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ABSTRACT

A comprehensive integral equation based approach is presented
to determine the elastic response of composite laminates under axial,
bending, shear/bending and torsional loadings. The integral equations
governing the laminate behavior are directly deduced from the reci-
procity theorem for beam-type structures by employing the fundamen-
tal solution of generalized plain strain anisotropic problems. Taking
into account the displacement and stréss continuity along the inter-
faces and the external boundary conditions the formulation is numeri-
cally solved by the multidomain boundary element method. The
resolving system of linear algebraic equations is solved to provide the
solution of the problem in terms of displacements and tractions on
the boundary of each ply within the laminate. Once this boundary elastic
response is determined the displacements and stresses at any point of
the laminate can be computed using the appropriate boundary integral
representations. The approach, based on a pointwise formulation,
makes it possible to analyze laminates with the widest generalities as
regards the section shape and lay-up.- Some applications are presented
in order to demonstrate the accuracy and effectiveness of the method

proposed.

I. INTRODUCTION

The analysis of the elastic response of
multilayered, fiber-reinforced composite laminates is
a growing concern in composite structural design,
probably due to the wide spread of these structural
members in lightweight technology. Due to the in-
herent anisotropy and mismatch in the elastic prop-
erties of the adjacent plies within the laminates a com-
plex three-dimensional.stress state arises showing
high interlaminar stresses along the interfaces in the
free edge region (Jones, 1975). These interlaminar
stresses are responsible for the delamination
phenomenon, which can lead to laminate failure at

*Correspondence addressee

<

loads that are lower than those at which the structure
would fail if only the classical failure mechanisms
were involved. A survey of the literature shows that
investigators have used various approaches to attempt
to analyze the composite laminate elastic response.
Starting from the pioneering work by Pipes and
Pagano (1970), based on the finite difference
technique, results have been obtained for different
cases by using the finite element method (Wang and
Crossman, 1977; Spilker and Chou, 1980; Raju and
Crews, 1981; Wang and Yuan, 1983; Ye, 1990; Chan
and Ochoa, 1987; 1990), boundary layer theories
(Tang, 1975; Tang and Levy, 1975), perturbation
techniques (Hsu and Herakovich, 1977), polynomial
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and Fourier series (Pipes and Pagauo, 1974; Wang
and Dickson, 1978), Lekhnitskii’s stress potentials
(Wang and Choi, 1982a, b; Yin, 1994a, b), Reissner’s
variational principle (Pagano, 1978; 1978) and the
force balance method coupled with minimization of
complementary energy (Kassapoglou and Lagace,
1986; Lin et al., 1995). These methods provide simple
and sufficiently accurate tools for calculating
interlaminar stresses. In many cases the attention was
focused on axial and pure bending loads; only some
authors (Chan and Ochoa, 1990; Ko and Lin, 1992;
1993) dealt with other important loading conditions,
i.e. torsion and shear. Moreover the stress distribu-
tions obtained by using the above-mentioned ap-
proaches show good agreement among them for sites
away from the free edge, whereas considerable dis-
agreement exists for points near the free edge loca-
tion among the various analytical and numerical
solutions proposed. This is to be expected as a result
of a priori assumptions or because the traction bound-
ary conditions of the continuum problem have been
transformed into generalized conditions through
equivalent nodal forces. From this point of view,
boundary integral equations (BIE) and the boundary
element method (BEM) represent an interesting and
effective tool for composite laminate structural
analysis. We know that: (1) integral equations pre-
serve the pointwise description of the continuum
problem in the modelization; (2) boundary integral
equations and the boundary element method are very
well suited to treat interface problems like those in-
volved in composite laminate analysis; (3) the bound-
ary element method has meaningful computational
advantages with respect to the more common field
methods. On this basis, the integral equation ap-
proach has been used to achieve solutions for aniso-
tropic elasticity problems. Many efforts have
successfully been made for two-dimensional aniso-
tropic linear elasticity where the integral equation
kernels are available in closed form. However, only
recently the authors have presented an alternative and
original boundary integral formulation (Davi, 1996;
Davi and Milazzo, 1997a,b; Davi, 1997; Davi and
Milazzo, 1999) for the three-dimensional analysis of
anisotropic and unhomogeneous beams by which a
Saint Venant solution for general composite laminates
is recovered, accounting for the basic 3D nature of
the laminate elastic behavior. In the present paper a
comprehensive formulation is presented to analyze
composite laminates under axial, bending, torsion and
shear/bending loadings. The method is founded on
the integral equation theory, and the beam-type
reciprocity theorem is used to obtain an exact bounds
ary integral formulation. The anisotropic singular
fundamental solution, due to a concentrated load
uniformly distributed along a line, is explicitly
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Fig. 1. Laminate configuration.

determined and used to infer the displacement and
stress boundary integral representation. Once the in-
tegral equations for each ply of the laminate are writ-
ten and the interface continuity conditions are taken
into account, the laminate model is numerically solved
through the multidomain boundary element method.
It provides the solution in terms of displacements and
tractions along.the boundary of each ply within the
laminate. The elastic response charac-teristics, i.e.
displacements and stresses, at any point of the lami-
nate can then be computed by means of their appro-
priate integral representations. This approach makes
it possible, in the context of the hypothesis presented,
to analyze composite laminates with the widest
generality as regards the shape of the section and the
lay-up. The method presents itself as a powerful, ef-
fective and sound tool of analysis which is able to
provide an overview of the features of the stress fields
in composite laminates under various loadings with
the computational advantages of a boundary integral
method.

II. NOTATION AND GOVERNING EQUATIONS

Let us consider a beam-type composite laminate
referred to a coordinate system x|, x,, x3 with the x;=z
axis parallel to the generators of the beam lateral sur-
face as shown in Fig. 1. The laminate consists of N
anisotropic plies with general lay-up and perfectly
bonded along the interfaces. Each individual ply has
cross section €y with boundary T'¢y=T ¢y UT 0
T'y_; as shown in Fig. 1. The laminate is subjected
to a combined load characterized by the uniform
extension &, the bending curvatures k| and k>, the
twisting curvature ¢ and the shear/bending loading
parameters ¥, and 5. Assuming Saint Venant’s prin-
ciple to be satisfied, sufficiently far from the lami-
nate ends, the displacement field s can be expressed
as (Lekhnitskii, 1963)

S=u+zv +zX,k—%z2X2k+%z2X3y—%z3X4y (1)

where the rigid motion terms have been dropped and
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u={uy(x1, 1), up(xy, 2), s, X)) @)
v={vi(en, X2, valx, x2), va(xi, 1)} 3)
00 0 -x,
X, =[00 0 ux @)
1 x, x, O
(0100
10000
[ T
X3= 0 0‘xl (6)
LO 0,\‘2_
T
_[100
X““OIO} (7

Introducing the strain operators

T
dox, 0O dldx, O 0
D=| 0 ¥, Wx, 0 O ®)
0 0 0 0J/ox, Odldx,
1T
0 0 0 doz O
D=0 0 0 0 0% ©)
0 0 0 0 O

the strain field associated with the displacement sys-
tem in Eq. (1) is given by

8“
822
E={ €, y=D5+Ds=Du+1yv+X k+zDv=¢, +z¢,
€
€xn (10)
£33= V3 + X ok +2X Y= €5, + 233, (11)
where
1T
00010
1,=100001 (12)
00000
;
00000
, 00000
X, = 13
100000 (%)
00 0x,x,

X5=[1 x, x, 0] (14)

X5=[x, x,] (15)

In the previous formulas the subscripts u and v
refer to components of the elastic response which are
constant and linearly variable along the z-axis,
respectively. The stress field in each ply of the lami-
nate is expressed by using the generalized Hooke’s
law which governs ply’s material behavior. Account-
ing for the form of the strain field, the constitutive
equations are appropriately written as

On E||E12E|3E|4E|5§E16 "

Oxn E, Ezz E23 E24 E25§E26 22

{0'} — Oy, - E EnExEy, E35§E36 12
O33 0, ELEWEWE, E45§E46 3
o __E_!5.@.25535.545@5.5_55_5.6_. &5,

o'33 EEyEyEyEsEg 533

Again, let us denote

: £y
fffgl E\yEpEsEgEqsEge
T={03}=|E;sEyEssEysEssEsg

i £
033 E\gEx EsqEsg EssiEes 3!
' &
€33
. £
=[Q,§Q2]{--é----}=T“+zrv an
33

With the notation introduced above, the ply equi-
librium equations in Q. are given by
T Ql _
Do+ oz =0 (18)

Upon substituting for ¢ and 7 from Eqgs. (16)
and (17) and noting that

E,\Iy+E w,=Qv (19)
Eq. (18) gives
D'E \\ou+@'QT+Q Dy +D'E |\ X+ E Xk

+Q,X3y+2@'E \ v +D'E ,)X () =0 (20)
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Equation (20) is verified to make the following
expressions fulfilled simultaneously

D'E, v +DE X;y=0 1)
D'E |\ Du+(@'QT +Q Dy + D'E | X+ E Xk
+0,Xiy=0 (22)

Equations (21) and (22) constitute an uncoupled
system of partial differential equations which gov-
erns the ply elastic response with the appropriate
boundary conditions. According to the mathemati-
cal structure evidenced by the elastic response, the
boundary tractions on F<k> are given by

t=D,0=t,+zt, (23)

where the boundary traction operator D, is defined
as

o, 0a,00
D,={ 0y, 0 0 24)
000¢aq

In Eq. (24) a; and o, are the direction cosines of the
outer normal to the ply section boundary. The
mechanical boundary conditions for Eqgs. (21) and
(22) are therefore supplied in terms of assigned val-
ues of the traction functions ¢, and ¢, respectively,
whereas the kinematical boundary conditions are
given in terms of prescribed displacement functions
v and u.

ITII. INTEGRAL EQUATION
REPRESENTATION

For each individual ply within the laminate, let
us consider the elasticity problem governed by the
following equilibrium equation

D' o+f=0 (25)

where fi=fj(x|, x,) is a fictitious system of body forces
applied to the ply. Let u;=u;y(x,, x,) be the displace-
ment field characterizing an elastic solution of Eq.
(25) which, according to the notation introduced,
satisfies the relation

Q)TE”Duj+fj=0 (26)

Let again &; and ¢; be the strains and boundary
tractions of this solution. The external elementary
work done by the tractions ¢ and 7 through the dis-
placements u; is

uTTdQ)clz (27)

Ttdl" + aj [Q(A>

dle—(f

Analogously, the external elementary work done
by the body forces f; and tractions ¢; and 7; through
the displacements s is

_ T T 9 T :
dL, = (jr<k> L sdl" + fﬂ(@fj sdQ + BEJQQ() 7] sdQ)dz
(28)

Since from the reciprocal work theorem
dL,=dL,,, from Eqgs. (27) and (28) we have

To _ul TedQ = d uTr— 1T,
er(tjs ultﬂr+fg<k)fjsle f9<k>a?(ujr T}s)dQ
(29)

Equation (29) is the expression of Betti’s reci-
procity theorem inherent to beam-type structures.
Bearing in mind Eq. (1), the expression of the reci-
procity theorem provides the following set of equa-
tions which have to be fulfilled simultaneously

" T T _
JQ<k> F1X dQy+ er £7X dTy=0 (30)

T (T ' T
[f%) FTX,dQ + Jr ¢7X JdT - [J%> £1X 40

(k)

T — T =
+ Jr<k>th3d1" j% 77X dQly=0 3D

T — T T T ! =
frm @v ujt\,)dl“+fg<k>fj‘ de+L<k> 7/ X;0dQ=0

(32)

' T, T Ty _yT
Jl_<>(t w-uftdr+ | e fn@) (@Tv —uT7,)dQ

¥ f 7X kdQ=0 (33)
0

By using the divergence theorem one recognizes
that Eqs. (30) and (31) are identically satisfied.
Therefore the reciprocity theorem for the ply within
the laminate reduces to the two integral relations (32)
and (33) only. These integral relations constitute the
basis to directly derive the integral equation repre-
sentation employed in the present method. Let us
consider the body forces f; to be a concentrated load
uniformly distributed along a line parallel to the
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Fig. 2. Fundamental solution load configuration.

longitudinal axis z and applied in the j direction as
shown in Fig. 2. Indicating, with Py, the load appli-
cation point in the ply section, the mathematical rep-
resentation of f; is given by

Sfi=¢;0(P—Py) 34)

where & denotes the Dirac function and ¢; is the vec-
tor containing the components of the concentrated
load. In this case the solution of Eq. (26) represents
the singular fundamental solution of the problem.
Therefore, taking the constitutive relations into
account, through a suitable limit procedure and the
use of the divergence theorem, Eqs. (32) and (33)
become

T, T TnT —
cjv(P0)+fr<k>( Jt‘,)dl"+f<k)£leX3de—O

(35)

c/uPy +fr< >(t u-ujt,)dr j
oy T, N,
+ Jr<k> u; D0 vdl + jﬂ{/() &0 X kdQ

| wroxiua=
L(k>u,Q2X3de 0 (36)

Equations (35) and (36) can be regarded as the
form of the beam-type Somigliana identity for the ply
within the laminate. They provide a direct link be-
tween the displacement functions v and u at the field
point Py and the characteristics of the elastic response,
displacements and tractions on the boundary.
Therefore, Eqgs. (35) and (36) give a boundary inte-
gral representation of the displacement field of the
ply. Writing the boundary integral representation
given by Eqgs. (35) and (36) for three independent
fundamental solutions, related to three independent

ul(@'Q7+Q DydQ

load conditions, one obtains the matrix form of the
Somigliana identity for beam-type structures, which
gives the three displacement components at P,. One
has

cv(P,)= ‘ @’t,—t v}l - eE X WdQ (37)
0 Jr(k> v J.Q<k> 12X 3%

cuPy) =fr<k> @'t, -t u)dl + L u'(@'Ql +Q DrdQ

(k)

- j u'D,07vdr - f £07X kdQ
a0 o)

" J;}@ u'Q X 0 (38)

where
w=luyl! (39)
£, (40)
£=[Du)) @1

In the previous relations u,-ji and ¢; indicate the
i-th component of displacements and tractions of the
fundamental solution associated with the load applied
along the direction j. The matrix of the coefficients
¢" arising from the limit procedure which provide the
ply Somigliana identity is defined as (Davi, 1996)

¢’= ;1 =—J'r<k> oy (42)

Equations (37) and (38) are valid for each point
Py and thus, setting Py on the boundary, they provide
a system of integral equations whose solution with
appropriate boundary conditions gives the displace-
ments and tractions on the boundary of the ply. Also,
starting from the boundary integral representation
given by Eqgs. (37) and (38), one can deduce the
boundary integral representation for the stress field
in terms of the boundary displacements and tractions.
Applying the strain operator D to Egs. (37) and (38)
and taking into account the constitutive equations in
the form of Eq. (16) the integral equation representa-
tion for the stresses is given by

o,(Py)= frw (T, v-U\t T

| @B XL E X Py @3)
2
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o,(Py)= J (TTlu—UT,tu)dl"+fr U,,2,0 vdl
(k)

)

_ f U \(0'Q7+Q DpdQ -"
a4 Jag

* T T
4 f% £,07X kdQ+QTv(Py)

+[E, X (P)+E ,X,(Pok (44)

E1,E X 51Q
(k)

033, (Pp)= .[r<,\.> (T p-U g T + fQ
+Eg X3Py (45)

0-3311(P0) = -[F<A> (TTZM_ UTZtu)dr + J UTZDIIQ Ilvdr

")

- U@ QT +Q DrvdQ
k)

* ’ * T
o Ut X5uQ + f% £1,07X kdQ

+QIv(P)+ETX (P +EeX (Pl (46)

where we have put

U =ET e u” (47)
T, =El2c*~'t" (48)
£, =E| ¢ (49)

IV. FUNDAMENTAL SOLUTIONS

No general closed form is available for the fun-
damental solution of three-dimensional anisotropic
problems (Schclar, 1994) whereas in the field of two-
dimensional anisotropic linear elasticity problems the
integral equation kernels are directly available for
computations and thus BEM solutions have been pre-
sented for 2D elasticity problems (Banerjee and
Butterfield 1981; Schclar, 1994). For the present
approach the formulation of the integral equation rep-
resentation requires the knowledge of a singular so-
lution of Eq. (26) in the unbounded domain, i.e. the
fundamental solution of the problem due to a uniform
distribution of a concentrated load along a line. The
characteristics of the fundamental solutions for

U7\Q. X 7dQ

general anisotropic elasticity due to the load condi-
tion described above were studied by Kayupov and
Kuriyagawa (1996) and Mantic and Paris (Mamtic &
Paris, 1997). They provided an expression of the fun-
damental solution which is rather cumbersome to
implement and involves complex mathematics. For
generalized orthotropic media Davi (1996) has pro-
posed a suitable form of the fundamental solution for
the generalized plane strain problem defined by Eq.
(26). The anisotropic fundamental solutions of the
problem are expressly obtained by integrating Eq. (26)
on the basis of the Lekhnitskii stress potential theory
(1963) and in the following they are explicitly given
for a suitable use in computations. The anisotropic
fundamental solutions depend on the roots =&+
of the equation

apb+bP+c i +d+e P +fu+g=0 (50)

where
a=p 1,344—ﬁ2|4 Gh
b==2(B11Bsa+P13Bsa—PraPrs—B14Ps3) (52)
c=B11Bss+2B12Baa+4B13Bsa—2B 142421453 Bis

~2BisBax+BssBaa—Bis (53)
d==2(2B12PBsa+P13Bss=B1aB2s—BisBaa—PrsPss+Ba3Pas

=B24Paz+P3Bsa=Pa3Ps3) (54)
e=212B55=2B15Pas+BaoPast4BrsBsa—P2a—2 a3

=225 Bas+BraPss—h53 (55)
f==2(B22Psa+B23Bss—P2sBra—BasPs3) (56)
8=PaPss=B3s (57)
and

Si6Sj6

R0 S e (58)

The quantities S; are the material compliances.
The fundamental displacement field associated with
a load directed along the j direction is

3 g
u P, Py)= 2k§| FRQ wInR, 3@, w Jtan ')—(f

(59)

where
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Bt + B2 = Bistty + Branty = BisTi
B oty + Booltty = Boz + Baamli — Basti/iy
Bisty + Basltty = Bss + Bast — Bssti/ty

Wik
Wi={ Wy =
Wk

(60)

— Bratt = Bus + Balii + Bog + Bt = Bas
Baattk = 2Boskty + Bss

Xi=[x1(P)=x1(Po) 1+ & x2(P)=x2(Po)] (62)

Yi=Cilxa(P)=x2(Po)] (63)

R, =\Xi+Y; (64)

In the previous expressions P and Py denote the
observed and the source point respectively and the
symbols I and 3 indicate the real and i lmagmary part
respectively. The coefficients Q= Q + zQ are de-
termined in such a way that the fundamental dlsplace-
ment field matches the congruence and equilibrium
conditions. This leads to a system of algebraic equa-
tions from which the coefficients Q,; are calculated

AQ=F (65)
where

Q=10} 07 07 0} 0; 05V (66)

F={0 0 0 c); ¢y cy}” (67)

The coefficients of the system are (i, k=1, 2, 3)

Ap=I(wir) (68)
Airs3=T(wir) (69)
Ay =M F(UD+My () —N  F(p) Ny S(ui) - (70)

Agrr3y=—M 1 S+ Mo TUP+N 1 S (i) =N ()

(71
Asi==M ; R )M S () +N i (72)
A3 =M 1 S (W) =Moo () +Nog (73)

A =M TNt )+M o S (M) =N 1 TN =N S (i)
(74)
Ages3=—M 1 S(Mibi) + Mo (Nt )+N 1 3 (1)

=Ny () (75)

where

Sgn(g“uu; G+ DSgn(C) + S &2+ E2- 1)
‘SL +2§A(§A +D+ CA _2Cl\ +1

(76)

M, =-2r E:Sgn(CR| & |- - i1 o

fk +2§,\(C,L + D+ CA 2ij+ ]

2nék8gn(§k>[(§2 + e+ DSgn(&) - 28]

N =- 78
t E 2B+ 1)+ (=200 41 7%
MNET+ - G|+ E-Ci+1
Ny = ”58'1(%)[(‘5/\; iA )| C/\J+ §A2 G+l (79)
S + 285G+ D+ G —28, + 1
The fundamental solution tractions are given by
t(P. Py)= 2}] ([FHQ m)cr, - F(Q )ao]R—
- k
Y,
+19Q,ma - 3 ok 3 (80)
where
m = {uf, iy, e}’ (81)

The three independent fundamental solutions
employed for the outlining of the formulation are
obtained by setting in Eq. (67)

C,'J'=5,'j (82)

where J;; is the Kronecker delta. The kernels needed
for the calculation of the internal stress field can be
found by using Eqs. (47), (48) and (49) respectively.
Their expressions are not given here for the sake of
conciseness. In the common case of plies character-
ized by a generalized orthotropic law the expressions
of the fundamental solutions simplify and reduce to
the form given in References (Davi, 1996; Davi and
Milazzo, 1997a, b; Davi, 1997; Davi and Milazzo,
1999).

V. BOUNDARY ELEMENT MODEL

Following the classical approach for solving
integral equation models the solution of the formula-
tion proposed is obtained by using the multidomain
boundary element method (Banerjee and Butterfield,
1981). The numerical solution of the system given
by the integral Eqs. (37) and (38) is obtained by
discretizing the boundary 1"<k> of each ply into n
boundary elements and the domain €,y into m inter-
nal cells with domain €, (see Fig. 3). On each bound-
ary element I'; the displacement function v and the
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Boundary node

—

.
1

N
Boundary element

Fig. 3. Discretization scheme.

Internal node  Internal cell

tractions ¢, are expressed by using their nodal values
89 and p¥ through suitable shape functions %(s)

v =560 (83)
t,=mY (84)

where the superscript (j) denotes quantities referred
to the j-th element. With these assumptions the
discretized version of Eq. (37) for any point P; is
VPt ﬁ A0+ G p0=8B, (5
Jj= r=

where the influence matrices and the right-hand-side
are defined by

ﬁ,,:f t"(P, P)FP)T (86)

Tj

G,.j=-f w’(P, P )HPXIT (87)
Fj

B,.,=—L £°(P, P)E X ;ydQ (88)

r

Analogously, the displacement functions u and
the tractions ¢, on the boundary element T'; are given
in terms of their boundary nodal values 6(” and p?
and one has

u =569 (89)
t,=p? (90)

Moreover let us assume that on the r-th cell the
displacement function v can be interpolated as

v=6d? o1

where d is the vector collecting the cell nodal

values of v and G(s, ;) is a suitable matrix of shape

functions. The discretized version of Eq. (38) is
culP)+ ﬁ .69+ i Gp?

ij%u

= i 760+ 2 W,d"+ i Y, (92)

i<y

where

Jj=- [r u’(P, P)D,0 | HP)YT (93)
v

W, =| w'e Pio'e]+o ngrxe ©4)

w

Y, :JQ u'(P, P)Q, X ydQ - ]Q (P, P)Q X kdQ

r AL

(95)

The discretized model governing the behavior
of the k-th ply within the laminate is obtained by col-
locating Eqgs. (85) and (92) at the boundary nodes and
taking into account the relation between the cell nodal
values of v and the boundary nodal values of v and ¢,,
i.e., Eq. (85). By so doing the set of linear equations
is obtained in the form

H 30,00 + G P ) = B (1) (96)

H 0800y + G (6 iy = (10uiiy + Wi iy + Yy 97

dv(k) =ﬁ(k)6v<k> +G (k>pv<k> +B <L) (98)

where 6 and §, (i) contain all the boundary nodal
values of> the dlsp]acements v and u,p .y and
P, contain all the nodal values of the boundary trac-
tions ¢, and t, and d, is the vector of the nodal dis-
placements v. Once again the notation <k) denotes
quantities referred to the k-th ply. Now the boundary
element model for the whole laminate is deduced
starting from the model obtained for the individual
ply. The resolving system for the laminate problem
is obtained by writing the integral equation model for
all of the N plies of the laminate and imposing the
interface continuity conditions and the external
boundary conditions. The solution strategy of the
discretized model is based on the uncoupling of the
equations constituting the resolving system. Indeed,
upon substituting Eq. (98) into Eq. (96), one obtains
the laminate resolving system in the following form

H<k>6v(k) + G<k>pv(k) =B<k> (k=1,2,...,N) 99)

H 8,01y + G (6P (1

= Uyt Wiy H DSt Wiy G p i+ W ey Bt Y gy

(k=1,2, ..., N) (100)

Let us adopt a partition in Eqgs. (99) and (100)
in such a way that the generic vector Y iy can be writ-
ten as
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Yy =i i vih) (101)
where the vectors y A-' and y [ collect the compo-
nents of y assocnated with tile nodes be]ongmcI to
the interfaces I';_; and I'; and the vector y e con-
tains the components of y , , associated with the nodes
lying on the external boundary ]"L,<k> (see Fig. | for
the definition of ply interfaces and external
boundary). As a consequence of this partition the in-
terface continuity conditions in the discretized model
are given by
6<> 5< (k=1, 2, ..., N-1) (102)

k+1)

(k=1,2, ..., N-1) (103)

F = r = _
Plo="P oy L2 N=D) o (104)

“m -ph i) (k=1,2, ..., N-1) (105)
and the external boundary conditions are expressed
by '

)4 r"(") = 0

s (k=1,2, ..., N) (106)

p (2% 0 (k=1,2, ..., N) (107)

The system of Egs. (99) and (100), together with
the interface continuity conditions, Egs. (102)-(105),
and external boundary conditions, Eqs. (106) and
(107), evidences the boundary nature of the model
due to the involvement of boundary unknowns only.
Moreover the mathematical structure of the resolv-
ing system ailows one to uncouple the two Egs. (99)
and (100) with their relative interface continuity and
boundary conditions. Therefore the model solution
is obtained by solving first for v and p, and then, upon
substituting in Eq. (100), by solving for u and p,,.
Once the boundary solution is known in terms of dis-
placement functions v and u and tractions p, and p,
the stress field is calculated in a pointwise fashion
by introducing the discretization in Eqs.(43), (44),
(45), and (46).

VI. NUMERICAL REMARKS AND
APPLICATIONS

The boundary integral equation approach devel-
oped in this paper was implemented in the computer
code “DM-COMP” to test the soundness of the for-
mulation and to perform laminate analyses. In the
computations straight boundary elements with linear
interpolation of the unknown data were employed.
Four-node quadrilateral isoparametric elements
were used to discretize the domain. The influence
coefficients were computed through the gaussian

Table 1. Ply properties.

Properties Graphite/Epoxy IM6/3501-6
(material #1)  (material #2)
ETT=ESS [GPa] 14.5 9.6
GLT=GLS=GTS [GPa] 5.9 6.2
VLT=VLs=VTS 0.21 0.329
Ply thickness [mm)] 12.5 0.125
Ply width [mm] 200 17.3

quadrature formulas and an adaptive integration
scheme was used to account for the kernel singular
behavior and set correctly the order of the integra-
tion formula employed (Davi, 1989). The code
handled laminates with general lay-up and section
geometry exploiting possible symmetries of the sys-
tem with respect to the coordinate axes. Moreover it
allowed the calculation of displacements and stresses
at internal points through the discretized form of their
integral representations. Also, in this case, gaussian
quadrature formulas were employed in the calcula-
tion of the relative influence coefficients. Some ap-
plications are presented to demonstrate the accuracy,
the effectiveness and the robustness of the method.
The results presented in this paper focus on the
interlaminar stresses whose realistic prediction is a
primary concern in the design and analysis of com-
posite la-minates. Again, many results relative to
interlaminar stress distributions are given in the lit-
erature and can be used, for comparison, to point out
the features and the advantages of the present method
with respect to other approaches. The first analysis
was performed on a symmetric laminate with the [45/
-45/0/90]s lay up subjected to axial extension. Due
to the structural symmetries only a quarter of the lami-
nate was considered in the computations. Each lamina
has the material properties given in the first column
(material # 1) of Table | where the subscripts L, T
and S refer to the along fiber, thickness and width
directions. Each individual ply was discretized by
using 44 boundary elements. In the case of axial,
bending and twisting loading the right-hand-side of
Eq. (85) can be calculated after the transformation of
the domain integrals into boundary integrals accord-
ing to the particular solution tecnique discussed in
References (Davi, 1996; Davi and Milazzo, 1997,
1999) and not presented here for the sake of
conciseness. The results of this analysis are given in
Fig. 4 and Fig. 5 where a comparison with the finite
element results of Wang and Crossmann (1977) is
shown. The good agreement between the present so-
lution and the finite element solution 1s highlighted.
Moreover, we should note the ability of the present
solution to couple the accurate description of the high
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Fig. 4. Interlaminar stress 077 for the [45/-45/0/90]s laminate un-
der axial extension.
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Fig. 5. Interlaminar stress 03 for the [45/-45/0/90]g laminate un-
der axial extension.

stress gradient of the interlaminar stresses in the free
edge region and the computational advantages linked
to the coarse boundary mesh needed for the solution.
More complex laminate configurations are examined
for bending and twisting loadings. For both these
loading condition a symmetric [+30/-30/+30/-30/90]
s laminate and an unsymmetric[(+30),/(-30),/(+30),/
(-30),/(90),] laminate are considered. No symmetry
consideration was taken into account for this analy-
sis and a 44-boundary element discretization was
used. Once again, the particular solution technique

20
Loy, [MPa]

15 = Laminate [+30°/-30°/+30°/-30°/90°]¢
I puy

10 J2 )

63 BEM G ¢,, Chan and Ochoa
6, BEM ¥V 5, Chanand Ochoa
o, BEM O ¢, Chan and Ochoa

X 'h

[N U ENPUR NP RN B
2 < 0 t 2 3 4 5

Fig. 6. Through-thickness interlaminar stress distributions at a dis-
tance i from the free edge for the {+30/-30/+30/-30/90]s
laminate under bending.

was used to calculate the system right-hand-side
through boundary integral computations. The mate-
rial properties are given in the second column of Table
1 (material # 2). The interlaminar stress patterns
along the laminate thickness at a distance from the
free edge equal to the ply thickness are shown in Figs.
6,7, 8 and 9. These interlaminar stresses were cal-
culated starting from the boundary solution by means
of the stress integral representation given by Eqs. (43)
and (44). Again, the present results are compared
with those obtained by using the finite element
method (Chan and Ochoa, 1987; 1990) and the com-
parison demonstrates the effectiveness and the accu-
racy of the present method. We also evidence the
soundness of the integral equation approach to deal
with the analysis of composite laminates having com-
plex lay-ups and various loading conditions. The re-
sults presented for the shear/bending are relative to
the two classical [0/90]g and [90/0]¢ cross-ply con-
figurations under a loading in the x,x3 plane. Fig. 10
and Fig. 11 show the interlaminar stress distributions
along the semi-chord (x;>0) at the top interface of
the laminate. Due to the absence of the in-plane shear
stress 03|, the interlaminar stresses 0,; and 033 ex-
hibit a complete symmetry about the vertical middle
plane x,x3, whereas the interlaminar stress 0, has a
complete antisymmetry. These results were obtained
without exploiting any structural symmetry and they
are compared with the solution of a boundary inte-
gral model for cross-ply laminates (Davi, 1997). The
comparison highlights a good agreement between the
two solutions and this confirms the features of the
present method. This is also evidenced by the steep
stress gradient near the free edge that suggests a sin-
gularity in the stress field at this point where such a
behavior is expected. Figs. 12 and 13 show the
through-thickness variations of the interlaminar stress
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Fig. 7. Through-thickness interlaminar stress distributions at a dis-
tance h from the free edge for the [(+30)2/(-30)2/(+30),/
(-30),/(90),] laminate under bending.

10
- 6, [MPa]
50 Laminate [+30°/-30°/+-30°/-30°/90°]
G- 2-Y-F -
0"‘"Vv-:z;v«v‘V>v—»v—v—'v’v v-v Vv 4
5
. O ©6y; Chan and Ochoa
.10 V' 6, Chan and Ochoa
- —- 6,, BEM
15 o5, BEM
-20
25 -
r ’ . X,/h
so Lt ot v e B
-5 -4 -3 -2 -1 0 1 2 3 4 5

Fig. 8. Through-thickness interlaminar stress distributions at a dis-
tance h from the free edge for the [+30/-30/+30/-30/90]
laminate under torsion.

03, and of the in-plane stress 033 for the two cross-
ply laminates considered. The through-thickness
stress distributions are plotted for two different val-
ues of the abscissa x;. The stress patterns are practi-
cally coincident, as expected, due to the nature of the
cross-ply laminate elastic response. In conclusion,
for all of the configurations examined, the agreement
of the present results with those available in the lit-
erature is excellent and the soundness, the reliability
and the robustness of the proposed boundary integral
equation method are therefore proved.

VII. CONCLUSIONS

An alternative and comprehensive analysis tool
for composite laminates is presented. It is based on
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10 = Laminate [(+30°),/(-30°),/(+30°),/(-30°),/(90°),]
n A_,—v"v"v'y"v"v“V”@ ———————

0 g9 v-g-v-v- %7 vV Vg

5 B O gy Chanand Ochoa

-10 I ¥V 65 Chanand Ochoa

.15 L — o,; BEM

20 L 6, BEM

-25 -

30

35

40 - X, /h

45 e by ey b by by ey 7
504030 2 - 0 1 2 3 4 5

Fig. 9. Through-thickness interlaminar stress distributions at a dis-
tance /i from the free edge for the [(+30)2/(-30),/(+30)o/
(-30),/(90),] laminate under tonsion.
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Fig. 10. Interlaminar stress distribution for the [90/0]s cross-ply
laminate under shear/bending loading.

an original boundary integral representation from
which the boundary integral equations governing the
problem are deduced. The fundamental solutions
employed are given in closed form and the laminate
model is obtained by coupling the integral equations
for each ply and the interface continuity conditions.
The model is numerically solved through the
multidomain boundary element method. The analy-
ses performed and the results obtained show the
features of the approach, which is very well suited
for composite laminate structural analysis where the
correct and accurate prediction of the interlaminar
stresses is crucial in the assessment of laminate
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Fig. 12. Through-thickness o037 and o33 distribution for the
[90/0]s cross-ply laminate under shear/bending loading
(z=0).

failure. In fact, the integral equation method proposed
allows a pointwise description of the elastic response
and thus the boundary integral solution permits one
to calculate, reliably and accurately, the steep stress
gradients arising near the laminate free edges. Again,
the boundary integral approach handles, naturally,
interface problems due to its characteristic of involv-
ing boundary unknowns only. In the case of com-
posite laminate analysis this is very important because
one can implement different effective modelizations

2

x,/h

Laminate [0/90]

b x=0

| - - x=09
0 —
1+
2 L | 1 1 ' |

4 3 2 - 0 1 2 3 4

Fig. 13. Through-thickness 032 and o33 distribution for the [0/
90]g cross-ply laminate under shear/bending loading

(z=0).

of the interface behavior without significant overload
in the formulation. Finally, the boundary nature of
the formulation provides a reduction in the problem
dimensionality and therefore the present method evi-
dences meaningful computational advantages with
respect to the more common field methods. In
conclusion, the boundary integral equation method
here proposed gives accurate solutions with reduced
computational effort. It therefore represents a valid
and useful approach to composite laminate analysis
and design.

NOMENCLATURE

strain operators
D, boundary traction operator

E,;, O; elasticity matrices

E; elasticity stiffness coefficients

S fundamental solution body forces

F G shape function matrix

m, n number of internal cells and boundary
elements

N number of laminate plies

P nodal tractions

s vector of displacements

t boundary tractions

u,v vector of unknown displacement func-
tions

uj, t; fundamental solution displacements and
tractions

Xy, X3, Xx3=z coordinate system for the laminate
o, 0 boundary normal direction cosines
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Bij ply modified compliances

Y shear/bending loading parameter

I“<k> ply section boundary

o, d nodal displacements

£ vector of strains

&;j strain components

&, 0, Tj fundamental solution strain and stress
vectors

Quy ply section domain

o,T stress vectors

Ojj stress components

Subscripts and Superscripts

u along laminate axis constant compo-
nents

v along laminate axis linearly varying
components

(k) k-th ply quantities

U), (0 J-th boundary element and r-th cell pa-
rameters
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