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The linear acoustics problem of resonant vibrational modes in a triaxial ellipsoidal acoustic cavity
with walls of arbitrary acoustic impedance has been quasi-analytically solved using the Frobenius
power-series expansion method. Eigenmode results are presented for the lowest two eigenmodes in
cases with pressure-release, rigid-wall, and lossy-wall boundary conditions. A mode crossing is
obtained as a function of the specific acoustic impedance of the wall; the degeneracy is not
symmetry related. Furthermore, the damping of the wave is found to be maximal near the
crossing. ©2004 Acoustical Society of AmericdaDOI: 10.1121/1.1819391
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I. INTRODUCTION also allows a straightforward implementation of a uniform
boundary condition. Finally, the cavity might have acoustical

The knowledge of analytical acoustic cavity eigenmodesharacteristics that are more desirable than either the spheri-
is still important in spite of advances in computational cal or the spheroidal cavity since the mode degeneracies
acoustics. Indeed, there remains computational difficulties present in the latter are expected to be completely removed
in obtaining the eigenmodes of irregular three-dimensionatiue to the lower shape symmetry.
cavities using techniques such as the boundary-element In this Letter, we present the solution to the triaxial el-
method? Nevertheless, the normal modes are known to bdipsoidal cavity problem analytically in terms of Lameve
analytically obtainable in cavities of various shapes, describfunctions. The construction of the latter functions can be
able in terms of eleven orthogonal curvilinear coordinatecarried out independently of the boundary condition. This
systems. The solutions for rectangular, cylindrical, and allows an efficient computation of the complex eigenfre-
spherical cavities are now textbook exampfi&ther shapes quencies for walls with arbitrary acoustic impedance.
that have been solved exactly are the sphetdaite elliptic
cylinder?® the parabolic cylindef,and the parabolic rotational
lens® Yet, the most general cavity with a one-coordinate SUrq| THEORY
face, the triaxial ellipsoid, has not been solved. Nevertheless,
physical models in acoustics using the latter shape abound The mathematical formulation of the problem is finding
including, for example, for the study of ocean acoustio§, the discrete spectrum of the Helmholtz equatibn,
cavitation in bubbled® and of the human bod¥; these
works have mostly dealt with scattering problems. Indeed,  V2P(r)+k?P(r)=0, (1)
the approximation of an irregular body by an ellips¢ide
so-called Brillouin ellipsoiéf) is common. We also note that gypject to the mixed boundary condition on the surface of the
previous work on analytic shapes in acoustics were ofterjipsoidal cavity:
only done for rigid-wall and pressure-release boundary con-
ditions. One exception is the discussion in Morse and
Ingard™ for rectangular rooms. n— +ikP=0, 2

The ellipsoidal cavity is fundamentally important since on
it can be viewed as the limit of a highly distorted spherical
cavity and exact results will still hold even when perturba-WhereP(r) is the acoustic pressure fiekithe wave number,
tion theory on the sphere is no longer valid. The lowered®"d 7 is the specific impedance. The latter is given by
symmetry compared to a sphere and a spheroid makes 4/ (PoCo) WhereZ is the wall acoustic impedances is the
ideal as an analytical model of a nonsymmetric cavity. InSPeed of sound, angy the background or equilibrium me-

addition, the one-parameter nature of the bounding surfacdium mass density. In order to reduce the number of degrees
of freedom in the problem, we will only consider the case

where the acoustic impedance is real and frequency indepen-
@Electronic mail: willatzen@mci.sdu.dk; phone45 65 50 16 82; fax:+45 dent. and the surface is Iocally reactf\?el\levertheless the
65 50 16 60. ' : '

bElectronic mail: llew@wpi.edu; phone1 508 831 5249; fax+1 508 831 general boundary condition, E®), is still complex and fre-
5886. guency dependent.
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A. Ellipsoidal coordinates and the triaxial ellipsoid
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Ellipsoidal coordinate$EC) are defined by three fami- Y@= £)(&-b )dgz_‘/(a €2)(&~b )dgz_
lies of orthogonal confocal quadric surfaces. The latter are

24 2
defined by the equation (=Kt a2y — k) Xs, (10)
XZ y2 22 - - — —
m-f—w-f—?:l, a=b=0, 3 \/(a 53)(b 53) é_, \/(a 53)([) 63) f
where different types of surfaces are obtained for different = (— K23+ a,&5— k) X3,

values of the parametét Those three types of surfaces are
obtained as follows.If é&=¢,>a, all three terms on the left
hand side of Eq(3) are positive and the equation describes
an ellipsoidal surface. la>¢=¢,>b, the first term on the
left hand side of Eq(3) is negative; the quadric surfaces are
then a family of confocal hyperboloids of one sheetblf

The constantsr, and « are separation constants determined
by the boundary conditions and the fact that any acceptable
solution is finite and differentiable within the ellipsoidal en-
closure. Equationgl0) can be rewritten asi €1,2,3)

, 42X ,dX
b?) —— +&[287 - (a®+b?)]

>¢E=¢,>0, the first two terms on the left hand side of Eq. (¢§7-a )(5' dé; ] dé
(3) are negative; the quadric surfaces are confocal hyperbo- -
loids of two sheets. +[K2E! — a &7+ k]X=0, (11
Thé?lSr,claéatlonshlp of the EG,,£,85 t0 the Cartesian 5, oquation known as the ellipsoidal or Lameave
ones | equation® By making the transformation,
(gi_ a2)1/2( g%_ a2)1/2( g%_ a2)1/2 é:z
- a(@—b>)" ! ti=pz. (12)
4 . 17
(g b2)1’2(§ b2)1/2(§ b2)L2 16065 we obtain the form due to Arscodt al.
b(b?—a2) 7 " Tap d2X, , dx,
ti(ti—1)(t;—C) = + = [3t —2(1+0)tj+c] =
with dt dt;
&>a>E,>b>E,>0. (5) +[N+ b+ 971X =0, (13

One set of¢,,£,,&5 corresponds to eight Cartesian points. where
In generala andb can take on any values subject to the 2

convention given in Eq(5). It turns out the values are fixed cm, k=4b?\, a,=—4pu, kzzéy_ (14)
when space is partitioned by an ellipsoid. Thus, let the Car-
tesian coordinates of the points of intersection of the ellip- It is always possible to writ; in the general forrtl
soid with the Cartesian axes bex,,*yq,*2,. Then, Eq. 24 o2 "
(3) for £=¢&; relatesxy,yq,Zo to a,b: Xi(6) =t (4= 1D)7HG— ) "R (1), (19
E1rei=Z0, (6) wherep, o, and_r are either 0 or 1, i.e., eight different_ types
of X; are possible. The functioR must be found using a
az(ﬁref—xg)l’z, (7) quasi-analytical approach. Inserting Ed5) into Eq. (13)
leads to the differential equatith
b=(&}ei—Y0) "% €S)

°F, dF;
whereé,,.; is the value of¢; on the ellipsoidal surfac&e-  t;(t;—1)(t;—c) dt2 + = (A2t2 2At+Ag) = at
call that¢; alone defines an ellipsoidal surfac&/e observe

that the orderinga>b>0 implieszy>yy>Xg. + (A= No+ (u+ mo)ti+ ytAF; =0, (16)
where

B. Separation of variables in ellipsoidal coordinates

The above probleniEgs. (1)—(2)] is separable in EC.
Let

W=X1(£1)X2(&2) X3(€3). 9

The insertion of Eq(9) in Eq. (1) leads to three ordinary A,;=(1+p)(1+c)+7+0oc, A,=2(p+o+7)+3.
differential equations in the separated functir)hs

1 2 2
)\OZZ[(IH' 7)°+(p+o)-c],

1
Ho= 4(p+0'+ T(ptot+7+1l), Ag=(2p+1)c, 7

Equation(16) can be solved formally by using the Frobenius
power-series expansion methbe.,

V(E-a)(E-bY) - J(&l a?) (& - b2> g
:(_k2§1‘+012§1_'<)x11 Fi(ti)zgo ar(ti—to)", (18)
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wheret, is an expansion parameter. The insertion of @§) S R cnurzsest - -TEam
into Eq. (16) leads to a five-term recursion formula in the : >
coefficientsa, . First, solutions are found fory=0 (the
Lame equation. Solutions exist whenever

1
w="pmo—N(N=1)= AN, (19

wheren is an integer(0,1,2...). The possible values of _
are then found by solving am+ 1-polynomial equation i, -14

i.e., n+1 real A solutions exist for eacln (A=\pp;m
=0,1,2,...,n).Y” These solutions give initial values at
=0 for the subsequent computation of separation constants 30 x [m]
u(y) and\(vy) at finite y values. Values ofu(y) and\(y) are y [m]

obtained next using Newton’s method which is known to be

. - FIG. 1. The fundamental and first-excited modes plotted along three or-
Iocally convergent when employlng suff|C|entIy small Stepsthogonal planegfrom left to right:xy, yz, xz). They correspond pairwise to

in y. In the present workAy is chosen to be 0.01 starting pressure-releasé.e., first two rows, rigid-wall (middle two rows, and
from y=0 andt, is chosen to be 1 for all the eight cases: lossy-wall (with specific impedance;=0.6) boundary conditions. For the
PO, T equa| to 0 or 1. latter case, the plots shown are the modulus of the complex eigenmode.

Once a set of solution parameteysu, and\ has been
obtained, the total eigenfunction within one octant of the
ellipsoid becomes

W(€1,&0,E3)=X(E1)X (&)X (&3), (20 The fundamental mode withy=2.41, p=o=7=0 is
shown as a function af,y in the z=0 plane(left plot), x,z

in the y=0 plane(middle plo), andy,z in the x=0 plane
(right plot) in the first row of of Fig. 1. The corresponding
eigenfrequency is 128 Hz for a cavity containing air at room

\P|(§1=§1ref):0' (22)

whereX satisfies the ellipsoidal wave equatidig. (11)]. A

second solutionY to Eq. (11) exists, howeverVY is not
well-defined everywhere inside the ellipsoid aniccan thus

be disregarded as a possible solution. For example di- temperaturéwith a sound speed af,= 343 m/s). Note that

verges as;—a+, §,—a—, and£;—0+. the fundamental-mode frequency for a spherical enclosure of
the same volume is 119 Hin agreement with the intuitive

IIl. NUMERICAL RESULTS AND DISCUSSIONS rule that the fundamental mode frequency corresponding to

) ) o . Dirichlet boundary conditions must increase with increasing
Having determined the characteristic valies., w and  gpatial asymmetry at a constant volumé is evident that

A versusy), we impose the boundary conditiffq. (2)] SO thjs state has no nodes along the three planes and peaks at
as to obtain a discrete set of solutions for the separable cofne center of the ellipsoid similar to what is found for the
stants: ¢;,ui,\i) wherei=1,2,3,4,.., for each of the groundstate of a spherical cavity. It is important to realize
eight casesp=*1o0=*1,r=*1. Once these separation that since this mode is obtained as an exact series solution, it
constants are determined, eigenfrequencies and associatgdsmooth and differentiable. This contrasts to solutions ob-
eigenfunctiongpressure modesare easily specified as will tained via purely numerical techniques such as finite differ-
be described next. The following relations apfigfer to Eq.  ence and finite element methods that only give the eigen-
14)]. modes at the grid or nodal points and, due to the severe

2\/; o, kiCo \/;Co memory requirements of a three-dimensional problem, are
= i =5 =" (21)  often not very smooth. _ .

In the second row of Fig. 1, similar plots are shown for
wherek;, w;, andf; are the wavenumber, angular frequency, the first excited state along the three planes. The associated
and the frequency of pressure madeespectively. For finite eigenfrequency is 161 Hzy{=3.79) and indicep,o,r are
values ofy, the separation constants are complex; then, botf1,0,0, respectively. As one observes, the eigenmode is zero in
the eigenvalues and eigenfunctions are also complex. In thiae z=0 plane becausé;=0 whenz=0, and
following, we consider an ellipsoidal acoustical enclosure fe
with absolute semiaxe¢,Yq,2o) =(1.0,1.5,2.0) m associ- 616283
ated with the parameter values; o;=2.0 m,a=1.732 m, V(é1,62,60) = =7 F(E)F(&)F (&), @3
b=1.323 m, ancc=a?%/b?=1.714.

Ki

where F is the solution to Eq(16) (note thatt=§i2/b2).
However, ¥ is nonzero when plotted in the=0 andx=0
planes corresponding t§,=b>0 (or £&=Db>0) and ¢;

In this subsection, it is assumed that the ellipsoidal cav=a>0 (or £&,=a>0), respectively. Observe also that the
ity walls are characterized by a specific impedance equal teigenmode is nodeless in both planes. This solution re-
zero, i.e.,»=0 corresponding to pressure-release boundargembles the first excited state for the sphere in having a
conditions. The general boundary condition then degeneratesdal plane. However, all solutions are found to be nonde-
into a Dirichlet boundary condition: generate in contrast to the spherical case. For the sphere

A. Modes in a triaxial ellipsoid with pressure-release
walls
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FIG. 2. The real and imaginary part of the wave num-
ber as a function of specific impedance for the
(p,o,7)=(0,0,0) (solid line and (p,o,7)=(1,0,0)
(dashed ling modes.

—Im(K) [1/m]
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problem, the first excited state would be three-fold degener€. Modes in a triaxial ellipsoid with lossy walls

ate. Next, let us consider the general case with a finite, non-

zero specific impedance such that the boundary conditions
are of mixed type Eq. (2)]. The variation in the complex

In the third row of Fig. 1, the fundamental mode is plot- wave number is plotted in Fig. 2 for the fundamental mode
ted along the three planes mentioned above corresponding for =0 and the corresponding first excited mode. As is

B. Modes in a triaxial ellipsoid with rigid walls

the case with rigid walls g==), i.e., commonly done in plotting complex electronic band struc-
oV tures, we have plotted the re@naginary part of the wave
- =0, (29 number along the positivénegative y axis. This plot reveals
on (é1=&1rep) a number of interesting results. It is evident that the calcu-

wheredW/dn denotes the partial derivative along the surfaceIated agenfrgquenmes are real Wh@ﬁo andy=cc, how-
ver, for a finite, nonzero specific impedangebecomes

normal. This solution corresponds to an eigenfrequency of lex d he mixed bound dit ith an i .
58 Hz (y=0.49) and the indices,m, p,o,r equal to complex due to the mixed boundary condition with an imagi-

0,0,1,0,0, respectivelythe corresponding frequency for a nary coefficient. In other words, the pressure mode decays
spherical enclosure having the same volume is 79 Haere exponentially with time when the specific impedance is finite

is another solution with a smaller eigenfrequency, naniely and acoustic losses take place at the ellipsoidal walls. Fur-
—0 (y=0). However, this is the trivial solution whei thermore, there is a rapid convergence of the real part of the

= const andp= o= r=0. Since the fundamental mode has wave number withy; indeed, the results witly=2 are less
the same set of indices jne,~ as the first-excited state with than 2% from they=co results. While the real parts for the
pressure-release walls this eigenmode is zero inzth@® two modes shown differ significantly, the imaginary parts are

plane[refer to Eq.(23)]. The middle and right plots of Fig. 1, quite similar. They both reach a maximum near the crossing

third row reveal that the fundamental mode satisfies Neu®f the real parts. The similarity in the damping constants can

mann boundary conditions on the curved ellipsoid boundar?® Understood in terms of earlier results that the damping
side as it must. constant is mostly influenced by the wall impedance. A pos-

In the fourth row of Fig. 1, the first excited state is sible explanation of the near coincidence of the maximum in
shown. This state has an eigenfrequency of 76 Hz (the damping constant with the mode degeneracy is due to the
=0.84) and is associated with indicasm, p,o,7 equal to correspondence of the damping constant with the linewidth

0,0,0,1,0. The form of this eigenmode is of the resonancén frequency spageThus, if the resonance
5 o) 1o, o 1o width is larger than the resonance separation, the neighbor-
A é_1> (é—l) (@_1> ing resonances cannot be resolved and they are quasi-
1:52:53/77| p? b2 b2 degenerate. We also note that the imaginary part of the wave
number is usually much smaller than the real peaeixcept
XF(&)F(£)F(&), (25 near the crossingy. P P
where, againF is the solution to Eq(16). Hence, this state The fundamental mode plotted along the three planes
is zero in they=0 plane (right plot) where &,=b or &5 =0, x=0, andy=0 is shown in the fifth row of Fig. 1. In

=b. The left and middle plotsfourth row of Fig. 2 show general, the eigenfunction is complex and we have plotted
that Neumann boundary conditions are fulfiled along thethe modulus. Since this state is characterizedpbyo= 7
curved ellipsoid boundary side. =0, this eigenmode has no nodal plane along the three Car-
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