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ABSTRACT

In this paper we formulate a direct boundary element method
(BEM) for plane anisotropic elasticity (i.e., the in-plane deformation
decoupled from the out-of-plane deformation) based on distributions
of point forces and dislocation dipoles. According to a physical inter-
pretation of Somigliana’s identity the displacement field in a finite body
R is represented by the continuous distributions of point forces and
dislocation dipoles along the imaginary boundary dR of the finite do-
main R embedded in an infinite body. We adopt Stroh’s complex vari-
able formalism for anisotropic elasticity and represent the point force
and the dislocation, their dipoles, and continuous distributions system-
atically exploiting the duality relations between the point force and the
dislocation solutions. Explicit formulas for the displacement and the
traction formulations, obtained by analytical integration of the bound-
ary integrals, are given. We apply these formulas to mixed mode crack
problems for multiply cracked anisotropic bodies by extending the
physical interpretation of Somigliana’s identity to cracked bodies and
representing the crack by the'continuous distribution of dislocation
dipoles. With the help of the conservation integrals of anisotropic
elasticity, we will demonstrate the capability of the method to deter-
mine the mixed mode stress intensity factors (K; and Kj;) accurately.

I. INTRODUCTION

The majority of the BEM formulations in two-
dimensional anisotropic elasticity are based on the
Somigliana’s identity and its mathematical
interpretation. This leads to the direct formulation
(Rizzo and Shippy, 1970; Benjumea and Sikarskie,
1972; Balas et al., 1989, Sollero and Aliabadi, 1993)
in terms of the fundamental displacement and trac-
tion solutions for the point force in an infinite body.
In this paper we adopt a physical (rather than

mathematical) interpretation of Somigliana’s identity
to formulate the direct BEM in terms of the point force
and the dislocation dipole solutions. Other seemingly
different formulations in the indirect BEM, such as
the method of the continuous distribution of body
forces (Lee and Mal, 1990) and the continuous dis-
tribution of dislocations (Crouch and Starfield, 1983),
can all be derived from this physical interpretation
of Somigliana’s identity as shown by Maiti et al.
(1976) and Altiero and Gavazza (1980).

The availability of the closed form fundamental
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solutions in two-dimensional anisotropic elasticity
owes to the complex variable formalisms developed
by Lekhnitskii (1963), Green and Zerna (1954),
Milne-Thomson (1960) in plane stress and strain and
to Eshelby er al. (1953), Stroh (1958; 1962), and
Barnett and Lothe (1973) in generalized plane strain.
The latter is the most general case of two-dimensional
anisotropy in which the in-plane and the out-of-plane
deformations are coupled. In Stroh’s formalism the
duality (Ni and Nemat-Nasser, 1996) exists between
the displacement and the stress function fields which
leads to a pair of fundamental solutions consisting of
the dislocation and the point force. An important con-
sequence of this duality, in the BEM formulation, is
the physical interpretation of Somigliana’s identity;
the displacement in a finite body R subject to the dis-
placement u; and the traction 7; on the boundary oR
can be given by the continuous distributions of dislo-
cation dipoles and point forces of magnitudes u; and
t;, respectively, along a closed contour JR embedded
in an infinite body. One of the primary objectives of
this paper is to adopt the Stroh’s formalism and ex-
ploit the duality relations in the formulation of the
BEM for the in-plane deformation of anisotropic sol-
ids that is uncoupled from the out-of-plane
deformation. We will provide the explicit formulas
for the displacement and the traction BEM
formulations, obtained by analytical integration of the
boundary integrals.

The main objective of the BEM for anisotropic
cracked bodies is the calculation of the stress inten-
sity factors. Tan and Gao (1992), with the quarter-
point traction and displacement crack tip elements,
used analytical expressions for the stress intensity
factors given in terms of the nodal traction and dis-
placement of these elements. Sollero and Aliabadi
(1993), with the dual boundary element method, used
the J-integral and the ratio of the crack opening dis-
placements near the crack tip. Snyder and Cruse
(1975) used the Green’s function for a single crack
in an infinite domain and obtained the stress inten-
sity factors analytically without modeling the crack
surface. For problems involving a crack or an ellip-
tical or circular hole, the use of the Green’s functions
that satisfy the special boundary condition on the
crack or the hole has been a popular approach in the
BEM as seen in Clements and Haselgrove (1983),
Kamel and Liaw (1989a, b; 1991) for plane stress and
strain and Ang and Clements (1986), Berger and
Tewary (1986), Hwu and Yen (1991), Hwu and Liao
(1994), Tan et al. (1992) for generalized plane strain.
Although the crack Green’s function BEM gives ac-
curate stress intensity factor results, it is limited to a
single straight crack.

To demonstrate the capability of the BEM
developed, we apply the method to mixed mode crack

problems for multiply cracked anisotropic bodies. We
extend the physical interpretation of Somigliana’s
identity to cracked bodies and represent the crack by
the continuous distribution of dislocation dipoles. For
the calculation of the stress intensity factors, we adopt
the conservation integrals of elasticity developed by
Chen and Shield (1977) and successfully implemented
by Wang et al. (1980) in their FEM fracture analysis
of cracked anisotropic bodies. It is known that the J-
integral can be evaluated in a region away from the
crack tip where the stress and deformation fields can
be calculated more accurately than at the crack tip.
It is however limited to the calculation of Mode I
stress intensity factors. We demonstrate that the com-
bination of the conservation integrals and the BEM
developed here gives us a superb tool for the mixed
mode crack analysis for multiple crack problems.

II. BASIC EQUATIONS IN PLANE
ANISOTROPIC ELASTICITY

In this paper we consider the plane anisotropic
elasticity problems where the displacement u depends
only on two coordinates x; and x,. We further as-
sume that the anisotropic material possesses, at each
point, a plane of symmetry normal to x3-axis (i.e.,
out-of-plane axis) such that the in-plane and the out-
of-plane deformations are decoupled. Only the in-
plane problems (i.e., plane strain and generalized
plane stress) described by the displacement compo-
nents u; and u, are considered.

In describing the stress, strain, stiffness and
compliance components it is convenient to replace a
pair of suffices ij by a single suffix M according to
the convention (11—1), (22-52), (33-53), (23-4),
(31-5) (12—6). Note that the suffices 4 and 5 are
absent in our in-plane problems. The non zero strain
components (in engineering notation) are given by

e\=it) 1, €=Uy 2, €6=Uy 1+ 2, (1

where a comma followed by a subscript i indicates
the differentiation by x;. The compatibility equation
to be satisfied by the strain components is given, from

(1), by
es,11+e 12—e6,12=0. 2)

In plane strain, where 03=0, the strain-stress
relations are given by

ey=synOy (M, N=1, 2, 6), 3)
where sy are the elastic compliances and the sum-

mation over the repeated index is implied. In plane
strain, where e;=0, we get the reduced relations
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ey=SunOn (M, N=1, 2, 6), 4)
where the reduced compliances Sy are given by

Sun=Smun—(sm3s3n)/s33 (M, N=1, 2, 6).

Introduce the stress vectors o,={0y,, 6;,}" and
6,={ 0y, 05;}". The force equilibrium equation, with

no body force, is given by

d0, , d0, _
BN + %, =0. (5)

Also introduce a real-valued stress function vector
y={y,, vz}  such that

_ oy oy
w0 T &, (6)

o
then the equilibrium Eq. (5) is automatically satisfied.

According to Lekhnitskii (1963) and Eshelby et
al. (1953) the solution of the plane problem can be
represented by two analytic functions f)(z,), f>(z,) of
the arguments z,=x;+pgx,, where Pqo are two
distinct complex numbers, which are roots of the
fourth-order polynomial characteristic equations in-
troduced later. The displacement u;, stress o;; and
the resultant force r; along an arc are represented in
the form

U= Aol 1= 2B L f o)

2
0y =L Lufieall. 04 == Lop fulea,
Q

where ()" indicates the derivative with respect to the
argument of the function, and A;, and L;, are the com-
ponents of two 2x2 matrices A and L to be defined
below.

Assume the stress function vector

P=lf(x1+px), @)

of the form where I={L,, L,}" and substitute it in the
compatibility Eq. (2). In plane stress, this results in
the fourth-order characteristic equation in p

S1P*=2516p™+(25 12+ 566)p =25 26P+522=0. ©)

It is shown that the Eq. (9) has two pairs of conjugate
complex roots py, p,, pa2, p,. Without loss of gener-
ality the imaginary part of p, (a=1, 2) is assumed to
be positive. In the following treatment we assume that
the two roots p, p, are distinct. In the numerical
analysis the degenerate case of coincident roots can

be handled by slightly perturbing compliance
coefficients to make them distinct. The elements of
matrix L, obtained from the compatibility equation,
are given by

—P|L21 —Pngz

L=1,l,]=
b Lol Ly Ly

(10)

The matrix A, obtained by integrating the strain
components, is given by

A=(a,, as], (11)

with

Ay Si6=S1Pa S12 L, .
aa_ AZa - B Lza . ( )
S6=50Py  Sx;

3

Po Pa

The characteristic equation and the matrices L and A
for plane strain are obtained by replacing the compli-
ances sy with the reduced compliances Syy.

Note that for each characteristic root p, vectors
! and a are determined to within an arbitrary multi-
plying factor. The typical normalization is given by

Ly =Lyp=1 (13)

in (10). Another normalization, based on the orthogo-
nal relations (Stroh, 1958; 1962), is given by

2
22 LA e=1 (nosumon a; a=1,2).  (14)
i=1

II1. FUNDAMENTAL SOLUTIONS

Consider a point force and a dislocation of mag-
nitudes r={F,, F,}" and b={b,, b,}", respectively lo-
cated at £=1,+i7, in the z-plane. The solution is given
by the complex potential functions

fozg)= 2—jr-(L job A F G- €

i
(no sum on ¢; a=1, 2), (15)

which, upon a circuit around &, give the force
resultant —r and the displacement jump b. Here,
E,=N+ pun> and the elements of the matrices L and
A are normalized by (14). Note that the summation
over the repeated index j is implied.

The displacement, the displacement gradient and
the stress contributions at z are given, from (7), in
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index notation by

ui2)=2R{z = 2 A,a(Ljab +A G FInG~ &), (16)

Uy @)= 25 i AialLiab;+ Ao, y—}

2
ui,2(z):29‘{{ﬁa§] PaAia(Ljabj+AJa J) }
(17

crl,-(z)=-29t{ 2 Poliolljah;+ A %—}

2
0,0 =Wz 2 ,a(Lj,,bj+AjaFj)7—_l—a}. (18)
= Lo

Define a force dipole as a pair of plus and mi-
nus forces of the equal magnitude located at an in-
finitesimal distance apart. A dislocation dipole is
defined similarly in terms of a pair of dislocations,
which results in an infinitesimal line segment that has
a displacement discontinuity. For the force and dis-
location dipoles located at &, the displacement, its
gradient and the stress contributions at z are given
by

u @) =2R{5 52 Avallyob; +AjF {InG, = 80))
(19)
((1)(z) 29{ i A. a(L,ab +AF; )d{ §
u¥@)= 29( i Pa AiolLioh;+A o F | —é
(20)
5@(;)—-29? i Pa LiLioghb;+Ajq J)a'{ 5 1,
o) = 29%{— ﬁ LioLgh;+AoF; )d{ 6
21
where
d{in(z,- &)} =— dfzz (no sum on @),
d{zaiéa} dééa (no sum on ), (22)
are the total derivatiives of In(z,~&,) and p lé with

respect to &,

IV. DIRECT FORMULATION OF THE BEM
IN 2-D

1. Physical Interpretation of Somigliana’s Identity
in Plane Anisotropic Elasticity

Consider a finite domain R with the boundary
dR subject to the boundary displacement u={u,, u;}"
and the traction t={t,, t,}". According to a physical
interpretation of Somigliana’s identity (Altiero and
Gavazza, 1980; Eshelby, 1969; Denda and Dong,
1997; Denda and Kosaka, 1997) the displacement
field in the domain R is given by the distributions of
point forces and dislocations of magnitudes ¢; and u;,
respectively, over the contour dJR embedded in the
infinite domain. To arrive at this physical inter-
pretation, consider the following imaginary series of
cutting, applying stress, scraping and welding
operations. First, cut around the region R and remove
it from infinite region leaving the outside region R~
behind. Then, apply the original set of loading to the
region R resulting in the traction ¢t; and the displace-
ment u; on the boundary JR that give rise to the final
displacement field in R. The outside region R™ is
undeformed. To accommodate the deformed region
R back in the hole, scrape away material from the sur-
face of the hole where interpenetration is expected
and fill in the material where gap occurs, put the de-
formed region R back in the hole and weld. A pair of
boundary points, one in R and another in R™, which
were coincident before the set of operations are now
separated, thus giving rise to a displacement
discontinuity. The entire array of such discontinuities
results in a layer of dislocation dipoles along the in-
terface of the two regions. The applied traction has
become built in as a layer of body forces along the
interface. The final displacement field in the inside
region is the same as that in the finite body R and
zero in the outside region R”.

Let T represent a boundary element. The
displacement, the displacement gradient and the stress
contributions of the continuous distribution of point
forces with the magnitude ¢ over I" are given, from
(16)-(18), by

u;(z)=29t[2+daﬁ=‘,l Jr Ao ot (EDING € s ), (23)

uh @=L S fraAmA,a (o —Lds).

A0 =Dge B [ oot E L)

(24)
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G- 2 [ poLiohiutCo—pis),

27 o

4@ =2%R (5L i:l jr LA jatj(f,"a)ids 25)

Sa

where s is the arc length along the element I and T,
is the image of the element I in the induced plane z,.
The index i ranges from 1 to 2 and the summation for
the repeated index j is taken from [ to 2. The contri-
butions of the continuous distribution of dislocation
dipoles with the magnitude u over I" are given, from
(19)-(21), by

, .
W =2RE 8 | AL Ed{InG -y
2mia=1 o

(26)

ul @)= 2R {51 I

27 o

s o Akt L

uf (z)=2R{ % zz jr PoAialjat; (éa)d{ _é‘
27)

oiie) =~ 2m{ﬁa§;"l Jr Polialjat(Ea) 2E

1
Za_‘fa

4@ =2%R (5L f Lial st €K1

éa
(28)

2. Interpolation

Let us consider a straight boundary element T’
with end points &, and &, and the slope ¢. In each of
the induced planes z, (a=1, 2) T is mapped to an-
other straight line Ty, with end points &y, and &, Let
s be the arc length parameter of the element I in the
physical plane z. For a straight element there exists
one-to-one relation between the length s and the com-
plex coordinate £ of the element. Further, since each
of the generalized complex variables &, (a=1, 2) is
uniquely related to &, we can express the density func-
tions u; and ; (j=1, 2) in terms of &,. In this paper we
use the quadratic interpolation of the density func-
tions given by

= 2 o€, 1= 2 06d,, @9
where y, (&,) (n=1, 2, 3) are the quadratic shape func-
tions and u;, and t;, are the nodal values of the den-
sity functions u; and f; at node n. The quadratic in-
terpolation requires three nodes: two end nodes at the

end points & and &, of the line I and a middle node
at the mid-point &;. The shape functions are given
by

(ga - éam)(ga - éa())
(éau - é(lm)(‘gom - éan)

¢:1(§a) =

(n=1, 2, 3 and m#o#n), (30)
where no summation is taken over the repeated
indices. Let us denote the pth derivative, with re-
spect to &,, of the density functions by u(l’)(éa) and
19(£,), then

WED= T oPEN,,, 1E0= 5, o,
(p=0, 1, 2},

where @@X(& ) indicates the pth derivative of the shape
function with respect to &,.

3. Displacement, Displacement Gradient and Stress

Since the function In(z,—&,) is multi-valued it
is necessary to define the unique value of this func-
tion by introducing a branch cut. Note that &, is lo-
cated on the line I', and the line is directed positive
from &4 to £,. The most convenient branch cut for
In(z,—&,) is defined by a straight line connecting &,
(the branch point) and &, (the first end point of Tp)
and extending it to the infinity in the negative direc-
tion of Ty, Let 8Y (-n<8Y <+m) be the principal value
argument of In(z,—&,) as z, approaches 'y, from the
left. Then, we define the argument of In(z,~&,) ac-
cording to

0Y —2m<arg(z,-E,)< 0Y . (31)

Integrals in (23) and (26), with the interpola-
tion (29), can be evaluated analytically for the straight
element I" giving the displacement contributions at z
by

3
— ®
M;(Z) 2 Uun(z)rjn ’

ui@)= Z U, . (32)
with

U@ =L S AU

V@=L S AL ue), 69

and
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® _ ]
Unaleo) = cosg +p ,sing
c 0 e o,
Ualeo)= £ CD00CEI e~ EER, (B4

where ¢ is the slope of the element T and In'/'(z,~&,)
is the dth integral of In(z,—&,) with respect to the ar-
gument &, and is given by

g, — &)= l)d | Lea- E) NG &) - é j

(d=0). (35)

When d is a negative integer In'"/(z,~&,) is interpreted
as the derivative instead of the integral so that, for
example,

I ”(Zoz éa)—_

n[— 2](Za_ éa)=_ |

Similarly, the displacement gradient contribu-
tions are obatined by integrating (24) and (27) ana-
lytically with the result

U
u:’,k(z)_ i Vfl\jn(z)[jn ’

L‘I k *') = i VEZJ)H(Z)ujn ’ (36)
where

Vi@ = 2% (5~ 2 AicAjVinale )

Vf.:‘j)u( ) 29‘ i A ,aLjaq)]\l:l)a(é rz)} ) (37)

with

1) _ |
Vinale == cosg +p sing

I O P LA e 3

VonaC ) =P VinaZa)

== 3 D ENN e - IS

d=0 al’

P Z D) =P Va2 e, (38)

No summation is taken over the index ¢ in (38).
The stress contributions are obtained by integrat-
ing (25) and (28) analytically with the result

50«’ (Za_ ga)z ’

3
!
O-/r\'i(z) = ”Z’l Sl(\'ij'n(z)[ju ’

oli@)= 2 S @, . (39)
where

SU@ =295k 5 LA S e

2

Sip@ =2z & Ligk oSl (40)

with
N N |

SZn (1(4 0() -

cosg + p sing
3
B0 gl I e - £l
ShaZa) == P el a)

2
Salea)== X ) 90CEM" e g £,

Sal
Sz ) == Py SomaZ ) - (41)

No summation is taken over the index o in (41).
The traction t;=v,0y,; contributions on the seg-
ment with the unit normal v, are given from (39) by

th (7) e i Tgl)l(")ll” - ,,g

to= 2 Thow, = £ v @, 42)

Aun(*')rjn ’

where 5, (2) and 5, (2) are given by (40) and (41).
The summation is taken from 1 to 2 for the repeated
indices j and k in (42).

4. Displacement and Traction Boundary Element
Methods

In our formulation the boundary integrals are
evaluated analytically and no distinction arises be-
tween the formulations of the interior and the exte-
rior problems. Thus, we consider either a finite or
infinite region R bounded by a closed contour dR
which is subject to the traction ¢; and the displace-
ment u;. The positive direction of the boundary dR is
defined such that the material region is located to its
left. We discretize and approximate the original

boundary by a set of straight lines, oR = E I'; where

j=1
I=§&4 (=1, 2, ..., M) is the jth boundary element
extending from node &; to &;,, with the slope ¢;.
In formulating the boundary element method fol-
lowing the physical interpretation of Somigliana’s

identity and the discretization mentioned above, we
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can use the results obtained in Section IV.3.
(1) Displacement BEM

This formulation is based on the displacement
contributions from the point force (#;) and the dislo-
cation dipole (u;) distributions over an element given
by (32)-(34). The displacement in the body is given
by adding the two contributions, i.e.,

— ' 11}
w;=u;+uj,

and the contributions from all the boundary elements
to set up the field equation in the displacement BEM.
In setting up the system of boundary equations,
using the continuous boundary element, the terms
In'"(z,~&,) for d=1, 2 and 3 in (34) go to zero as z
approaches the end nodes, while the term 1n'(z,—&,)
=lIn|zg—& l+iarg(z,~&,) is unbounded since its real
part becomes infinite. However, at a given end node
where two elements meet, the unbounded real part
from the current element is canceled by another un-
bounded real part from the adjacent element. So we
need to deal only with the imaginary part of In'!(z,—
£, which may differ between two adjacent elements
due to different selections of the branch cut.

(2) Traction BEM

This formulation uses the traction contributions
(42) of the point force and the dislocation dipole
distributions. The traction in the body is given by
adding these two contributions,

1 u
=t

and the contributions from all the boundary elements
to set up the field Eq. As seen from (40)-(42) the
traction becomes unbounded at the end nodes of the
element. So we use the discontinuous boundary ele-
ment for which the end collocation points, & and &, ,
are shifted from the end points, &, and &,, of the
element. For the discontinuous boundary element the
quadratic interpolation is still given by (29)-(30) if
we substitute &, and &, for &, and &g,
respectively. In addition uj, and t;, (nL=1, 2, 3) are
the values of the density functions at &, &, and &;.
Other than the difference in the collocation scheme,
the resulting expressions for the analytical integra-
tion are exactly the same for the continuous and the
discontinuous boundary element schemes. The
discontinuous boundary elements are used exclusively
in the traction boundary element method even at nodes
where the slope and the traction are continuous. A
mixed use of the continuous and the discontinuous
boundary elements in the displacement boundary

element method is also possible.
V. MIXED MODE CRACK ANALYSIS

1. Mixed Displacement and Traction BEM for
Crack Problems

Consider a crack in an infinite body introduced
along a directed contour C with the upper and the
lower surfaces C* and C, respectively. It is subject
to the tractions 7" and T~ and the displacements U*
and U~ on the two surfaces. Apply the physical in-
terpretation of Somigliana’s identity to a flat ellipti-
cal hole which is subsequently collapsed into a crack
along C. This procedure results in layers along C of
point forces and dislocation dipoles with the densi-
ties T.,=T*+T and oU=U*-U", respectively. Here we
consider the problem for which 7" and 7~ are speci-
fied on the entire crack surfaces and T,.,=T*+T =0.

When the crack is treated as a single contour
the displacement boundary element method cannot
handle the problem (Cruse, 1989) while the traction
boundary element method can. In setting up the trac-
tion boundary element method for the crack defined
above the only boundary is the contour C on which
the continuous distribution of the dislocation dipoles
with density SU=U*-U" is placed. When T* and T~
are specified on the entire crack surfaces the only
unknown is the crack opening displacement §U=U*-
U~. The system of boundary equations is obtained
by equating the limiting values of the traction on the
upper (or lower) crack surface to 7% (or 77) at bound-
ary element nodes. Evaluation on only one side of
the crack surfaces is sufficient to determine the un-
known crack opening displacement.

‘When the crack is located in a finite body, in-
cluding the crack intersecting its boundary, the ef-
fects of the non-crack boundary can be represented
by the layers of point forces and dislocation dipoles
as in the case of problems without the crack. Either
the displacement or the traction boundary element
method can be used for the non-crack boundary.
The latter, in combination with the traction boundary
element method for the crack, establishes the
traction formulation and the former a mixed formu-
lation (i.e., the traction and the displacement formu-
lations for the crack and non-crack boundaries,
respectively) for the crack problems. The mixed
boundary element method is preferred since it allows
the use of both the continuous and the discontinuous
boundary elements on the non-crack boundary.

2. Conservation Law of Anisotropic Elasticity

Conservation laws in elasticity have been used
effectively in the determination of the mixed mode
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stress intensity factors for anisotropic materials both
in the FEM and the BEM. Wang et al. (1980) have
used a path independent integral, which is based on
conservation laws of anisotropic elasticity defined for
two equilibrium states (Chen and Shield, 1977, Wu,
1989). Chu and Hong (1990) used J; (k=1, 2) inte-
grals to determine stress intensity factors K; and Kj;
using the FEM. Sollero and Aliabadi (1993) devel-
oped a BEM procedure based on J; integral and the
ratio of relative crack opening displacements near the
crack tip. We adopt the technique developed by Wang
et al. (1980).

Introduce a local coordinate system O'-x|x; at
a tip O' of a crack such that x| -axis is tangent to the
crack tip with the slope ¢ measured from the global
x1-axis. The crack need not be straight. In this coor-
dinate system the J-integral is defined as

Ou;
=J Wn\-njo} ", (43)
- ox}

where i, j=1, 2, I'"" is a contour surrounding the crack
tip as shown in Fig. 1(a), W' is the strain energy
density, o;; and ujf are the stress and the displacement,
and n; is the unit normal to the path I'". Notice that
in the local coordinate system the characteristic Eq.
(9) is written in terms of the local compliance coeffi-
cients 5,y in plane stress and local reduced compli-
ance coefficients S,'WN in plane strain. We denote the
local characteristic roots by p, p|, p,, p5, which
differ from those defined in the global coordinate
system. Using expression for the energy release rate
in mixed Mode I and II (Sih er al., 1965), we can
relate J' to the stress intensity factors by

’ , ’ , 7y, , ,2
J =0 K+ 0,KK)+ K, (44)
where
a”=_ﬁg(p +p2)
P\P;
o ”3(/) +po),
o, =——== o 7”3(17;/7;), (45)
P2

in plane stress, where 3 indicates the imaginary part.
The results for plane strain are obtained by replacing
Sy With Sy

Note that (44) is not sufficient for the determi-
nation of K, and K;. Following Wang et al. (1980)
consider two independent equilibrium states, 1° and
2°, in the local coordinate system with the displace-
ments «;" and u;® and the stresses 0" and o/
The J-integral for the superposed state 0° is given

(@)

Ce
L - S - 0-V.¥-) (b
Fig. 1. (a) A center crack in an infinite body with a circular inte-

gration contour. (b) The mesh used for the crack.

(Chen and Shield, 1977) by
J|(O)=J'(I)+J'(2)+M'(l. 2), (46)

where J'@, J'V and J'® are local J-integrals for states
0°, 1° and 2° and M""? is defined by

: u/® qu/™
71,2 (1,2). s ’ /(2)
M >=J WPn! - (o W— = +njo;; )]d
.

(47)
in terms of the mutual potential energy W2 defined
by
o du [V ou @ e du @ ou ;M

Moaxr oxp Ml oy

W’(I.2)=

where ¢}y, (with i, j, k, I=1, 2) are stiffness coef-
ficients. The integral defined by (47) vanishes if the
region surrounded by the integration contour does not
contain any singularities (conservation law by Chen
and Shield, 1977) and it is path independent for con-
tours containing a crack tip. If we use the J-K rela-
tionship in (44) for states 0°, 1° and 2°, then we get

J 0= V4 1O 200, K VK P+ o [K VKD + KPR )
+20,K K. (48)
Comparison of (46) and (48) gives
Mm'e 2) 20! K’(I)K’(2)+ /IQ[K;(I)K;?)_'_K;(Z)K;;l)]
+205,K K2 (49)

Let the state 1° be the equilibrium state for the prob-
lem sought. Introduce the first known auxiliary
solution, denoted by the superscript 2a, given by the
Mode I crack tip asymptotic solution in the local co-
ordinate system with the stress intensity factor

K=1 and K“=0.
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E; (x10° psi) E, (x10° psi) G, (X10° psi) Via
(0/£45/90), 8.7069 8.7069 3.4581 0.25829
(0), 21.000 1.7000 1.4000 0.21000
(£30), 9.7161 2.5582 4.4871 0.99543
(£45), 4.5223 4.5223 5.5162 0.61509
(£60), 2.5582 9.7161 4.4871 0.26209
(90), 1.7000 21.000 1.4000 0.017000
(90,/145), 4.0784 12.875 3.4581 0.17047
(904/£45), 3.3805 15.634 2.7721 0.10503
Table 1b. Compliance constants for laminates (x1077 in?*/lb)
S11 $22 S12 S66
(0/£45/90), 0.28713 0.28713 -0.07434 0.72294
0), 0.47619 5.8824 -0.10000 7.1429
(£30), 0.51461 1.9545 -0.51226 1.1143
(245), 1.1056 1.1056 -0.68007 0.90642
(£60), 1.9545 0.51461 -0.51226 1.1143
90), 5.8824 0.47619 -0.10000 7.1429
(90,/145), 0.61229 0.19418 -0.10450 0.72294
(90,/145), 0.49303 0.10660 -0.051782 0.60124
In this case (49) is given by The auxiliary solutions G'(“’) and u/® for Mode 1
and ¢/ and u{® for Mode T crack tip asymptotic
M 20 =207 K[V + o KD (50) solutlons in the local coordinate system are given in
terms of the local characteristic roots p', p|, p,, p,
and the integral M""*” has the form and are found in (Sih ef al., 1965) and (Wang et al.,
, 1980).
A1.2a) _ L Ou[Mou 2 Equations (50)-(53) provide a system of linear
M - [C"/"\"a—r," ax; " Egs. for K;” and K. To evaluate the integrals
r “j M2 and M- accurately we exploit the path in-
u [ u/® dependence and select a contour sufficiently away
_ (’7,0',/,(]) + n,O','J("’) )]ds ) 51 from the cr.ack tip, where greater n.umerlcal accuracy
x| can be achieved than near crack tip. In addition, we

Introduce the second auxiliary solution, denoted by
the superscript 2b, for Mode II asymptotic solution
with the stress intensity factor

K?=0and K’ =1.
Equation (49) is given by
M) = o KO+ 205,K 50 (52)

and the integral M'"-* has the form

, V , 0wV Qu»
M(I.2I))=J e

yk/a, a;lll

ou; "2b) out '“)
(o —— Lo )]ds (53)
I

use the analytical BEM formulas of the stress and the
displacement gradient solution, (39) and (36), for state
1°in its global coordinate system, from which the
local solutions oV and ) are obtained by the co-
ordinate transformation.

VI. NUMERICAL RESULTS

We have obtained numerical results for eight
representative laminates: (0),, (£30),, (245),, (£60),,
(90),, (0/%£45/90);, (90,/145),, (904/£45),. The engi-
neering constants for the lamina are £,=21x10° psi,
E»=1.7x10° psi, G,=1.4x10° psi, v;,=0.21, which are
typical for a fiber-reinforced graphite epoxy (Snyder
and Cruse, 1975). The engineering constants and the
compliances for the eight laminates are listed in Table
la and Ib, respectively.

Ac¢curacy of the method is investigated by
studying a center crack of length 2a in an infinite
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Table 2. The effect of the integration contour on the stress intensity factor of a center crack in an infinite
plate under uniaxial tension, where r is the radius of the circular contour and K" is the ana-

lytical solution.

rla KK Rel. Error (%) rla K,/K;"'“I Rel. Error (%)
0.005 0.87511 12.49 1.995 1.0075 0.75
0.05 1.0069 0.69 1.95 0.99149 0.85
0.1 0.99909 0.09 1.9 1.0000 0.00
0.2 0.99979 0.02 1.8 1.0011 0.11
0.3 0.99959 0.04 1.7 1.0003 0.03
0.4 1.0003 0.03 1.6 0.99965 0.03
0.5 0.99942 0.06 1.5 1.0003 0.03
0.6 1.0000 0.00 1.4 0.99983 0.02
0.7 1.0006 0.06 1.3 0.99943 0.06
0.8 1.0006 0.06 1.2 0.99942 0.06
0.9 1.0002 0.02 1.1 0.99974 0.03
1.0 0.99997 0.00

quasi-isotropic laminate (0/+45/90), subject to the
uniaxial tension as shown in Fig. 1(a). In this paper
the infinite plate is approximated by a finite but suf-
ficiently large plate in comparison to the crack length
2a. Fig. 1(b) shows the boundary element mesh for
the crack with ten elements with the crack tip ele-
ment size 1/16a; this is the mesh used for all center
cracks in this paper. For the calculation of the inte-
grals M'"-*” and M'"-*” we have used circular inte-
gration paths (Fig. 1(a)) centered at each crack tip,
divided the path into 18 equal intervals and adopted
three point Gaussian quadrature formula for each
interval. Finer intervals or more Gaussian points than
used here had negligible improvement in the numeri-
cal accuracy. Table 2 shows the K, values obtained
for several circular paths with the radius r ranging
from r=0.005a (near crack tip) to r=1.995a (near op-
posite crack tip). The path independence of the inte-
grals can be seen over a wide range of contours. In
the range between r=0.la and r=1.9a the maximum
relative error in K; is 0.11%. The values of K| for all
eight laminates have clearly indicated its indepen-
dence on the elastic constants, as shown by Sih er al.
(1965) for a single crack in an infinite body. The
remarkable accuracy, of the order between 0.1% and
1.0% either in the relative error with respect to the
exact solution or in the deviation from the reliable
reference values in literature, will be shown to hold
not only for simple but also for more complex crack
configurations as demonstrated below.

Figure 2 shows two collinear cracks in an infi-
nite body subject to the uniaxial tension when f=0.
The K, values at crack tips A (inner) and B (outer)
are listed in Table 3 for the quasi isotropic laminate
(0/£45/90),. They are compared with values, for the
isotropic materials, from the stress intensity handbook
(Murakami et al., 1987 with 0.5% accuracy) and those

l¢—— 22 ——»]

'

Fig. 2. Two parallel cracks in an infinite body under uniaxial
tension: collinear if f=0 and aligned if ¢=0.

00

calculated by the whole crack singular element
(Denda and Dong, 1997). Notice that the present
results are slightly more accurate than those by
Denda and Dong (1997) who incorporated the crack
tip singularity analytically. This is a surprising but
encouraging outcome, since the results by Denda
and Dong (1997) have demonstrated the order of
accuracy with less than 1% error. Fig. 3 shows three
collinear cracks in an infinite body under tension. The
K, values for quasi isotropic laminate (0/£45/90), are
shown in Table 4 in comparison to values for the iso-
tropic materials from the handbook (Murakami et al.,
1987). The typical deviation from the handbook value
is 0.1%. For two and three collinear cracks, we have
numerically verified that the K, values are indepen-
dent on the elastic constants. Sih et al. (1965) has
proved such independence for a single crack in an
infinite body with zero resultant force on the crack,
but not for multiple collinear cracks. In order to dem-
onstrate the dependence on the elastic constants, we
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Table 3. Stress intensity factors for two collinear cracks in an infinite body.

K plovma K[A/O'W
2ald0/445190),  Ref. [27] Ref. [12] (0/+45/90),  Ref. [27] Ref. [12]
0.05 1.00036 1.00031 1.0018 1.00038 1.00032 1.0018
0.1 1.00127 1.00120 1.0027 1.00140 1.00132 1.0028
0.2 1.00470 1.00462 1.0061 1.00573 1.00566 1.0071
0.3 1.01023 1.01017 1.0117 1.01388 1.01383 1.0153
0.4 1.01791 1.01787 1.0194 1.02718 1.02717 1.0287
0.5 1.02796 1.02795 1.0295 1.04791 1.04796 1.0495
0.6 1.04090 1.04094 1.0426 1.07963 1.08040 1.0821
0.7 1.05776 1.05786 1.0596 1.13327 1.13326 1.1351
0.8 1.08084 1.08107 1.0827 1.22666 1.22894 1.2314
0.9 1.11687 1.11741 1.1187 1.44951 1.45387 1.4639

Table 4. Stress intensity factors for three collinear cracks in an infinite body, where F;,=K,;,/o/7a ,

F";=KIB/O'W, F]C=ch/0"/ﬁ,

Fia Fip Fic
2ald (0/£45/90), Ref. [27] (0/£45/90), Ref. [27] (0/£45/90), Ref. [27]
0.05 1.00024 1.00083 1.00026 1.00040 1.00049 1.00063
0.1 1.00136 1.00150 1.00150 1.00164 1.00237 1.00252
0.2 1.00569 1.00585 1.00686 1.00702 1.01013 1.01030
0.3 1.01278 1.01296 1.01691 1.01710 1.02386 1.02407
0.4 1.02276 1.02297 1.03328 1.03353 1.04501 1.04529
0.5 1.03605 1.03631 1.05880 1.05913 1.07624 1.07663
0.6 1.05350 1.05383 1.09912 1.09915 1.12303 1.12316
0.7 1.07679 1.07724 1.16390 1.16456 1.19480 1.19558
0.8 1.10996 1.11032 1.28050 1.28348 1.31819 1.32126
0.9 1.16319 1.16439 1.55867 1.56454 1.60073 1.60685

have studied the problem of two parallel cracks ar-
ranged at various relative positions, from collinear
through non-aligned to aligned, as shown in Fig. 2.
The K, values shown in Table 5 show their depen-
dence on the elastic constants except for the collinear
cracks with e/f=ec. Comparison with results (Denda
and Dong, 1997, (Murakami et al., 1987) for isotro-
pic materials, when available, shows deviation less
than 0.5%.

Stress intensity factors for two aligned parallel
cracks (Fig. 2 with e=0), three aligned parallel cracks
(Fig. 4), and two inclined cracks (Fig. 5) are given
in Tables 6, 7 and 8, respectively. Results, for the
isotropic materials, from the handbook (Murakami et
al., 1987) and by Denda and Dong (1997) are also
listed for comparison. For the two parallel cracks,
the accuracy of the handbook values (Murakami et
al., 1987) is 5% for the case 2a/d=0.2, 0.4, 0.8; that
for 2a/d=1.0, 2.0, 5.0 is unspecified. The deviation
of our numerical results from the handbook values is
less than 0.03% in F)=K,/o/7ta . For the three paral-
lel cracks, the handbook values have the accuracy of
2% and our results for F;4 deviate from them less than

Tom
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bo.

Fig. 3. Three collinear cracks in an infinite body under uniaxial
tension.

0.1%. For the two inclined cracks less than 1%
deviation in Fj, and Fz is observed from the results
by Denda and Dong (1997); numerical handbook val-
ues are not available.

A double-edge-cracked plate in tension is shown
in Fig. 6, taken from Snyder and Cruse (1975), where
the Green’s function BEM that satisfies the crack face
boundary condition automatically is used. The re-
sults are considered to be one of the most accurate
for single crack problems. (Snyder and Cruse have
analyzed one, instead of two, edge crack using the
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Table 5. Dependence on the elastic constants of the stress intensity factors for two parallel cracks
(collinear, non-aligned and algned) in an infinite body under tension, where F;,=K,/ovma ,

F]B=KIB/O'W .

s elf=0 elf=0.5 elf=1.0 elf=2.0 elf=inf
—e0d Fia Fia Fig Fia Fip Fia Fip Fia Fig
Ref. [27] 0.8727 1.2289 1.0811
Ref. [12] 0.8732 0.94208 1.13712 1.2314 1.0827
(0/£45/90), 0.87237 0.84942 0.98539 0.94098 1.06039 1.13450 1.10222 1.22634 1.08056
0), 0.92253 0.90872 0.96968 0.93901 1.01270 1.03623 1.06076 1.22641 1.08065
(£30), 0.95302 0.94360 0.94871 0.92759 0.98499 0.98781 1.07042 1.22631 1.08057
(245); 0.93068 0.92237 0.93470 0.90565 1.02557 1.04412 1.10269 1.22639 1.08061
(£60), 0.85707 0.84430 0.99198 0.93601 1.09115 1.18042 1.12138 1.22631 1.08052
(90), 0.78877 0.69879 1.09374 1.05964 1.15122 1.33709 1.12339 1.22705 1.08116
(90,/+45), 0.84103 0.80939 1.01403 0.96210 1.09563 1.20885 [1.11696 1.22637 1.68056
(90,/+45), 0.82257 0.77603 1.03883 0.98818 1.11268 1.25307 1.11956 1.22638 1.08056

Table 6. Aligned two parallel cracks in an infinite body under tension, where F,=K,/oVma .

Fy
2ald=0.2 0.4 1.0 2.0 5.0

Ref. [27] 0.9855 0.9508 0.8727 0.8319 0.7569 0.6962
Ref. [12] 0.987 0.9517 0.8732 0.844 0.7746 0.7129
(0/£45/90), 0.9857 0.9505 0.8724 0.8433 0.7733 0.7228
0), 0.9929 0.9741 0.9225 0.8979 0.8183 0.7505
(£30), 0.9971 0.9885 0.9530 0.9278 0.8192 0.7383
(£45), 0.9968 0.9862 0.9307 0.8916 0.7862 0.7188
(£60), 0.9890 0.9553 0.8571 0.8232 0.7547 0.7068
(90), 0.9357 0.8580 0.7888 0.7723 0.7344 0.7075
(90,/£45), 0.9792 0.9309 0.8410 0.8140 0.7547 0.7120
(904/£45); 0.9696 0.9095 0.8226 0.7994 0.7477 0.7103
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Fig. 4. Three aligned parallel cracks in an infinite body under
uniaxial tension.

symmetry condition.) We have adopted the mesh used
by Snyder and Cruse (Fig. 8 in (Snyder and Cruse,
1975)) consisting of 50 elements for the whole
boundary. The results are shown in Table 9 in com-
parison with those by Snyder and Cruse (1975). The
maximum deviation from the results by Snyder and

Fig. 5. Two inclined cracks in an infinite body under uniaxial
tension.

Cruse (1975) is 0.76%. Although the present method
is capable of dealing with multiple curvilinear cracks
in finite bodies, numerical results for comparison are
not available in literature except for the current ex-
ample of a double-edge-cracked plate.

The last two problems are concerned with a
semi-infinite body subject to the uniaxial tension.
Fig. 7(a) shows a kinked crack in a semi-infinite
body in tension. The meshes used for the non-crack
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Table 7. Aligned two parallel cracks in an infinite body under tension, where F,;,=K;./cv7@a .
Fia

2ald=0.1 0.2 0.3 04 0.5 0.6 0.7 0.8
Ref. [27] 0.99500 0.98198  0.96299 0.9401 0.91535 0.8908 0.86851 0.85052
(0/£45/90), 0.9953 0.9822 0.9628 0.9396 0.9151 0.8913 0.8692  0.8494
0), 0.9977 0.9911 0.9809 0.9679 0.9530 0.9373 0.9213  0.9056
(£30), 0.9990 0.9964 0.9920 0.9858 0.9779 0.9682 0.9569  0.9442
(245), 0.9990 0.9961 0.9910 0.9833 0.9726 0.9585 09414 09218
(260), 0.9965 0.9865 0.9697 0.9469 0.9197 0.8912 0.8642  0.8407
(90), 0.9750 0.9212 0.8697 0.8302 0.8015 0.7804 0.7645 0.7521
(90,/£45), 0.9931 0.9743 0.9473 - 0.9167 0.8865 0.8592 0.8358 0.8164
(90,4/£45), 0.9896 0.9626 0.9272 0.8913 0.8593 0.8327 0.8113  0.7941

Table 8. Two inclined cracks in an infinite body under tension, where F; =K, /ov@a , F;g=Kg/c/7a ,

Fua=Kyalo/ma , Fp=Kp/ovna .

a=30°
2a/d=0.1 2ald=0.5 2al/d=0.9
Fis Fip Fig Fia Fip
Ref. [12] 0.7503 0.7503 0.7718 0.7595 0914 0.7881
(0/£45/90), 0.7504 0.7503 0.7715 0.7594 09111 0.7878
(0), 0.7500 0.7495 0.7870 0.7408 0.9993 0.7527
(£30), 0.7502 0.7501 0.7678 0.7538 0.9228 0.7707
(245), 0.7504 0.7503 0.7697 0.7596 0.8998 0.7871
(£60), 0.7505 0.7505 0.7721 0.7625 0.8996 0.7963
(90), 0.7502 0.7502 0.7731 0.7635 0.9011 0.8005
(90,/%45), 0.7505 0.7504 0.7722 0.7622 0.9023 0.7955
(904/£45), 0.7505 0.7505 0.7726 0.7627 0.9021 0.7974
a=30°
2a/d=0.1 2a/d=0.5 2a/d=0.9
Fpa Fip Fug Fia Fig
(0/£45/90), 0.4332 0.4332 0.4373 0.4426 0.4535 0.4745
(0), 0.4324 0.4332 0.3918 0.4613 0.2964 0.5261
(£30), 0.4330 0.4331 0.4287 0.4426 0.3901 0.4828
(245), 0.4332 0.4332 0.4389 0.4413 0.4575 0.4702
(+60), 0.4333 0.4333 0.4430 0.4417 0.4881 0.4678
(90), 0.4331 0.4331 0.4445 0.4417 0.5015 0.4671
(90,/£45), 0.4333 0.4333 0.4422 0.4419 0.4838 0.469
(904/£45), 0.4333 0.4333 0.4431 0.4419 0.4901 0.4684

boundary and for the crack are shown in Fig. 7(b)
and Fig. 7(c), respectively. The non-crack boundary
and the crack consist of 34 and 12 (6 for each of the
straight crack segment) nonhomogeneous elements,
respectively. Fig. 8(a) shows two parallel edge cracks
in a semi-infinite body in tension. The meshes for
the non-crack boundary (with 26 elements) and for
the cracks (6 elements for each crack) are shown in
Fig. 8(b) and Fig. 8(c), respectively. Numerical
results for the stress intensity factors for the two
problems are given in Tables 10 and 11. Results for

isotropic materials by the handbook (Murakami er al.,
1987) and by Denda and Dong (1999), where singu-
lar crack tip element is used, are also listed. The cur-
rent results for F; deviate from the handbook values
by less than 0.5% for both crack configurations.

VII. CONCLUDING REMARKS

We have used Stroh complex variable formal-
ism and the physical interpretation of Somigliana’s
identity to develop a boundary element method for
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Fig. 7. (a) A kinked crack in a semi-infinite plate in tension; (b)
mesh for non-crack boundary and (c) crack elements for
the kinked crack.

plane anisotropic elasticity problems involving
multiple cracks. We have developed simple bound-
ary element method formulas through analytical

Table 9. Double-edge-cracked plate in tension.

K]/O'\/(—I
Present Ref. [31]
0), 1.977 1.962
(£30), 2.099 2.095
(£45), 2.154 2.159
(£60), 2.102 2.107
(90), 2.021 2.008
(0/£45/90), 2.010 2.023
(90,/£45), 2.025 2.023
(90,/£45), 2.008 2.004
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Fig. 8. (a) Two parallel edge cracks in a semi-infinite plate in
tension; (b) mesh for non-crack boundary and (c) crack
elements.

integration of the boundary integrals. These for-
mulas have been applied to the mixed mode crack
analysis for multiple cracks with the help of the con-
servation integrals. They are concise yet the stress
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Table 10. A kinked crack in a semi-infinite plate in tension, where ¢,=1.0 in Fig. 7(a) and F;=K,/oVnb ,

F”=K”/O'V b .

C|:0.25 C|=0.5 C|=0.75 C|=0.9

F; Fy F, Fy Fy Fy Fy Fy
Ref. [27] 0.703 -0.365 0.704 -0.365 0.705 -0.366 0.707 -0.359
Ref. [13] 0.706 -0.365 0.706 -0.365 0.706 -0.366 0.706 -0.359
(0/£45/90), 0.7040 -0.3666 0.7042 -0.3667 0.7032 -0.3674 0.7047  -0.3595
(0), 0.9137 -0.1245 0.8899  -0.1487 0.9047 -0.1328 0.9135 -0.1275
(£30), 0.8809 -0.2039 0.8856  -0.2005 0.8815 -0.2081 0.8823 -0.1991
(£45), 0.7747 -0.3473 0.7775 -0.3450 0.7797 -0.3448 0.7815 -0.3361
(£60), 0.6776 -0.4549 0.6776  -0.4544 0.6777 -0.4527 0.6784  -0.4458
(90), 0.5897 -0.4875 0.5897 -0.4875 0.5896 -0.4865 0.5900 -0.4821
(90,/£45), 0.6540 -0.4400 0.6542  -0.4397 0.6541 -0.4387 0.6549 -0.4320
(904/£45), 0.6308 -0.4576 0.6310 -0.5903 0.6308 -0.4565 0.6315 -0.4505

Table 11. Two parallel edge cracks in a semi-infinite plate in tension, where d=a and F;4,=K,,/oVnb , F;5=

K,B/O'\/E-
bla=0.25 bla=0.5 bla=0.75 bla=0.9

Fia Fig Fia Fig Fia Fip Fia Fip
Ref. [27] 1.118 0.214 1.094 0.418 1.015 0.644 0.854 0.854
Ref. [13] 1.124 0.208 1.1 0.413 1.021 0.643 0.858 0.858
(0/£45/90), 1.1218 0.2119 1.0976 0.4157 1.0194 0.6455 0.8584 0.8584
(0), 1.0852 0.5425 1.0509 0.6393 0.9824 0.7585 0.8738 0.8738
(£30), 1.1589 0.5804 1.1178 0.6855 - 1.0432 0.8126 0.9330 0.9330
(+45), 1.2024 0.3072 1.1637 0.5400 1.0753 0.7643 0.9361 0.9361
(£60), 1.1832 0.0449 1.1638 0.3184 1.0746 0.6292 0.8881 0.8881
(90), 1.0971 -0.0226 1.0933 0.1289 1.0502 0.3838 0.8026 0.8025
(90,/£45), 1.1359 0.067 1.1206 0.2933 1.0440 0.5748 0.8508 0.8508
(904/£45), 1.1224 . 0.031 1.1118 0.236 1.0439 0.5186 0.8337 0.8337

intensity factor results obtained by them are accurate
to within 1% of the values provided by the handbook
(Murakami et al., 1987) and other reliable sources
(Denda and Dong, 1987; Denda and Dong, 1999).
Although the BEM developed here can be
readily extended to generalized plane strain for which
the in-plane and out-of-plane deformations are
coupled, its application to the mixed mode crack
analysis requires the development of formulas for the
energy release rate and the conservation integrals.
This is not a trivial task and requires a separate paper.
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