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ABSTRACT

New complex variable, singular and hypersingular, boundary in-
tegral equations (CV-BIE) are derived for doubly periodic plane elas-
ticity problems. They refer to systems of blocks (grains), inclusions,
holes and cracks. Their forms, convenient when adjusting conventional
programs for non-periodic systems to periodic problems, are suggested.
Simple formulae are presented to calculate effective compliances in
complex variables.

Numerical implementation of the derived complex variable
hypersingular (CVH) BIE in the mentioned forms is carried out by ap-
propriately adjusting a program of CVH-BEM, previously developed
for non-periodic problems. It is used to check accuracy and to obtain
new results for doubly periodic systems of cracks. Stress intensity
factors (SIFs) and effective compliances are calculated for straight
cracks in square and triangular lattices to compare them with published
results. They show agreement within the accuracy reached by other
authors. New data on SIFs and effective compliances for doubly peri-
odic systems of angular and curvilinear, strongly interacting cracks,
itlustrate abilities of the method.

I. INTRODUCTION

Doubly periodic elasticity problems (Fig. 1),
being of interest for material science, fracture and
rock mechanics, have been already tackled by using
complex variables (Filshtinski, 1974; Grigoliuk and
Filshtinski, 1970; Ioakimidis and Theocaris, 1978;
Koiter, 1960; Linkov, 1976; Panasiuk et al., 1976).
Koiter (Koiter, 1960) was the first to derive complex
variable (CV) boundary integral equations (BIE) for
such problems. He started from his theorems (Koiter,
1959) and followed the way suggested by
Muskhelishvili (1934; 1975) for non-periodic

*Correspondence addressee

problems. Koiter’s theorems and CV-BIE referred
to closed contours; they were of Friedholm’s type.
Equations for open arcs were first obtained for a par-
ticular case of straight cracks along a period
(Filshtinski, 1974). The author used integral repre-
sentation of holomorphic functions by Kolosov-
Muskhelishvili (K-M). This approach was modified
to include straight cracks not parallel to periods in
(Panasiuk et al., 1976). CV-BIE for a general case
of arbitrary doubly periodic systems of cracks were
derived and studied in (Linkov, 1976). The author
proved a holomorphicity theorem for doubly periodic
open arcs and followed the way previously used by
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Fig. 1. Doubly periodic, with the periods 2w, 2a)2, system of
cracks and holes.

him to derive general CV-BIE for non-periodic arbi-
trary cracks (Linkov, 1974).

The complex Eqs. of the papers (Grigoliuk and
Filshtinski, 1970; Ioakimidis and Theocaris, 1978;
Koiter, 1960; Linkov, 1976; Panasiuk ef al., 1976)
were singular. In essence, they contained either de-
rivative of displacement discontinuity and tractions
(Filshtinski, 1974; loakimidis and Theocaris, 1978;
Panasiuk et al., 1976) or displacement discontinuity
itself and the resultant force (Linkov, 1976). For nu-
merical calculations the authors of (Filshtinski, 1974;
Panasiuk et al., 1976) used mechanical quadrature for-
mulae based on Chebyshev’s polynomials.
Meanwhile, recently it has been stated (Linkov and
Mogilevskaya, 1991; Linkov et al., 1994; Linkov and
Mogilevskaya, 1994; 1998; Mogilevskaya, 1996) that
complex variables hypersingular (CVH) equations
and complex variable BEM suggest significant
virtues. Consequently it seems reasonable to extend
these techniques to doubly periodic problems. We
have made the first steps in this direction in our brief
papers (Koshelev and Linkov, 1998; 1999). This pa-
per aims to present a comprehensive study.

11. CV-BIE FOR DOUBLY PERIODIC
SYSTEMS OF CRACKS AND/OR HOLES

1. Prerequisites

Consider a doubly periodic system of cracks and/
or holes with the contour L in the main cell (Fig. 1).
The contour L has Helder’s continuous derivative. It
consists of p open arcs (cracks) L; (j=1, ..., p) and m
closed contours L; (j=p+1, ..., p+m). Contours in other
cells are congruent to the contour L. Boundary con-
ditions there doubly periodically reproduce those at
L. The origin z=0 is located in the main cell outside
the holes, if they are present; it does not belong to L.
The periods 2w, 2w, are not collinear, that is, Im
(@, ,)#0. For certainty, we assume that the direc-
tion of the period 2w, is obtained from the direction
2w, by rotating the latter counter-clockwise with the

angle less than . In this case, Im(@,@;)=5/4, where
S is the area of a cell. Points are given by complex
coordinates z=x+iy; i is the imaginary unit.

We assume that each individual contour L; is
loaded by a self-balanced load. This implies

JAO’d’t:O g=1, ...

Lj

, p+m) (1)

where Ao=0"-0"; for certainty the sign “plus”
(“minus”) marks the limit from the left (right) of the
traveling path; for holes, we assume that their con-
tours are traveled clockwise; consequently, for them
o*=0, 0=0; 0(z)=0,+i0, is the traction vector in the
local coordinates (n,t), with the normal n directed to
the right of the traveling path and the tangent ¢ di-
rected along the path.

In a case when the contour consists only of
cracks, the CV-BIE and conditions for cyclic con-
stants were derived and studied in (Linkov, 1976),
where it was also noted that the results were easily
extended to the case of holes. For the problem con-
sidered we have

KAQ+GAf~(12ReCot T CB)=%(}‘*+]‘) 2
o, - a,a)zzﬂ. Apdt 3)
L
2ilm(e, @, - o, T, )
=1 &avs L[ apdre 0 -0 @
L L

where

KA«p——j (2801t - 1) - Dl
— Agdk ,\(7.0) - A @ (T,0)dk 1) (5)

GAf= ﬁ! {—Aflg(t - 1) - s(v)ld T + Afdk ., (T,t)}  (6)

dkdl(Tst)E[é'(T—’)—G(T)]df—[g(f—t)—g(_f)]dT (7

dk (T =dl(T -5t - ) - 76D+ Q(T-Dd T (8)
{(z) is the dzeta-function by Weierstrasse; Q(z) is the
function by Natanzon (1935); these functions are de-

fined by the series

Q=3+ L i+,

Q(z)=2’[(7—_w—2—12~2z—?] )
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w=j2@,+j,-2@»; herein and further a sum marked
with a prime is taken over all integer j; and j;
(positive, negative and zero) but j,=j,=0; the overbar
denotes complex conjugation; the function {(z) has
cyclic constants 27 along the periods 2ay; the func-
tion Q(z) has constants 2A; (k=1, 2); these constants
are given by formulae 21m,=2¢(ay), 24,=2 @, ¢'(wy)
+20(wy); Ap=¢'—¢ is the discontinuity of the K-M
function @(z); Af=f *—f~ is the discontinuity of the
function f(z) which is proportional with the multiplier
i to the resultant force (for brevity we will term f(z)
itself the resultant force); for holes we have @'=0,

¢ =0, f'=f, =0,

i) = [ G4t +CAO) (=1, ...y prm)

a;

a; is start point at the contour Lj; for holes these points
are fixed arbitrarily; C*(1)=C%; is a piece-wise con-
stant function; for cracks we have Cj*=Cj'=Cj (=1,
..., p); for holes C;*=C;, C;=0; the constant C; pre-
sents the value of the resultant force f(z) at start point
a; =1, ..., p+m);

Ca=;[27(a|772—0‘2'71)’ Cp=;2;(ﬁmz—ﬁzm) (10)

20y is the cyclic constant of the function ¢(z) along
the period 2awy;

2B, =~ %Ak(alab - 0,0) +2(7, — 0 ) + 2@, Cy

k=1, 2) (11)

2y is the cyclic constant of the resultant force f(z)
along the period 2w it is expressed through three
prescribed average sStresses sy, sy, 8y in the plane by
formulae (Koiter, 1960)

2 Yk=(sx.\‘+syy) 60/\.+(Sy'\,—s_m-—2 is.\‘y) O, (12)

given the total momentum applied to L is zero, that is
Muskhelishvili (1975)

Re J AfdT=0 (13)
L

We will assume that (13) holds.
Re(y, @~ 1, ®@,)=0.

For Helder continuous tractions ¢* satisfying
(1), (13), a solution of the singular BIE (2) under con-
ditions (3), (4) exists (Linkov, 1976) in the
Muskhelishvili class h,, (Maskhelishvili, 1953). Af-
ter the system (2)-(4) is solved, we can find the K-M
functions @(z), y(z) by using their integral represen-
tations (Koiter, 1960; Linkov, 1976):

Then (4) implies

o) = %mj Aplg(t-2)-g(Dd T~ %(061772 -0 R
L
(14)

Y@) = 5 {(A?— A -1 AP)g(T-2) - §(D)]

+AwQ(r—z>}dr—-§;(ﬁ,n2—/32n.)z (15)
Substitution of (14), (15) into K-M formulae

2uu() = 9@) - 29'@) ~ Y&), f&)= @) +2¢9'@)+ Y2)
(16)

gives displacements u(z)=u,+iu, and the resultant
f(z) force in a plane; stresses are found by using the
formula

o(z)=0,+ic=dfldz (17

where dz=dt is taken along the area at which a trac-
tion is found; as usual the normal n is directed to the
left of dr. In (16) p is the shear modulus; y is the
Muskhelishvili’s parameter: y=3—-4v for plane strain;
x=(3=v)/(1+v) for plane stress; v is the Poisson’s ratio.

2. CV-BIE with Satisfied Conditions for Cyclic
Constants

We may use (3), (4) to express cyclic constants
20y(k=1, 2) through the values in the r.h.s. of (3), (4).
Insertiﬁg the result into (10) and using (12), we may
write the constants C, and Cy entering (2) as

_ 2u 1
Ca= oy ha=g0u*sy) (18)
Co= A L 5 42is ) (19)
B x +1 B 2wy XX Sy
where
_xtl 1 ﬂ[ 1 f
o= 2,u{ 5 O, Apdt [Im Ap- Af)dr
L
o,
+i @, [ Apdtl} 20)
L
Aﬁ="2+1 ln'[ImIA(pdT JA?dr]
L
1 0’1

2mi wl

-—)fmpdr @, IIm[f(A(p——Af)dr

IR f Apd ]} @
| 1 | i
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These formulae are slightly simplified if one takes
the x-axis along the period 2, (in this case
o=, =|w). '

‘ Equation (2) with the constants C,, Cp defined
by (18), (19) does not need additional conditions (3),
(4). The latter are satisfied; as shown below they
serve to find effective properties of a plane with
cracks and holes. In all the following, we will pre-
sume that (2) contains Cy, Cp defined as (18)-(21).

3. Singular CV-BIE with Respect to Displacement
Discontinuities

From (16) it follows that the K-M function ¢(z)
may be expressed in terms of displacements u(z)
=u,+iu, and the resultant force f(z):

02 =[u(2)+A/ )2 4th (22)

where A=1/(y+1).
At the contour L we have from (22)

Ap=[Au+AfI(21)]21h (23)

where Au=u*—u" is the displacement discontinuity; for
holes we assume u*=u, u =0.

Inserting (23) into (2), (18), (19) and dividing
by 2uh, we obtain a singular equation with physically
significant values Au and Af:

2UhK Au +hK Af + G Af — 2+ 2ReA o +1 A g 2uh +/7(0)

=20+ (24)

where f°(z) is the resultant force corresponding to
average stresses in a plane without cracks and holes:

FO=d6 5046, —su—is)T] (29

(note that, as it could be expected, for Au=0, Af=0,
(24) yields f*(0)=f(£)=f~(¢)); the operators K, and G,
are defined by (5)-(8); the constants Ay, Ag are given
by (20), (21) with Ag defined as (23).

Differentiation of (24) over t accompanied with
integration by parts using (17) yields

2UhS Au’ + hS AG+R G~ (QReA o + S ik + 67(0)

0
= %(o"’ +0) (26)

where Au'=dAuldr, 6”(z) is traction generated by av-
erage stresses in a plane without cracks and holes:

0"@= 116, 5,0+ G, -5 = 2s ) @D

the operators S, and R, are defined as

S,Au’ = 2_71r7J- 2Aw g(T.— T + Au'—a%k,,l(r, ndt
]
+ ATt’%kdz(r, Nd T) (28)
RAC= ﬁ[ - Aog(r - )T - Adgkd,(r, ndtl (29
L
%kd](r, t)z—g(r—t)+aa—;g(r—z) 30)
I otz 0= L@ =06 - 0l- 40 -1 (31

A solution of (26) should satisfy conditions

fAu'dT:O (32)
Lj

which express that displacements are single-valued
functions of coordinates.

Differentiation accompanied with integration by
parts is also applied to (14), (15) resulting in K-M
functions ®(z)=¢'(z) and WY(z)=y'(z). We shall not
write down its quite obvious result, as well as the re-
sult of integration by parts in integrals entering (20),

21n.
4. Hypersingular CV-BIE

A complex variable, hypersingular boundary, in-
tegral Eq. (CVH-BIE) with respect to Au is obtained
by either integration by parts terms containing Au' in
(26) or differentiation of (24) accompanied with in-
tegration by parts only terms containing Af. (These
transformations involving hypersingular integrals are
substantiated by regularization formulae (see e.g.
Linkov and Mogilevskaya (1994; 1998)). In both
ways we arrive at the CVH-BIE

2uhH,Au +hS,AG +RAG - (QReA , + %;—Xﬁpyh +070)

= %(o* +0) (33)
where
H Au= Lf 2Aul - (T 0ldT - AL dk (7, 1)
! 2ri ) or AR
— AL dk (1, 1)) (34)

ot

operators S, and R, are given by (28)-(31); formulae
for dkg (7, 1), dky(T, t) are given by (7), (8).
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The CVH-BIE (33) is the most convenient in
applications because it contains displacement
discontinuities and traction, the very values which
characterize contact interaction at crack surfaces.
Besides, in contrast with singular Egs. (2), (24) and
(26), it neither contains unknown constants C; as (2),
(24), nor needs to satisfy additional conditions (32)
as (26).

S. Average Strains and Effective Compliances
From (22) we have a relation between cyclic

constants 2ay of the function ¢(z), cyclic constants
2y, of f(z) and cyclic constants 2p; of displacements:

204=[2p+27/(21)12uh (35)
Consider uniform strains g,,, €, & in a plane with-
out cracks and holes. A corresponding displacement
field with zero rotation is

uo(2)=3 [(Ect8,)2+H(En—+2iE0) T |
This field, being linear, is quasiperiodic for arbitrary

periods. For periods 2w,, 2w, its cyclic constants
are

1
2P()k=u()(«7-+2 wk)_uo(z)=§ [(8.\',\'_8){\') Wy
+( En— Epyt 2 is.\‘_v) Koy ]
They will be the same as those in a plane with cracks
and holes if 2py=2p,. Hence, the cyclic constants
2p; are expressed through average strains &,,, &, £,
as

2p=5l(en-e) Ot et 2ie) T, ] (36)

Substitution of (12) and (36) in (35) and the lat-
ter in (3), (4), after some algebra yields

1 .Y A PN Aul PR
£y = 2S[mf{Au(dr dr) 2u(d1+ dT) +¢

2
L
_ L - Mur_ Xm0 4 =
£, = 2Slmf {AudT+d7)+ 2#(clr > dT)} + ey
L
'._‘,—-—Ref (Au+ —f)d‘r+€ (37)

where £, €7, €, are strains in a plane without cracks
and holes under umform stresses Sy, §),, Sy, they are

given by Hooke’s law:

o — 1 —-(3-
8.\',\' - Sﬂ [(X + ])s.\'.\' (3 X)Sy.v] ?

: [(Z + ])S\\ (3 - Z)S.\:\‘] ’

8: =ﬁs-‘i"

The first terms in the r.h.s. of (37) represent
additional average strains due to presence of cracks
and holes. They provide additional compliances to
those defined by Hooke’s law. The formulae (37)
serve to find effective compliances after solving any
of Eqgs. (24), (26), (33). To find all the compliances
we need to have solutions under three sets of average
stresses

1) s=1, ~$‘_)=_‘y=0, A\‘_\.yz();
2) 5.,=0, S'\,_\,:], S-\i\’=0;

3) 5=0, 5,,=0, s,=1.
Denote with the superscript “1” average strains for
the first set, with the superscript “2” for the second,
and “3” for the third. "Then the matrix B with the
components

_ I — 2 — 3
b 11=Exx b 12=Ex b 13=Exx
1 — 2 — 3
b2 1 :€.\’y b22_£.vl\r' b23_€.\’.."
b3 =2¢,,' b3y=2¢,,} by3=2¢,,°
31=4Cyy 32=2&; y 33— 8.\'_\'

is the matrix of effective compliances. From (37) it
follows that B is the sum of the matrix By, correspond-
ing to Hooke’s law, and the matrix B, of additional
compliances generated by additional average strains.
In fact, it is sufficient to find the latter.

II1. CV-BIE FOR DOUBLY PERIODIC
SYSTEMS OF BLOCKS AND/OR
INCLUSIONS

1. CV-BIE for Blocks and Inclusions in a Matrix

Consider a doubly periodic system of n blocks
(grains) in a matrix. In particular cases, the problem
refers to inclusions (individual blocks surrounded by
the matrix). We will show below that the results are
also true for blocks, inclusions and matrices contain-
ing internal cracks, cracks terminating at boundaries,
holes and inclusions of a smaller rank. For this
problem, omitting lengthy derivation, we arrive at the
singular Eq.

_— + 1
KAu+T,f—(@+2ReA, +7 A g+ )‘20#0 0)=1a0)

te L (38)
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where the operator K, is given by (5) with L now be-
ing the total boundary of the system of blocks in the
main cell (the contact between surfaces of adjacent
blocks or blocks and matrix is accounted as a single
line at which mechanical values may experience
discontinuities); it also includes contours of cracks
and holes in the matrix;

th:ﬁ! {Qa,—ay)f+lg-n-g@ldT

+(ay—a)f+dk,; (1,0)—a, f+dk (1, 1)}

the differentials dky (7, t), dks(7, t) are defined by
(7N, (8);

_ 1 1 VARSI Ak
CE o o T Ty
g Xt x+l (39)
3 2#+ 2‘u_ .

the traveling direction is taken arbitrarily for contacts
and cracks in the matrix, but for holes we assume it
to be clockwise; the normal, as usual, is directed to
the right of the traveling path; remember also that the
sign “plus” (“minus”) refers to values of a block
(matrix), to left (right) of the traveling path; for holes
we take u™=0, f=0, 1/u™=0; the constants A, and Aﬂ
are now defined as

2mi @

Aa=_—1——J(Au+alﬂdT
LS{ImJ‘ [Au + %(2a y—as)fdT
L
+i:gll‘ Au +a fdt}
L
Aﬁ=_%g)_:[lm’ (Au +alf)dT—£—.’ aJdT]

L L

1@ i_-
+ 5 @) )J Au+afidt

D] i 1
+ T]:STIm{J [AM + 5(2([ 1= a3)f](17
L

W, 2
— ()| Au +a fidt} (40)
|| J

f7(t) is given by (25).
Equation (38) and those below are naturally ex-
tended to cases when blocks themselves contain

cracks, inclusions and/or holes. It is sufficient to in-
clude cracks and boundaries of inclusions into L. It
is clear that inclusions themselves may have cracks
and internal inclusions; the latter, in their turn, also
may have cracks and inclusions and so on. For a hole
we have an alternative, either, as mentioned, assume
u =0, f=0, 1/u=0 or consider it filled but discon-
nected with surrounding media: f'=f-=f, u*=u-, x*
=x"; the latter choice reproduces the line of the dis-
placement discontinuity method (see Crouch and
Starfield, 1983).

The operations, previously used to derive (24)
and (26) from (2), being applied to (38) yield a sin-
gular CV-BIE

Xot+1
21

SMu + P, (ReA .+ LLA )+

L 670 = %a ,0()

(41)

and a hypersingular CV-BIE

H Au+P,c—QRed  + 2L ﬂ)+

o= =1
o . o ()= 2(120'(1)

(42)

where operators §; and H, are defined by (28) and (34)
respectively with L taken as explained above;

B EJEJ {@Qa) ~ay)oq(t-dT~(a;~a |)O'%kdl(1', 0dt
L

+a l?%kﬂ(r, NdT) (43)

the kernels (d/dt)k; (T, 1), (d/d)ky (7, 1) are given by
(30), (31); 0™(r) is defined by (27). The constants A,
and Ag, given by (40), are also transformed by appro-
priate integration by parts; we shall not write down
these obvious formulae.

Equations (38), (41), (42) turn into Egs. (24),
(26), (33) respectively for a homogeneous media.

2. Stresses Inside The Blocks and The Matrix

A solution of the derived equations makes
known both displacement discontinuities and tractions
at L. Having these values, one may find fields inside
the blocks and the matrix. To this end, find, first, K-
M functions @,(z) and y(z) inside the blocks (=1, ...,
n) and the matrix (/=0). The result is

1
"’ p@=5L f (Ou +a DS - 2)- GO T
L

—Aaz+i(sx,\-+sy_y>z"§ €D, =0, ., n  (44)

0
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X +1
24

Vi) =5 [ 1= 47+ @y -a ) FIle( - gt
L

+Auta Hd[ T (G(T - 2)- g(D)] + A+ a HHO(T - 2)d T} -A gz

Xo+ 1
24y

1
2

+ 58y =S+ 2is 2 -z2e Dy, =0, .., n (45)

where L is the total boundary as explained above; a,
ay, as are given by (39); A, and Ag are defined by
(40).

These are integral representations of the K-M
functions. They could serve as a start point to derive
(38). Using (44), (45) in K-M formulae (16) for dis-
placements and resultant force, we obtain these
values. The functions ®)(2)=¢;(z), ¥(2)=y;(z), ob-
tained from (44), (45) by differentiation, serve to find
stresses. The latter also may be found directly from
(41)-(43) by applying dr=dz and a,=2(y+1)/(2y,) for
t=ze D, (I=0, ..., n).

3. Average Strains and Effective Compliances

The formulae (37) for average strains are also
transformed for the case of a doubly periodic system
of blocks. The result is

£, = ~21§[m ] {(Aud T-d7)+0la,T
)

+ %(a3 —2a)7TldT}+ €3
£, = 5‘§Imf {Aud T+dD)-ola,T
L

- %(a3 ~2a)TMT)+E

£, = §1§Re f (Au—a,10)d 7+ €, (46)
L

Equation (46) serves to find effective elastic compli-
ances as explained in point 2.5.

In conclusion of this Section, note that its re-
sults open new facilities to model media with inter-
nal structure. One may consider a representative par-
allelogram with a finite number of blocks (grains),
inclusions and cracks as a main cell of a doubly peri-
odic system. As equations involve a contour only in
the main cell, we obtain a facility to study an infinite
medium by solving a problem for its finite represen-
tative region. In the next Section we will make a fur-
ther step to simplify the problem by transforming it
in a way which allows us to use conventional codes
of CV-BEM for finite systems avoiding developing
special codes for doubly periodic systems. It should
also be noted that the equations derived are hardly

may be obtained following the path of real variables;
the theory of Kolosov-Muskhelishvili provided us
with a mighty means to tackle the problem.

IV. FORMS OF CV-BIE CONVENIENT IN
COMPUTATIONS

The equations derived contain dzeta-function
{(z) by Weierstrasse and the function Q(z) by
Natanzon. They are defined by series (9). In practi-
cal calculations, it is sufficient to keep a finite num-
ber of terms because the series absolutely converge
(their terms decrease as 1/w’). Suppose we took a
reasonable number of terms to provide the needed ac-
curacy (in the next Section we will make conclusions
on this issue). For certainty, assume that integers j
and j, in w=j-2w,+j,*2®, run the sequences
—N,<j 1N, =N,<j,<N,. In other words, account for
(2N,+1)(2N,+1) cells including the main cell. Then
we have

NNy | NNy | NNy |

@)= X + X e+ ) —
jlz—N|Z—W JI:—NI J|=—N| w*-
j2=—N2 j2=—N2 j2=—N2
N&/:v2 . NNy NNy
_ W W "W

0@~ L —W__ ¥ W_p 3
=Ny @-w)" =W Jp==Npow
Jp==N» Jp=-Ny ig=-N3

(47)

Note, that each sum in the r.h.s. of (47), taken
itself, does not converge when N, N;—e. But for
finite sums taken to represent {(z) and Q(z) we may
use the forms of (47). They provide forms of CV-
BIE, convenient in numerical implementation.
Indeed, using, for example, (47) in the CVH-BIE (33)
or (42), we obtain after transformations:

N2 dt

Cgr-ndr= y —4T
j1==Ni (t—-w-1)
j2=—N2

—bdt

a NI’ZN2 a a___ _
ydkdl(r, t)~jl =y, Edk,(r—w, t)—bdr+7b drt

Ja==Na

a NENZ [ —
§ikn® 0= X gdkolr-w HN-bdt

j2=—N2
-Q(Fdr—z? d 1) (48)
ot 14

where k,(T,0)=In[(7=0)/(7-1)], ka(T,0)=[(T-1)/
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NN NNy
(?—7), b= 2 ’ ’Lz, bo= E ’ ’%. Note that

iy =-Nyw iy =Ny w

jy==Ny iy=-Ny
ki(t, 1), ky(7, t) are kernels common in equations for
non-periodic problems (e.g. Linkov, 1974; Linkov and
Mogilevskaya, 1994; Muskhelishvili, 1975; Panasiuk
et al., 1976). The sums explicitly written in (48) in-
clude w=0; consequently, they are not marked with a
prime.

Equations (48) are of direct use for terms in (33)
and (42) containing displacement discontinuities Au.
For integrals in (29), (43) containing tractions, their
application is not so immediate. One may first use
integration by parts coming from tractions to the re-
sultant force; this transforms kernels to forms simi-
lar to those for displacement discontinuities. Then
(48) are applied. At last, we again use integration by
parts returning to tractions. As a result, Eq. (33), for
example, reads

NN, d
L3 A Ak (- w, 1)
27ij =Ny (T-w-1) or
j2=-N2L
i k- Cayo—At
Au atdk2(‘t‘ w, 1)+ Qa, a3)01—w—t

ok —ok, —
—(a3—a,)0'a—t'd‘r+aI O'thd 7}

~[2Re(A, +A)+ aa—f(Xﬂ +B)]+ XST’LO]GW@) = %azo‘(z)

(49)
where A and B are new constants:
A=b(l,1~11)/(2mi),

B=2bRe[(1,0~15)/(2)1=b 153/ (2)~b (11 ~151)/ (D),
1, =J AudT, Il,2=J Aud T, 1 =J a,01dT,
L L L

102:J
L

The integrals /,,...,I53 are integrals which are
also present in A, and Ag. We used equality sign in
(49) assuming that the numbers N,, N, are great
enough to provide needed accuracy.

The CVH-BIE (49) resembles the common
CVH-BIE for a non-periodic problem (Linkov and
Mogilevskaya, 1998) involving (2N +1)(2N,+1) cells
with two reservations: (i) we consider Au to be

a,octdr, 163=fa30'1d1
L

repeated in congruent points; (ii) (49) contains addi-
tional term —[2Re(Aq+A)+( 1 /91)(A 5 +B)], which
being multiplied by 2u0/(xo+1), may be interpreted
as generated by some additional stresses at infinity.
The first feature allows us to solve the equation only
for the contour L in the main cell. The second serves
to use successive steps starting from zero values of
constants Ay, Ag, A, B. Hence, one can easily adjust
a CV-BEM program for a finite system of cracks,
blocks, holes and/or inclusions in the main cell to
solve problems for doubly periodic systems.

V. NUMERICAL TESTS AND EXAMPLES
1. Data on Numerical Experiments

A program of the CVH-BEM, worked out by
the authors for finite systems of cracks served as a
basis for solution of doubly periodic problems fol-
lowing the line of the previous Section. The program
employs three-point ordinary elements for internal
parts of L. For tips of cracks it employs three-point
tip elements accounting for square root asymptotic.
All integrals for straight and circular-arc elements are
evaluated exactly by using basis functions and quadra-
ture formulae given in (Linkov and Mogilevskaya,
1998). This provides accurate results (four-five cor-
rect digits) for displacement discontinuities and SIFs
even for a moderate number of boundary elements
which normally does not exceed twenty.

These features retained when applying the code
to the CVH-BIE (49). Meanwhile, to keep accuracy
when using (49) we need to choose appropriate
parameters: (i) the numbers N, and N, in truncated
series, and (ii) the number of iterations if we do not
change the algebraic matrix by accounting for inte-
grals in the constants A, Ag, A, B but find the latter
with successive steps starting from their zero values.
The necessary numbers were found in preliminary
numerical experiments.

We took the same number N|=N,=N along each
of the periods 2w, 2w,. In this case, the main cell is
embraced by “chains” of cells enclosing previous ones
with growing number N. The total number of cells
and consequently the number of terms in truncated
series is (2N+1)2. From our numerical tests we found
out, that, even for strongly interacting cracks, it was
sufficient to take N=10 to reproduce results to five
digits.

We stated also that ten iterations are always
enough to have five digits reproduced even for cracks
with the length 2a close to the length 2w of the small-
est period (a/w=0.9).

Numerical data below are obtained with the
mentioned number (ten) of “chains” embracing the
main cell and with ten iterations. To compare the
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Table 1. Normalized values of k| for a rectangular lattice (w,/®;=0.4i)
al o, 0.3 04 0.5 0.6 0.7 0.75
CVH-BEM 0.8532 0.8381 0.8864 0.9771 1.141 1.263
[21] 0.85 0.84 0.89 0.98 1.14 1.27
Table 2. Normalized values of k; and ky; for a square lattice (w,/w,=i)
al, 0.3 0.4 0.5 0.6 0.7 0.8 0.9
k; CVH-BEM 1.0304 1.0624 1.1136 1.1941 1.325 1.558 2.112
k; [20] 1.03 1.06 1.12 1.19 1.32
k;; CVH-BEM 1.0468 1.0853 1.1399 1.2197 1.345 1.571 2.116
ky; [20] 1.0461 1.0827 1.131 1.193 1.27 1.37
Table 3. Normalized effective moduli E 5 and L.z for a square lattice (w)/ w,=i)
al w, 0.3 0.4 0.5 0.6 0.7 0.8 0.9
E.;r, CVH-BEM 0.873 0.790 0.698 0.602 0.504 0.405 0.300
E.is Filshtinski (1974) 0.86 0.80 0.71 0.61 0.50 0.41 0.29
Uesr, CVH-BEM 0.946 0.905 0.853 0.791 0.718 0.632 0.521
Uegr, Filshtinski (1974) 0.93 0.90 0.85 0.80 0.72 0.63 0.50

results with those of other authors, we considered
straight cracks of the length 2a in rectilinear, square
and triangle lattices. The length of tip elements was
taken as 0.15a; three neighboring ordinary elements
have the length 0.05a; the remaining part of a crack
was represented with eleven equal ordinary elements
with the length 1.4a/11. So, the total number of
boundary elements was nineteen. From calculation
for an isolated crack, we could see that such a choice
of elements always provided five correct digits.

To ensure accuracy in cases of high crack
density, we sometimes doubled precision. The re-
sults always had five reproduced digits. The case of
periodic collinear cracks for which analytical solu-
tion is available, was studied in detail to examine ac-
curacy for closely located cracks. We conclude that
our numerical data have at least four correct signifi-
cant digits.

2. Comparison with Results of Other Authors

Tables 1-3 contain our data obtained with CVH-
BEM compared with available results published by
other authors (Filshtinski, 1974; Panasiuk et al.,
1976). SIFs are normalized by pVma, where p is a
uniform traction at cracks. The effective modulus
E,qis normalized by Young’s modulus of a plate; the
effective shear modulus . is normalized by the shear
modulus of a plate.

Rectangular lattice. Consider a rectangular lat-
tice with straight cracks parallel to a real period 2.

Graphs of k| for this problem are given in the Hand-
book (1987). They provide SIFs with error of about
1.5 percent.

Square lattice. Results for a square lattice are
given in Table 2. It presents normalized values of k|
for tension normal to cracks and k; for shear along
cracks. For comparison, data obtained in Panasiuk
et al., (1976) are also given.

We see that the results of the CVH-BEM agree
with those obtained in Panasiuk et al., (1976). Note,
that the CVH-BEM provides reliable accuracy data
for crack concentrations up to a/®,=0.9.

Data on effective moduli are presented in Table
3. The Poisson’s ratio is taken v=0.3 to compare the
results with those obtained in Filshtinski (1974) for
this value.

Again we see satisfactory agreement within the
accuracy obtained in Filshtinski (1974).

Quite similar results and the same conclusions
are given in our paper (Koshelev and Linkov, 1999)
for straight cracks in a triangular lattice.

3. New Examples

Results for angular (Fig. 2a) and semi-circular
(Fig. 2b) cracks in a square lattice with periods
2w,=2w, 2w,=I-2® are given in Tables 4, 5. They
include data on normalized SIFs and additional
compliances. The additional compliances b,,=
byy, and bs;, are normalized by the values respec-
tiVCly b1|0=b220=(}(+l)/(8,u)=l/E and b330=]/‘u,
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Table 4. Normalized values of SIFs k|, k1, and additional compliances b,y,, b33, for a square lattice with

angle cracks

al(2w) 0.3 0.4 0.5 0.6 0.7 0.8
K 0.8197 0.8572 0.9242 1.0391 1.2366 1.594
Kyt -0.0094 -0.0054 0.0180 0.0342 0.0448 0.056
k,® -0.0309 0.0083 0.0113 -0.0093 20.0567  -0.140
Ky -0.3251 -0.3381 -0.3416 -0.3297 -0.3091 -0.298

b 1a=baa 0.2110 0.3895 0.6457 1.0157 1.581 2.552
b33, 0.2416 0.4782 0.8451 1.3645 2.0845 3.136

Table 5. Additional compliances by,, b33, for a square lattice with semi-circular cracks

Rlw 0.3 0.4 0.5 0.6 0.7 0.8
by, 0.1627 0.2965 0.4828 0.7432 1.126 1.756
b33a 0.1987 0.3887 0.6921 1.190 2.073 3914

oo 11T ”

{!

G
—

Ll
X
Fig. 2. Angle (a) and semi-circular (b) crack in the main cell of a
square lattice.

corresponding to a plane without cracks.

There could be presented numerous other
examples. The developed code of the CVH-BEM al-
lows us to consider arbitrary lattices with arbitrary
contours represented or approximated with a set of
straight and circular-arc elements. Having a friendly
graphic interface, the program may serve as a spe-
cific handbook to find SIFs and effective compliances
for numerous configurations which can not be listed
in a conventional handbook.

VI. CONCLUSIONS

The conclusions of the paper are as follows.

(1) New singular (26) and hypersingular (33) CV-BIE
for doubly periodic systems of cracks and holes
do not involve additional conditions for cyclic
constants. Meanwhile, the latter conditions writ-
ten as (37) may serve to find effective compliances
after a CV-BIE is solved.

(2) New singular (38), (41) and hypersingular (42)
CV-BIE serve to solve doubly periodic problems
for systems of blocks and/or inclusions. Blocks,
inclusions and the embedding matrix may have
cracks and/or holes. Effective compliances may

be found by using (46) after a CV-BIE is solved.
The derived CV-BIE open new facilities to model
media with internal structure by repeating infi-
nitely a typical region in the form of a paralle-
logram.

(3) Conventional programs based on CV-BIE for non-
periodic problems may be promptly adjusted to
solve doubly periodic problems by using the ap-
proach of Sec. 4. Applied to the hypersingular
Eq. (42) this approach results in the CVH-BIE (49)
which'is easily implemented in the CVH:BEM.

(4)Numerical tests confirm easy implementation,
high efficiency and accuracy of the CVH-BEM
code obtained from a code for non-periodic
problems. SIFs and effective compliances are
calculated with at least four correct digits even
for strongly interacting cracks with the number of
boundary elements normally not exceeding twenty.
The data obtained provide benchmarks to validate
approximate approaches used to calculate effec-
tive compliances.

NOMENCLATURE

2a the length of a straight crack

by, ..., b33 effective compliances

Ca Cp the main constants in equations for ef-
fective compliances

f the resultant force

G, singular operator in integral equation

H, hypersingular operator in integral equa-
tion

i the imaginary unit

ky, ky kernels of integral operators for a non-
periodic problem

kars kao kernels corresponding to k|, k, for a

double-periodic problem



ky, ky; normalized stress intensity factors

K, singular integral operator for a double-
periodic problem

K-M Kolosov-Muskhelishvili

L the total contour of cracks and holes in
the main cell

L the j-th particular contour in the main
cell

n the unit normal

0 the function by Natanzon

R, integral operator acting on the deriva-
tive of displacement discontinuities

S Sy, Sy components of the average stress in the
plane

S the area of a cell

S, integral operator acting on tractions

t the unit tangent to the traveling path

T, integral operator acting on the resultant
force

u the complex displacement at a point

w translation vector between congruent
points in a lattice

X,y the real coordinates of a point in a glo-
bal system

Z=x+iy the complex coordinate of a point

2a4, 20 the cyclic constants of K-M function ¢

X Muskhelishvili’s parameter

A the symbol of the discontinuity of a
function (e.g. Au=u*-u")

£ Eyyy Exy  the components of average strains in a
plane

27,29 the cyclic constants of the resultant force

2n, 21, the cyclic constants of the dzeta-func-
tion by Weierstrasse

Q the first K-M function

271, 24, the constants of the function by
Natanzon

u shear modulus

v Poisson’s ratio

201, 2p0; the cyclic constants of displacements

c complex traction

O, O, the components of traction in local co-
ordinates

T the complex coordinate of a point at a
contour

2w, 20, the complex periods of a lattice

v the second K-M function

¢ the dzeta-function by Weierstrasse

The bar over a symbol marks complex conjugation.
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