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ABSTRACT

This paper presents a boundary element method combined with
the maximum tensile stress criterion for predicting crack initiation
angles and simulating fracture propagation paths in cracked anisotro-
pic plates under mixed mode loading. Since the calculated displace-
ments near the crack tip by the BEM have been verified to be very
accurate, a decoupling technique can be used to determine the mixed
mode stress intensity factors based on the definition of the J-integral
and the relative displacements at the crack tip. Numerical examples
are presented for the calculation of stress intensity factors for both iso-
tropic and anisotropic cases. It can be found that our numerical results
are in good agreement with those reported by previous authors. Frac-
ture propagation in an anisotropic plate under mixed mode loading is
simulated by an incremental crack extension with a piece-wise linear
discretization. A computer program, which can automatically gener-
ate a new mesh (required for analyzing sequentially the boundary
configuration) has been developed to simulate the fracture propaga-
tion process. It was found that the numerical analysis could predict
relatively well the direction of crack initiation and the path of fracture
propagation.

I. INTRODUCTION

Fracture mechanics is essentially based on the
extension of Griffith theory (1920) and Irwin’s modi-
fication (1957) to that theory which recognizes the
importance of stress intensity near the end of a crack
tip. Irwin (1957) introduced parameters, called stress
intensity factors (SIF’s), to express the stress and dis-
placement fields near a crack tip. In general, three
SIF’s, called K;, K;;, and K, are introduced, corre-
sponding to three basic fracture modes, e.g. mode I
(opening mode), mode II (sliding mode) and Mode
III (tearing mode), respectively. A superposition of

*Correspondence addressee

the three modes describes the general case of loading
(mixed mode loading). For a given cracked body un-
der a certain type of loading, the SIF’s are known
and the stresses and displacements near the crack tip
can, accordingly, be determined. Hence, the prob-
lem of linear elastic fracture mechanics reduces to
the determination of the crack tip SIF’s. The methods,
which are commonly employed in the determination
of the SIF’s can be generally divided into three
categories (Whittaker er al., 1992): (1) analytical
methods, including the complex stress functions,
weight functions, and stress concentration methods;
(2) numerical methods, including the finite element
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method (FEM), boundary element method (BEM),
finite difference method (FDF), and boundary collo-
cation method (BCM); and (3) experimental methods,
including the commonly used photoelastic techniques,
acoustics and indirect measurements such as compli-
ance calibration from laboratory tests.

In this paper, the BEM was selected for the
analysis of crack initiation and propagation of aniso-
tropic cracked plates. Fracture propagation processes
are frequently simulated by an incremental crack ex-
tension analysis, based on certain failure criteria to
predict the direction of crack initiation. For each in-
crement of crack extension, a stress analysis is car-
ried out and the SIF’s are evaluated. Because of the
complex geometry, which is continuously changing
during crack extension, numerical techniques are re-
quired to simulate crack propagation problems. For
a long time, the FEM has been used to determine the
SIF’s for cracked media. Numerous researchers have
employed this method to study fracture propagation
processes (Shephard et al., 1985; Boone et al., 1987;
Wawrzynek et al., 1988; Swenson and Ingraffea,
1988; Wei and De Bremaecker, 1994). The main dis-
advantage of the FEM in dealing with this problem is
that the finite element mesh has to be updated fol-
lowing each step of crack extension.

The BEM has been proven to be a powerful nu-
merical technique with certain advantages over the
domain-based method such as the FEM. Over the past
ten years, the BEM has emerged as an alternative
method for the analysis of cracked bodies (Chen and
Hong, 1992). However, because the coincidence of
the crack surfaces gives rise to a singular system of
algebraic equations, the solution of this problem can
not be obtained with the direct formulation of the
BEM. Some special techniques have been devised to
overcome this difficulty such as the Green’s function
method (Snyder and Cruse, 1975), the sub-regional
method (Blandford er al., 1981; Sollero et al., 1994;
Sollero and Aliabadi, 1995), the displacement discon-
tinuity method (DDM) (Crouch and Starfield, 1983;
Shen and Stephansson, 1994; Scavia, 1995). The
Green’s function method has the advantages of avoid-
ing crack surface modeling and gives excellent
accuracy. It is however, restricted to very simple
crack geometry for which analytical Green’s func-
tions are available. The sub-regional method intro-
duces artificial boundaries into several sub-regions,
thus resulting in a large system of equations. In frac-
ture propagation analysis, these artificial boundaries
must be repeatedly introduced for each increment of
crack extension. Hence, this method can not be eas-
ily implemented as an automatic procedure in an in-
cremental analysis of crack extension problems
(Portela et al., 1993). The main disadvantage of the
DDM is that the kernel functions in DDM involve

singularities with orders higher than those in the tra-
ditional displacement BEM. Hence, this method is

not suitable for problems involving finite domains.

In recent years, the single-domain BEM has been
proposed for the study of cracked media (Hong and
Chen, 1988; Gray et al., 1990; Portela et al., 1992;
Sollero and Aliabadi, 1995; Pan and Amadei, 1996;
Pan, 1997; Aliabadi, 1997; Chen and Hong, 1999).
It involves two sets of boundary integral equations
and is, in general, superior to the aforementioned
BEM’s. As a consequence, general mixed mode crack
problems can be solved in a single-domain BEM
formulation. The single-domain analysis can elimi-
nate remeshing problems, which are typical of the
FEM and the sub-regional BEM. The single-domain
BEM has received considerable attention and has been
found to be a good method for simulating crack propa-
gation processes.

In this paper, the single-domain BEM formula-
tion combined with the maximum tensile stress crite-
rion were used to predict the angle of crack initiation
and to simulate the path of fracture propagation in
anisotropic plates. The BEM formulation is such that
the displacement integral equation is collocated on
the outside boundary only and the traction integral
equation on one side of the crack surface only. A
decoupling technique can be used to determine the
mixed mode SIF’s based on the definition of the J-
integral and the relative displacements at the crack
tip. Numerical examples are presented for the calcu-
lation of mixed mode SIF’s for both isotropic and
anisotropic cases. It can be found that our numerical
results are in good agreement with those reported by
previous authors. Fracture propagation in an aniso-
tropic homogeneous plate under mixed mode I-1I
loading is simulated by an incremental crack exten-
sion with a piece-wise linear discretization. A com-
puter program, which can automatically generate a
new mesh (required for analyzing, sequentially, the
changing boundary configuration) has been developed
to simulate the fracture propagation process. Some
experimental observations of crack initiation angles
and fracture propagation were obtained by conduct-
ing diametrical loading of circular cracked disc speci-
mens of a bedding oil shale. It was found that the
numerical analysis could predict relatively well the
path of fracture propagation.

II. THEORETICAL BACKGROUND
1. Anisotropic Elasticity

As shown in Lekhnitskii (1957), the stress and
displacement fields in a two-dimensional linear
elastic, homogeneous, and anisotropic medium can
be formulated in terms of two analytical functions,
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0:(z;), of the complex variables z;=x+uy (k=1, 2),
where y; are the roots of the following characteristic
equation

a) ][14—20](,/.134‘(2(! | 2+(I(,6),Uz—2(126,u+(l?_2=0. (H

In Eq. (1), a;y, ayy, ..., age are the compliance
components of the medium in a global coordinate
system (x, y) attached to the medium. The detailed
relation of these components with the material elas-
ticity can be found in Chen er al. (1998). Lekhnitskii
has shown that the roots of Eq. (1) are always either
complex or purely imaginary, two of them being the
conjugate of the two others. Let u,, u, be those roots
and 7,, I, their respective conjugates. Assuming
iy and u, to be distinct, the general expressions for
the stress and displacements are (Lekhnitskii , 1957;
Sih er al., 1965)

0. =2Re[1f ¢1'(z1)+143 92'(22)]

0y,=2Re[9)'(z1)+6,'(z2)]

To=—2Re[19)' () +1202'(22)] )
and

u=2Re[P10:(2))+P2¢:(22)]

v=2Re[P21¢1(z1)+P22(z2)], (3)
where

P=a, llllgfalz—amlik

Pa=antytar! t—az. (k=1, 2) 4)
2. BEM Formulation for Determining SIF’s

For concentrated point forces acting at z{ (z9=
x%+1,y") in an infinite plate, the Green’s tractions, T};,

and displacements, U;;, are equal to (Sollero and
Aliabadi, 1993)

ijs

Tij(zi 23)=2Re[ Q)i (1in—n)A;/(z1-29)
+Q0i(Han,—n)Apl(2-29)] (5)
and
Uiz, 20)=2Re[Pj A In(z1~2)
ijzAizlﬂ(Z]_«‘g)l (i, j=1,2)  (6)

In Egs. (5) and (6), n, and n, are the outward
normal vectors of the field point, and Q =1, Q,=L>,

= : Element node
x : Element end point
B I‘B: Displacement equation

/rC+

) - K I - — 3

/ crack tip

..

Fc: Traction equation

Fig. I. Geometry of a two-dimensional cracked domain.

and 07;=0=-1. The complex coefficients Aj are
solutions of the following equation

1 -1 1 -1 |[4An 8,,/Qmi)
e T ) Aj) _ = 9;/2ni)
Pll _Ell PIZ _£|2 Aj2 0
Py =Py Py - Py ij 0

where 0y is the Kronecker’s delta.
The traditional displacement boundary integral
equation for linear elasticity can be expressed as

e+ | T 2Duere,)

= J, Vitew ey ®

where i, j, k=1, 2; T;; and U; are the Green’s tractions
and displacements given in Egs. (5) and (6); u; and ¢
are the boundary displacements and tractions; c;; are
quantities that depend on the geometry of the bound-
ary and are equal to J;/2 for a smooth boundary; and
z; and z? are the field and source points on the bound-
ary I' of the domain. Discretization of Eq. (8) gives
a linear system of algebraic equations which can be
solved for the unknowns on the boundary. However,
for a cracked elastic medium, Eq. (8) is not sufficient
for solving all the unknowns along the outer bound-
ary of the problem as well as along the two sides of
the crack surfaces because of the geometric singular-
ity associated with the crack surface.

For cracked anisotropic media, the displacement
integral equation is collocated on the outer boundary
only and the traction integral equation on one side
of the crack only (Pan and Amadei, 1996). The
displacement integral Eq. applied to the outer bound-
ary results in the following form (z?yBeFB only,
Fig. 1)
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where I'¢ has the same outward normal as I'¢,. Here,
the subscripts B and C denote the outer boundary and
the crack surface, respectively.

The traction integral equation (for z{ being a
smooth point on the crack) applied to one side of the
crack surfaces is (z) - € ¢, only)

0.51,zR.c) + 1,22 ) ’;B CimikT ij @ 0 24 j 2 pAT (2 p)

0 . 0
+n,,@ k,C)‘;_C CmieT 6@k o2 p, @y o)1 @y c ATz, o)

=n,(@ g’C)J-l"B CminU 4@ e 2y )t f (24 AT (2 ) (10)

where n,, is the unit outward normal to the contour
path; and the gradient tensors Tj;; and Uj;; denote
differentiation with respect to z?.

The Cauchy singularity in the displacement Eq.
(9) can be avoided by the rigid-body motion method.
The integrand on the right-hand side of Eq. (9) has
only integrable singularity, which can be resolved by
the bi-cubic transformation method (Cerrolaza and
Alarcon, 1989). The traction Eq. (10) involves a
Hadamard finite-part integral. For isotropic materi-
als with a piece-wise flat crack assumption, the
integral can be carried out by direct analytical inte-
gration (Portela er al., 1992). For anisotropic media,
however, the integral is very complicated and its ana-
lytical evaluation is almost impossible. Although dif-
ferent methods have been suggested to deal with such
integrals (Portela er al., 1992; Hildenbrand and Kuhn,
1993; Linkov and Mogilevskaya, 1994), they usually
require the evaluation of a limit value of the integrand
at the singular point, which is possible only for the
case where the integrand has a simple and exact closed
form expression. In this paper, the finite-part inte-
gral is resolved by the Gauss quadrature formula
which is very similar to the traditional weighted Gauss
quadrature but with a different weight. Details of the
Gauss quadrature formula can be found in the papers
of Tsamasphyros and Dimou (1990) and Pan and
Amadei (1996). Therefore, Eqs. (9) and (10) can be
solved simultaneously for the unknown displacements
or tractions on the outer boundary, and the unknown
crack displacement differences on the crack surface.

0= 5‘

Crack Tip Crack Tip

1

Mode | (Opening Mode) Mode Il (Sliding Mode)
K >0 K, >0

Fig. 2. Sign convention used for determining SIF’s in mode T and
mode II.

In this study, the discontinuous quadratic ele-
ments were used to discretize the crack boundary (Fig.
1). The node positions for this kind of elements are
s==2/3, 0, 2/3. In order to capture the square-root
characteristics of the relative crack displacements
near the crack tip, the following crack tip element
with its tip at s=—1 was employed

3
=k§1 Bt (I

where the subscript i (=1, 2, 3) denotes the compo-
nents of the relative crack displacement, and the su-
perscript k (=1, 2, 3) denotes the displacements at
nodes, respectively. The shape functions ¢, are (Pan
and Amadei, 1996)

=B~ \/7 \/_+(\/7—1)(r+1)]/A
3 3 4J—+(f \/>)(s+1)]/A

6=h/1 -1-255T+a-\/Dys+ nia

a=2e- /T-\/3) (12)

The mixed mode SIF’s for anisotropic media can
be determined by using the J-integral combined with
a decoupling technique (Sollero and Aliabadi, 1993).
This technique is based on the ratio of relative crack
tip displacements calculated with the BEM. The mode
IT SIF, K;;, can be determined by

K=/ e , (13)
0P+ Qpp + 0y

where J; is the J-integral related to K, a;; are con-
stants related to the elastic properties of the anisotro-
pic medium, and p, is the ratio of K, to K;;. Once K,
is calculated from Eq. (13), K;=pK};. In this paper,
the sign convention for the corresponding SIF’s (K
and K)) is shown in Fig. 2.
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Fig. 3. Process of crack propagation by increasing linear elements.

3. Crack Initiation and Fracture Propagation

In fracture mechanics, there are three criteria
commonly used to predict the crack initiation angle:
the maximum tensile stress criterion, or o-criterion
(Erdogan and Sih, 1963); the maximum energy re-
lease rate criterion, or G-criterion (Palaniswamy and
Knauss, 1972); and the minimum strain energy den-
sity criterion, or S-criterion (Sih, 1974). Among
them, the o-criterion has been found to predict well
the directions of crack initiation compared to the ex-
perimental results for polymethylmethacrylate (Woo
and Ling, 1984; Richard, 1984) and for brittle clay
(Vallejo, 1987). Because of its simplicity, the o-cri-
terion seems to be the most popular criterion in mixed
mode I-1I fracture studies (Whittaker er al., 1992).
Therefore, the o-criterion was used in this study to
determine the crack initiation angle for anisotropic
plates. For the o-criterion, the angle of crack
initiation, 6y, must satisfy

80'9 _ _ 820'9
79— =0 (or T,-g—O) and 892

<0, (14)

where 0y and T,9 are normal and shear stresses in the
polar coordinates (r and 6). A numerical procedure
was applied to find the angle 6, when 0y is a maxi-
mum for known values of the material elastic
constants, the anisotropic orientation angle v, and the
crack geometry.

In this paper, the real process of crack propaga-
tion in an anisotropic plate under mixed mode I-II
loading is simulated by incremental crack extension
with a piece-wise linear discretization. For each in-
cremental analysis, crack extension is conveniently
modeled by a new boundary element. A computer

\4

Fig. 4. An isotropic circular plate with a central crack subjected
to concentrated diametrical loading.

program has been developed to automatically gener-
ate new data required for analyzing, sequentially, the
changing boundary configuration. Based on the cal-
culation of the SIF’s and crack initiation angle for
each increment, the procedure of crack propagation
can be simulated. The steps in the crack propagation

process are summarized as follows (Fig. 3):

(1) Compute the SIF’s using the proposed BEM;

(2) Determine the angle of crack initiation based on
the maximum tensile stress criterion;

(3) Extend the crack by a linear element (of length
selected by the user) along the direction deter-
mined in step 2;

(4) Automatically generate the new BEM mesh;

(5) Repeat all the above steps until the new crack is
near the outer boundary.

III. NUMERICAL EXAMPLES OF SIF’s

Two numerical examples including isotropic and -
anisotropic plates were selected to test our BEM pro-
gram for determining SIF’s. A generalized plane
stress deformation is assumed in all examples. The
first example analyzed here is that of an isotropic thin
circular plate of radius R and thickness ¢ with a cen-
tral crack of length 2a loaded by a pair of concen-
trated and diametrical compressive loads, W (Fig. 4).
The outer boundary and the crack surface are
discretized with 28 continuous and 10 discontinuous
quadratic elements, respéctively. Two cases are
analyzed: (1) a/R=0.5, the crack angle f3 varies be-
tween 0 and n/2, and (2) B=45°, a/R varies between
0.1 and 0.7. The two normalized SIF’s, K,/ov@a and
K, lovita where o=W/nRt, calculated with the BEM
program for these two cases, are compared with those
obtained by Atkinson et al. (1982), using the
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Table 1. Normalized SIF’s for a Central Slant
Crack in an Isotropic Circular Plate Sub-
jected to a Concentrated Load (a/R=0.5).

Table 2. Normalized SIF’s for a Central Slant
Crack in an Isotropic Circular Plate Sub-
jected to a Concentrated Load (= 45°).

B Atkinson et al. (1982) This study a/R Atkinson et al. (1982) This study
(Rad.) K[/O'\/ﬁ K[[/O'\/ﬂ'_([ K[/O'W K"/O'\/ﬁ KI/O'W K[//O'\/ﬁ K[/O"/ﬁ K”/O'\/ﬁ

0 1.387 0 1.339 0 0.1 -1.035 -2.010 -1.020 -1.968
/16 0.970 -1.340 0.960 -1.275 0.2 -1.139 -2.035 -1.116 -1.995
2n/16 0.030 -2.113 0.074 -2.061 0.3 -1.306 -2.069 -1.272 -2.036
3n/16  -0.946 -2.300 -0.903 -2.275 0.4 -1.528 -2.100 -1.484 -2.069
/4 -1.784 -2.132 -1.737 -2.103 0.5 -1.784 -2.132 -1.737 -2.103
Sn/16  -2.446 -1.728 -2.377 -1.711 0.6 -2.048 -2.200 -2.020 -2.148
6n/16  -2.885 -1.188 -2.826 -1.197 0.7 - - -2.337 -2.213
n/16  -3.127 -0.604 -3.092 -0.614

/2 -3.208 0 -3.180 0

Table 3. Normalized SIF’s for a Central Inclined Crack in an Anisotropic Rectangular Plate Subjected

to a Uniform Tension.

" Gandhi (1972) Sollero and Aliabadi (1993) This study
(Deg) K,/ov/ma K, lovma K,/ovma K, lo/ma K,/ ovma K, lovma

0 0.522 0.507 0.510 0.500 0.519 0.504
45 0.515 0.505 0.512 0.508 0.516 0.505
90 0.513 0.509 0.525 0.507 0.537 0.532
105 0.517 0.510 0.527 0.504 0.507 0.502
120 0.524 0.512 0.525 0.502 0.520 0.508
135 0.532 0.511 0.519 0.504 0.532 0.511
180 0.522 0.507 0.510 0.500 0.519 0.504

continuously distributed dislocation method. The re- P 2w N

sults are shown in Tables 1 and 2. In general, good ™ s y o

agreement is found between the two methods. A ? f f A T f ?
The second example is an anisotropic rectangu- — —

lar plate of width 2w and height 24 with a central crack A

inclined at 45° to the x-axis (Fig. 5). The plate is =" _ ]

loaded by a uniform tension in the y direction. The T _ -~

ratios of crack length to width, and of height to width S e _

are a/W=0.2 and h/w=2.0, respectively. The material - NG -

is glass-epoxy with elastic properties E=48.26 GPa, = 2 5o 7|

E'=17.24 GPa, v=0.29, and G'=6.89 GPa (Sollero and 2 X

Aliabadi, 1993). The direction of the fibers was ro- ~ - - _

tated from y=0° to y=180°. The outer boundary and - \E_ —

the crack surface are discretized with 32 continuous | /k;/ —

and 10 discontinuous quadratic elements, _ E

respectively. Table 3 shows the results obtained by I -

this study as well as those by Sollero and Aliabadi A A7

(1993) with a sub-regional BEM, and Gandhi (1972) YT Y VYT Y Y

c

with a mapping collocation technique. Again, excel-
lent agreement is obtained.

IV. CRACK INITIATION AND FRACTURE
PROPAGATION

In order to check the validity of our crack

Fig. 5. An anisotropic rectangular plate with a central crack in-
clined 45° under uniform tension.

initiation prediction procedure, the tests of Erdogan
and Sth (1963) were reproduced numerically with our
BEM formulation. Erdogan and Sih conducted
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7 ® Experimental results (Erdogan & Sih, 1963)

— Numerical resuits (this study)

-80

Fig. 6. Variation of crack initiation angle 6, with the crack angle
B. Plexiglass plate subjected to uniaxial tension.

180

Experimental Results (Vallejo, 1987)
4 water content, w =3 %

140 " w=9%

120 — Numerical results (this study)

Crack initiation angle, 9o (degree)

0 10 20 30 40 50 60 70 80 90
Crack angle, 3 (degree)

Fig. 7. Variation of crack initiation angle 6, with the crack angle
B. Prismatic sample of kaolinite clay subjected to uniaxial
compression.

uniaxial tension tests on isotropic Plexiglass sheets
229x%457%4.8 mm in size containing a 50.8 mm long
central crack. The crack orientation angle 8 between
the crack plane and the tensile stress was varied. Fig.
6 shows the variation of the crack initiation angle 6,
with the crack angle f determined numerically and
experimentally. A good agreement is found between
the experimental results of Erdogan and Sih (1963)
and our numerical predictions.

Another verification was done using the experi-
mental results of Vallejo (1987). The latter conducted
uniaxial compression tests on cracked prismatic speci-
mens of kaolonite clay 76.2x76.2x25.4 mm in size
containing a central crack 24.9 mm in length. Sev-
eral tests were carried out by varying the crack angle
B between the crack plane and the compressive stress.
Fig. 7 shows a comparison between the crack initia-
tion angles measured experimentally and those pre-
dicted numerically. Again, a good agreement is found
between the two approaches.

Comparison of fracture propagation simulation

T H T
v v v \{ v

(a)

»: Experimental results (Pustejovsky, 1979)
— Numerical results

3
Eo
>

-2

4 N -

-6

-8

-12 -8 -4 0 4 8 12
X, (mm)
(b)

Fig. 8. (a) Numerical siumlation of crack propagation (=43°).
Plate of titanium subjected to uniaxial tension. (b) Com-
parison of simulated crack propagation with experimental
observation of a titanium plate in the vicinity of the crack
tips.

by the proposed BEM with the experimental results
is discussed in the following. Pustejovsky (1979) con-
ducted a series of uniaxial tension tests on isotropic
titanium Ti-6Al-4V plates with a central inclined
crack. The reported material properties of the speci-
mens were £=112 GPa, v=0.29, and the ultimate ten-
sile strength 7,=945 MPa. The specimens were
76.2x203.2%3.2 mm in size and were cut using a car-
bide cutoff-wheel to give a initial crack length 2a=
13.5 mm. One of the test specimens (defined as the
CSG-04 specimen) had a crack angle f=43°. A nu-
merical simulation of crack propagation in that speci-
men was conducted with the BEM using 32 continu-
ous quadratic elements for the outer boundary and 10
discontinuous elements for the crack boundary. The
result of the numerical simulation is shown in
Fig. 8(a). It is noted that the subsequent crack path is
slightly curved and nearly perpendicular to the ap-
plied load. This observation is consistent with the
results of Yan and Nguyen-Dang (1995) using the
Dual BEM. Comparison of simulated crack propa-
gation with the experimental observations of
Pustejovsky (1979) in the vicinity of the crack tip is
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Fig. 9. ita) Photograph of specimen SB1-2 after failure (=457,
B=0.5"). (b) Propagation ol a crack at the center of a ¢ir-
cular plate of oil shale under concentrated diametrical
loading. Comparison between experimential observations
and numerical predictions for specimen SB1-2 with y=45
and f=0.K

shown in Fig. 8(b). A good agreement is found be-
tween the experimental results and the numerical
prediction.

In order to verify further the validity of the pro-
posed BEM procedure to predict fracture propagation
in anisotropic materials, the propagation path in a
central cracked circular plate of oil shale was numeri-
cally predicted and compared with the actual labora-
tory observations (Chen, 1996), In these experiments,
a crack initially inclined with respect to the applied
stress was allowed to grow under concentrated dia-
metrical loading. Chen (1996) conducted the Brazil-
ian tests (Fig. 4) on initally cracked circular speci-
mens with a diameter of 7.0 ¢m. a thickness of 0.9
cm. and a crack length of 1.95 ¢m. The elastic prop-
erties of the bedding oil shale were £=1.43 GPa, E'=
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» Experimental Results
(Chen, 1996)

— Numerical Results

(h)

Fig. 10. (a1 Photograph of specimen SB2-2 after Fuilure (w=45
and f=27.6"1. tb) Propagation of a crack m the center of
a circular plate of oil shale under concentrated diametri-
cal leading. Comparison between expenmemal observa-
tions and numerical predictions for specimen SB2-2 with
w=45" and f}=27.6

.17 GPa. v=0.462. v'=0.339, and G'=0.47 GPa. De-
tails of specimen dimension. testing procedure. and
crack geometry can be found in Chen (1996). Two
ol the test specimens with the same material inclina-
tion angle y=45°, defined as the SBI1-2 and SB2-2,
had crack angle 5=0.8" and 27.6°, respectively. Pho-
tographs showing specimens SB1-2 and SB2-2 after
failure and the crack propagation paths are shown in
Figs. 9(a) and 10¢a). respectively. All crack propa-
gation paths tend to be parallel to the loading direc-
tion and to approach the loading points. The BEM
was also used to simulate fracture propagation in these
oil shale specimens. The outer boundary and crack
surface were discretized with 28 continuous and 20
discontinuous quadratic elements, respectively,
Figs 9(b) and 10(b) show the observed and predicted
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fracture propagation paths for specimens SB1-2 and
SB2-2, respectively. Good agreement is found be-
tween the two approaches. It is therefore concluded
that the proposed BEM procedure can simulate well
the process of fracture propagation for both isotropic
and anisotropic plates.

V. CONCLUSIONS

This paper shows that the mixed mode SIF’s of
anisotropic plate can be successful determined by the
proposed BEM. Numerical examples of the calcula-
tion of SIF’s for both isotropic and anisotropic plates
were conducted and good agreement with previously
published results was obtained. A new BEM proce-
dure based on the maximum tensile stress failure cri-
terion was developed to predict the crack initiation
direction and the fracture propagation path in aniso-
tropic plates under mixed mode loading. A good
agreement was found between crack initiation and
propagation predicted with the proposed BEM and
experimental observations reported by previous
researchers on both isotropic and anisotropic
materials.

NOMENCLATURE

T normal and shear stresses (F/L?)

crack orientation angle (degree)

material inclination angle (degree)
Poisson’s ratio

ratio of stress intensity factor

ratio of the relative crack-tip displacements
outer boundary and crack boundary

2a crack length (L)

>D <e™®Q

E G Young’s modulus and shear modulus of
material (F/L?)

K;, K;;  stress intensity factors for mode I and II
(F/LJ/Z)

T, U; the Green’s tractions and displacements
(F/L%, L)

u, v displacements in the x- and y-directions (L)
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