expected to be completely remo
due to the lower shape symmetry.

In this Letter, we present the solution to the triaxial e
lipsoidal cavity problem analytically in terms of Lame´ wave
functions. The construction of the latter functions can
carried out independently of the boundary condition. T
allows an efficient computation of the complex eigenfr
quencies for walls with arbitrary acoustic impedance.

II. THEORY

The mathematical formulation of the problem is findin
the discrete spectrum of the Helmholtz equation,14

¹2P~r !1k2P~r !50, ~1!

subject to the mixed boundary condition on the surface of
ellipsoidal cavity:

h
]P

]n
1 ikP50, ~2!

whereP(r ) is the acoustic pressure field,k the wave number,
and h is the specific impedance. The latter is given
Z/(r0c0) whereZ is the wall acoustic impedance,c0 is the
speed of sound, andr0 the background or equilibrium me
dium mass density. In order to reduce the number of deg
of freedom in the problem, we will only consider the ca
where the acoustic impedance is real and frequency inde
dent, and the surface is locally reactive.13 Nevertheless, the
general boundary condition, Eq.~2!, is still complex and fre-
quency dependent.
3279279/5/$20.00 © 2004 Acoustical Society of America
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A. Ellipsoidal coordinates and the triaxial ellipsoid

Ellipsoidal coordinates~EC! are defined by three fami
lies of orthogonal confocal quadric surfaces. The latter
defined by the equation

x2

j22a2 1
y2

j22b2 1
z2

j2 51, a>b>0, ~3!

where different types of surfaces are obtained for differ
values of the parameterj. Those three types of surfaces a
obtained as follows.3 If j[j1.a, all three terms on the lef
hand side of Eq.~3! are positive and the equation describ
an ellipsoidal surface. Ifa.j[j2.b, the first term on the
left hand side of Eq.~3! is negative; the quadric surfaces a
then a family of confocal hyperboloids of one sheet. Ifb
.j[j3.0, the first two terms on the left hand side of E
~3! are negative; the quadric surfaces are confocal hype
loids of two sheets.

The relationship of the ECj1 ,j2 ,j3 to the Cartesian
ones is3,15,16

x5
~j1

22a2!1/2~j2
22a2!1/2~j3

22a2!1/2

a~a22b2!1/2 ,

~4!

y5
~j1

22b2!1/2~j2
22b2!1/2~j3

22b2!1/2

b~b22a2!1/2 , z5
j1j2j3

ab
,

with

j1.a.j2.b.j3.0. ~5!

One set ofj1 ,j2 ,j3 corresponds to eight Cartesian points
In general,a andb can take on any values subject to t

convention given in Eq.~5!. It turns out the values are fixe
when space is partitioned by an ellipsoid. Thus, let the C
tesian coordinates of the points of intersection of the el
soid with the Cartesian axes be6x0 ,6y0 ,6z0 . Then, Eq.
~3! for j5j1 relatesx0 ,y0 ,z0 to a,b:

j1re f5z0 , ~6!

a5~j1re f
2 2x0

2!1/2, ~7!

b5~j1re f
2 2y0

2!1/2, ~8!

wherej1re f is the value ofj1 on the ellipsoidal surface~re-
call thatj1 alone defines an ellipsoidal surface!. We observe
that the orderinga.b.0 impliesz0.y0.x0 .

B. Separation of variables in ellipsoidal coordinates

The above problem@Eqs. ~1!–~2!# is separable in EC
Let

C5X1~j1!X2~j2!X3~j3!. ~9!

The insertion of Eq.~9! in Eq. ~1! leads to three ordinary
differential equations in the separated functionsXi :

A~j1
22a2!~j1

22b2!
d

dj1
FA~j1

22a2!~j1
22b2!

dX1

dj1
G

5~2k2j1
41a2j1

22k!X1 ,
3280 J. Acoust. Soc. Am., Vol. 116, No. 6, December 2004 M. W
e

t

o-

r-
-

A~a22j2
2!~j2

22b2!
d

dj2
FA~a22j2

2!~j2
22b2!

dX2

dj2
G

52~2k2j2
41a2j2

22k!X2 , ~10!

A~a22j3
2!~b22j3

2!
d

dj3
FA~a22j3

2!~b22j3
2!

dX3

dj3
G

5~2k2j3
41a2j3

22k!X3 ,

The constantsa2 andk are separation constants determin
by the boundary conditions and the fact that any accepta
solution is finite and differentiable within the ellipsoidal e
closure. Equations~10! can be rewritten as (i 51,2,3)

~j i
22a2!~j i

22b2!
d2Xi

dj i
2 1j i@2j i

22~a21b2!#
dXi

dj i

1@k2j i
42a2j i

21k#Xi50, ~11!

an equation known as the ellipsoidal or Lame´ wave
equation.3 By making the transformation,

t i5
j i

2

b2 , ~12!

we obtain the form due to Arscottet al.17

t i~ t i21!~ t i2c!
d2Xi

dti
2 1

1

2
@3t i

222~11c!t i1c#
dXi

dti

1@l1mt i1gt i
2#Xi50, ~13!

where

a2

b2 5c, k54b2l, a2524m, k25
4

b2 g. ~14!

It is always possible to writeXi in the general form17

Xi~ t i !5t i
r/2~ t i21!s/2~ t i2c!t/2F~ t i !, ~15!

wherer, s, andt are either 0 or 1, i.e., eight different type
of Xi are possible. The functionF must be found using a
quasi-analytical approach. Inserting Eq.~15! into Eq. ~13!
leads to the differential equation17

t i~ t i21!~ t i2c!
d2Fi

dti
2 1

1

2
~A2t i

222A1t i1A0!
dFi

dti

1„l2l01~m1m0!t i1gt i
2
…Fi50, ~16!

where

l05
1

4
@~r1t!21~r1s!2c#,

m05
1

4
~r1s1t!~r1s1t11!, A05~2r11!c, ~17!

A15~11r!~11c!1t1sc, A252~r1s1t!13.

Equation~16! can be solved formally by using the Frobeni
power-series expansion method,8 i.e.,

Fi~ t i !5(
r 50

`

ar~ t i2t0!r , ~18!
illatzen and L. C. Lew Yan Voon: Triaxial ellipsoidal acoustical cavities
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wheret0 is an expansion parameter. The insertion of Eq.~18!
into Eq. ~16! leads to a five-term recursion formula in th
coefficients ar . First, solutions are found forg50 ~the
Laméequation!. Solutions exist whenever

m52m02n~n21!2
1

2
A2n, ~19!

wheren is an integer~0,1,2, . . .!. The possible values ofl
are then found by solving ann11-polynomial equation inl,
i.e., n11 real l solutions exist for eachn (l5lnm ;m
50,1,2,. . . ,n).17 These solutions give initial values atg
50 for the subsequent computation of separation const
m~g! andl~g! at finiteg values. Values ofm~g! andl~g! are
obtained next using Newton’s method which is known to
locally convergent when employing sufficiently small ste
in g. In the present work,Dg is chosen to be 0.01 startin
from g50 and t0 is chosen to be 1 for all the eight case
r,s,t equal to 0 or 1.

Once a set of solution parametersg, m, andl has been
obtained, the total eigenfunction within one octant of t
ellipsoid becomes

C~j1 ,j2 ,j3!5X~j1!X~j2!X~j3!, ~20!

whereX satisfies the ellipsoidal wave equation@Eq. ~11!#. A
second solutionY to Eq. ~11! exists, however,¹W Y is not
well-defined everywhere inside the ellipsoid andY can thus
be disregarded as a possible solution. For example,¹W Y di-
verges asj1→a1, j2→a2, andj3→01.

III. NUMERICAL RESULTS AND DISCUSSIONS

Having determined the characteristic values~i.e., m and
l versusg!, we impose the boundary condition@Eq. ~2!# so
as to obtain a discrete set of solutions for the separable
stants: (g i ,m i ,l i) where i 51,2,3,4,. . . , for each of the
eight cases:r561,s561,t561. Once these separatio
constants are determined, eigenfrequencies and assoc
eigenfunctions~pressure modes! are easily specified as wil
be described next. The following relations apply@refer to Eq.
~14!#:

ki5
2Ag i

b
, f i5

v i

2p
5

kic0

2p
5

Ag ic0

pb
, ~21!

whereki , v i , andf i are the wavenumber, angular frequen
and the frequency of pressure modei , respectively. For finite
values ofh, the separation constants are complex; then, b
the eigenvalues and eigenfunctions are also complex. In
following, we consider an ellipsoidal acoustical enclosu
with absolute semiaxes (x0 ,y0 ,z0)5(1.0,1.5,2.0) m associ
ated with the parameter values:j1re f52.0 m, a51.732 m,
b51.323 m, andc5a2/b251.714.

A. Modes in a triaxial ellipsoid with pressure-release
walls

In this subsection, it is assumed that the ellipsoidal c
ity walls are characterized by a specific impedance equa
zero, i.e.,h50 corresponding to pressure-release bound
conditions. The general boundary condition then degener
into a Dirichlet boundary condition:
J. Acoust. Soc. Am., Vol. 116, No. 6, December 2004 M. Willatzen
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Cu(j15j1re f)
50. ~22!

The fundamental mode withg52.41, r5s5t50 is
shown as a function ofx,y in the z50 plane~left plot!, x,z
in the y50 plane~middle plot!, andy,z in the x50 plane
~right plot! in the first row of of Fig. 1. The correspondin
eigenfrequency is 128 Hz for a cavity containing air at roo
temperature~with a sound speed ofc05343 m/s). Note that
the fundamental-mode frequency for a spherical enclosur
the same volume is 119 Hz~in agreement with the intuitive
rule that the fundamental mode frequency corresponding
Dirichlet boundary conditions must increase with increas
spatial asymmetry at a constant volume!. It is evident that
this state has no nodes along the three planes and pea
the center of the ellipsoid similar to what is found for th
groundstate of a spherical cavity. It is important to real
that since this mode is obtained as an exact series solutio
is smooth and differentiable. This contrasts to solutions
tained via purely numerical techniques such as finite diff
ence and finite element methods that only give the eig
modes at the grid or nodal points and, due to the sev
memory requirements of a three-dimensional problem,
often not very smooth.

In the second row of Fig. 1, similar plots are shown f
the first excited state along the three planes. The assoc
eigenfrequency is 161 Hz (g53.79) and indicesr,s,t are
1,0,0, respectively. As one observes, the eigenmode is ze
the z50 plane becausej350 whenz50, and

C~j1 ,j2 ,j3!5
j1j2j3

b3 F~j1!F~j2!F~j3!, ~23!

where F is the solution to Eq.~16! ~note that t5j i
2/b2).

However,C is nonzero when plotted in they50 andx50
planes corresponding toj25b.0 ~or j35b.0) and j1

5a.0 ~or j25a.0), respectively. Observe also that th
eigenmode is nodeless in both planes. This solution
sembles the first excited state for the sphere in havin
nodal plane. However, all solutions are found to be non
generate in contrast to the spherical case. For the sp

FIG. 1. The fundamental and first-excited modes plotted along three
thogonal planes~from left to right:xy, yz, xz). They correspond pairwise to
pressure-release~i.e., first two rows!, rigid-wall ~middle two rows!, and
lossy-wall ~with specific impedanceh50.6) boundary conditions. For the
latter case, the plots shown are the modulus of the complex eigenmod
3281and L. C. Lew Yan Voon: Triaxial ellipsoidal acoustical cavities
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FIG. 2. The real and imaginary part of the wave num
ber as a function of specific impedance for th
(r,s,t)5(0,0,0) ~solid line! and (r,s,t)5(1,0,0)
~dashed line! modes.
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problem, the first excited state would be three-fold degen
ate.

B. Modes in a triaxial ellipsoid with rigid walls

In the third row of Fig. 1, the fundamental mode is plo
ted along the three planes mentioned above correspondin
the case with rigid walls (h5`), i.e.,

]C

]n U
(j15j1re f)

50, ~24!

where]C/]n denotes the partial derivative along the surfa
normal. This solution corresponds to an eigenfrequency
58 Hz (g50.49) and the indicesn,m, r,s,t equal to
0,0,1,0,0, respectively~the corresponding frequency for
spherical enclosure having the same volume is 79 Hz!. There
is another solution with a smaller eigenfrequency, namelf
50 (g50). However, this is the trivial solution whereF
5const andr5s5t50. Since the fundamental mode h
the same set of indices inr,s,t as the first-excited state wit
pressure-release walls this eigenmode is zero in thez50
plane@refer to Eq.~23!#. The middle and right plots of Fig. 1
third row reveal that the fundamental mode satisfies N
mann boundary conditions on the curved ellipsoid bound
side as it must.

In the fourth row of Fig. 1, the first excited state
shown. This state has an eigenfrequency of 76 Hzg
50.84) and is associated with indicesn,m, r,s,t equal to
0,0,0,1,0. The form of this eigenmode is

C~j1 ,j2 ,j3!5S j1
2

b2 21D 1/2S j2
2

b2 21D 1/2S j3
2

b2 21D 1/2

3F~j1!F~j2!F~j3!, ~25!

where, again,F is the solution to Eq.~16!. Hence, this state
is zero in they50 plane ~right plot! where j25b or j3

5b. The left and middle plots~fourth row of Fig. 1! show
that Neumann boundary conditions are fulfilled along
curved ellipsoid boundary side.
3282 J. Acoust. Soc. Am., Vol. 116, No. 6, December 2004 M. W
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C. Modes in a triaxial ellipsoid with lossy walls

Next, let us consider the general case with a finite, n
zero specific impedance such that the boundary condit
are of mixed type@Eq. ~2!#. The variation in the complex
wave number is plotted in Fig. 2 for the fundamental mo
for h50 and the corresponding first excited mode. As
commonly done in plotting complex electronic band stru
tures, we have plotted the real~imaginary! part of the wave
number along the positive~negative! y axis. This plot reveals
a number of interesting results. It is evident that the cal
lated eigenfrequencies are real whenh50 andh5`, how-
ever, for a finite, nonzero specific impedance,g becomes
complex due to the mixed boundary condition with an ima
nary coefficient. In other words, the pressure mode dec
exponentially with time when the specific impedance is fin
and acoustic losses take place at the ellipsoidal walls. F
thermore, there is a rapid convergence of the real part of
wave number withh; indeed, the results withh52 are less
than 2% from theh5` results. While the real parts for th
two modes shown differ significantly, the imaginary parts a
quite similar. They both reach a maximum near the cross
of the real parts. The similarity in the damping constants c
be understood in terms of earlier results that the damp
constant is mostly influenced by the wall impedance. A p
sible explanation of the near coincidence of the maximum
the damping constant with the mode degeneracy is due to
correspondence of the damping constant with the linewi
of the resonance~in frequency space!. Thus, if the resonance
width is larger than the resonance separation, the neigh
ing resonances cannot be resolved and they are qu
degenerate. We also note that the imaginary part of the w
number is usually much smaller than the real part13 except
near the crossing.

The fundamental mode plotted along the three planez
50, x50, andy50 is shown in the fifth row of Fig. 1. In
general, the eigenfunction is complex and we have plot
the modulus. Since this state is characterized byr5s5t
50, this eigenmode has no nodal plane along the three
illatzen and L. C. Lew Yan Voon: Triaxial ellipsoidal acoustical cavities
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tesian axes. In the sixth row of Fig. 1, the first-excited st
for h50.6 is plotted along the three planes. As mention
earlier, due tor51, this state has a nodal plane (z50).

IV. CONCLUSION

A quasi-analytical solution of the vibrational modes
triaxial ellipsoidal cavities was obtained for the case w
arbitrary acoustic impedance boundary conditions. Comp
wavenumber data and eigenmode plots are given for
cases:r,s,t equal to 0,0,0 and 1,0,0 being the fundamen
mode indices corresponding to pressure-release and r
wall boundary conditions, respectively. A mode crossing
the lowest two modes was found to occur at an intermed
specific acoustic impedance with a corresponding peak in
damping constant.
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