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ABSTRACT

A boundary element method based on the Cauchy integral
formulae, i.e. a complex variable boundary element method (CVBEM),
is proposed for the numerical solution of an antiplane crack problem
involving an elastic body with shear modulus that varies continuously
in space. The shear modulus assumes a certain form which is quite
general to allow for multiparameter fitting of its variation. The method
reduces the problem to a system of linear algebraic equations and can
be readily implemented on the computer. For clarity, the CVBEM for-
mulation is first carried out for a straight crack and then its extension
to include an arbitrary curved crack is indicated.

I. INTRODUCTION

The boundary element method (BEM) is a use-
ful and efficient numerical technique for stress analy-
sis in solids. Its application to problems involving
cracks is, however, not a straightforward task, as it is
not easy to model the opposite crack faces that are
distinct yet lie on one and the same surface.
Furthermore, the displacement field changes rapidly
near the edge of a crack. For further details on the
difficulties involved in the numerical solution of crack
problems, refer to Aliabadi and Rooke (1991).

During the last two decades or so, significant
progress has been made in the use of the BEM as a
numerical tool for crack problems. There are now
several BEM strategies for solving crack problems
accurately. The approach which avoids integration
over the crack faces through the derivation of suit-
able Green’s functions was pioneered by Snyder and
Cruse (1975) in the 1970s and extended to more com-
plicated problems by other investigators, e.g.
Clements and Haselgrove (1983), Ang and Clements

(1987), Ang (1987) and Telles, et al. (1997). An-
other approach by Ang (1994) and Chen and Chen
(1995) which employs the usual boundary integral
equations to deal with the conditions on the exterior
boundary of the solid but uses a differentiated form
of the integral equations to express the conditions on
the crack faces leads to hypersingular-boundary in-
tegral equations that are numerically tractable. For
two-dimensional elastostatic crack problems, a com-
plex variable approach to the BEM is possible. Denda
and Dong (1997) introduced one such approach for
solving problems involving straight cracks in homo-
geneous isotropic bodies. More recently, Ang, et al.
(2000) proposed a different version of the complex
variable BEM (CVBEM) for the numerical solution
of a curved crack in a homogeneous anisotropic body.

The CVBEM is based on the Cauchy integral
formulae. Apparently, it was first introduced in the
1980s by Hromadka II and Lai (1987) for solving
boundary value problems governed by the two-dimen-
sional Laplace’s equation. More recently, introduc-
ing the theory of complex hypersingular integrals,
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Linkov and Mogilevskaya (1994, 1997, 1998) de-
scribed a CVBEM formulation for certain boundary
value problems in plane isotropic elastostatics. Ang
and Park (1998) extended the approach to a general-
ized system of second-order elliptic partial differen-
tial equations. Application of the CVBEM for the
numerical solution of an anisotropic thermoelastic
problem was carried out by Ang, et al. (1999).

In the present paper, we propose a CVBEM
(which follows quite closely that of Ang, et al. (2000))
to solve the problem of a straight crack in a
nonhomogeneous isotropic elastic body under
antiplane deformation. The shear modulus u of the
body varies with the Cartesian spatial coordinates x,
and x, and takes the form given by (6) (refer to Sec-
tion 2). Examples of multiparameter forms which u
can assume include

U=(ag+a,x +arx,)?
u=(Re{ag+a,(x\+ixy)+ar(x;+ixy)*+...+apn(x,+ixy)"})?
¢}

where i=,/—1 and g, are constants which may be cho-
sen to fit the variation of the shear modulus. The

CVBEM reduces the crack problem to a system of

linear algebraic equations. For some specific
problems, the system of linear algebraic equations is
set up and solved using a computer. Once the system
is solved, the relevant stress intensity factors at the
crack tips are computed. An extension of the pro-
posed CVBEM to include arbitrary curved cracks is
also discussed.

II. STATEMENT OF THE PROBLEM

With reference to a Cartesian coordinate frame
Oxyx,x3, consider an isotropic elastic body whose ge-
ometry does not vary in the x3-direction. The inte-
rior of the body contains a crack. For clarity in
presentation, let us first consider the case where the
crack is straight and lying in the region —a<x,<a, x,=0,
—oco<x3<oo, Where a is a given positive number. (An
extension of the problem to include an arbitrary
curved crack is discussed in Section 6.) On the x3=0
plane, the exterior boundary of the body is the simple
closed curve C, the crack is a straight cut of finite
length 2a with endpoints (—a,0) and («,0) and the re-
gion enclosed by C with the cut is R. We assume that
the crack does not intersect the exterior boundary C.

At each and every point on the exterior bound-
ary of the body, either the Cartesian displacement u,
or traction T}, is prescribed in such a way that the crack
becomes traction-free. The specified displacement
or traction on the exterior boundary is assumed to be

independent of time and the coordinate x3 and such
that u;=u,=0 or T\=T,=0, i.e. the body is assumed to
undergo an antiplane deformation. The problem is
then to determine the displacement us(xy, x3) or the
stress Oy3(x|, xo) throughout the body. Of particular
interest is the calculation of the stress intensity fac-
tors at the tips of the crack.
Mathematically, the problem is to solve

WG+ WG =0 in R, @
subject to
uz=w(x;, x) on Cy, (3)
il G2+ 1,521 =, x2) on €, @)
. U3
,‘é@oﬂBTQ =0 for —a<x<a, (5)

where y>0 is the shear modulus of the material occu-
pying the body, w and p are suitably prescribed func-
tions of x; and x,, [n|, ny] is the unit normal vector to
C pointing away from R, and C, and C; are non-in-
tersecting curves such that C=C,UC,.

For homogeneous materials, the shear modulus
U is a constant and the equilibrium Eq. (2) reduces to
the two-dimensional Laplace’s equation. In the
present work, we take the shear modulus to be a spa-
tial function of the form

U(xy, x)=(Re(g(x +ixp)})?, (6)

where i=,/~1 and g is an arbitrary holomorphic func-
tion of the complex variable z=x,+ix, in RUC such
that ¢g#0 for any (x;, x,)e RUC. Notice that (6) im-
plies that u'? satisfies the two-dimensional Laplace’s
equation in RUC. -Although this places some restric-
tion on the choice of y, it does allow for rather gen-
eral multiparameter forms like the one in (1). In some
other work on cracks in nonhomogeneous bodies, in-
vestigators assume even more restrictive form on the
shear modulus, e.g. linear or exponential variations.
As we shall see, the choice of (6) is to allow (2) to be
transformed to the two-dimensional Laplace’s
equation.
With (6), if we make the substitution

u3(-x|s x2)=u_]/2¢(xl, x2)9 (7)
we find that (2) transforms to become

0%¢ a2¢ .
A - 4 R
ol + o in R, (8)

and (3), (4) and (5) become

(P:;u'llzw(xls -xZ) on Clv (9)
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[n]a¢+nza¢] 2(])[1,8‘, +n7_§;u]
=u'"?p(x,,x,) on C,, (10)
00 10U

=0 for —a<x<a. (rn

The Laplace’s Eq. (8) admits solution of the
general form

PCx1, x2)=Re{flx|+ix;)}, (12)

where f is a holomorphic function of z=x;+ix; in
RUC.

In view of (12), the crack problem under con-
sideration may be formulated as a mathematical prob-
lem which requires the construction of a complex
function f which is holomorphic in RUC and which
satisfies the conditions

Re{f(x)+ixy) }=p'"*w(x, xp) on C), (13)

Re{(, +in)uf (x, + ixz)—%[n l%ll— +n2§7u2]f(xl +ix,))

”hp(-xl’ Xz) on C27 (]4)

11m Re {iff () +ixy)— 8 f()« +ix,)}

=0 for —a<x<a. (15)
1V. CVBEM

Visualizing the straight crack as an elliptical
hole x?/a*+x3/€’<1 with €—0 and applying the
Cauchy integral formulae for the holomorphic func-
tion f in RUC, for (&, &;)e R, we obtain

. . fz)dz © _ Flodx
2 = . f < Y (E L iEN’
it | e
(16)
e fiaxz " Pl
271-.( + ): 7'1' - 5
& +it, fﬁ[z-(éwiéz)]- [ b= (€ +i8F

(17)

where C is assigned a counterclockwise direction and

Fx)=lim [f(x+ily=f(x=ilyD] for —a<x<a. (18)
From either (17) or (18), it can be shown that

F'(x)=lim, [f* GeilyD=f" (x=ilyD)] for —a<x<a,  (19)

where F'(x)=dF/dx.

Thus, from (18) and (19), to ensure the exist-
ence of the limit on the left hand side of (15), we
impose the condition

| ou

— ux, 0)B'(x)— 5 a, Ax)=0

(), x9)=(x,0)

for —a<x<a, (20)

if we write F(x) in the form F(x)=A(x)+iB(x) where A
and B are real functions of the real variable x.

We shall apply (16) and (17) together with (13)-
(15) and (20) to construct the required holomorphic
function f. We proceed as follows.

Put M well spaced out points (x{V, x{), (x?,
X, e, M0 xM=Dy and (x™, x) on Cin a
counterclockwise order. For k=1, 2, ..., M, define
C" to be the straight line segment from (x{, x§) to
(D, x40y where (xM D x M+ Dy=(x{", xPy. We
make the approximation

C=CUCPU...uCH-DLC™, 1)
For (&), &)e R, we rewrite (16) (approximately)
as:
f2)dz ¢ Flodx
2 + k4
iD= 2, com =& +iE) LX—(51+i§z)
(22)

To evaluate the integral over C“, we expand
f(z) as a Taylor-Maclaurin series about z=z" where
—~(m) _(Z(m)+z(nl+|))/2 and Z('")—x(l'1)+1x("1), ie.

Z—(m))an(i(m))+ o
(23)

fQ)=fE") + @2 E") + 2 -

It follows that

J f@dz o) flz)dz
cm 2= +i&y) cmz=(& +i&)
. (z-2")dz
(m)
+f(z )JC (m) - (5] + 152)

(1;1)2
+3f (z(””)[ S (24)

C(m) - (51 + 152)

If we ignore all terms whose magnitudes are
O(lz""*Y-z""]») in (24), we obtain the approximation

J. —f(z_)iz_ ~ f(;('"))J dz
C("')Z_(él +i’§2) N C(m)z.—(§| +i§2)

for (&1, &)eR. (25)



756 Journal of the Chinese Institute of Engineers, Vol. 22, No. 6 (1999)

If we write

f(i(m) ):(b(’")-'l-i ‘/,(m)’ (26)

where ¢ and w™ are constants (yet to determined),
with (25), we find that (22) can be approximately re-
placed by

2mif (€, +i&,)

_ Z (¢(m) +l',l/(m))[7(Z(m) Z(/n+ 1) é + 152)

m=

+ ie(z (m)’ z(m + I), 51 + léz)]

a F(x)dx |
+J—a x_—m for (&, &) in R, 27)
where

Q,w,c) if -w<Qz,w,0)sT
6G, w,c)={ Qz,w,c)+2r if -28<Qz,w,0)<-7
Qi w,0)-2x if n<Qz,w,c)<271

Q(z, w, ¢)=Arg(w—c)—Arg(z—c),
Nz, w, c)=In|lw—c|-In|z—c|, (28)

where Arg(z) denotes the principal value of the argu-
ment of the complex number z.

If the simple closed curve C is such that the re-
gion it encloses is convex, then for ce R and z and w
lying on C, 6(z, w, ¢) can be computed directly from

2

2 2
|w—c| +|z-¢]| —‘w—z|
oo—efle—e

0@z, w, c)=cos™'( ). (29)

If we push the point (&}, &) in (27) to approach
(from within R) the midpoint of C*’ then the real part
of (27) gives (for p=1, 2, ..., M)

_ 27“”(])) — % {Q)(m)]’(Z(m), Z(m + I)’ Z"(P))

m=1

_ l/,(m)e(z (m)’ z (m+ ]), Z"(I)))}

1. (30)

“ [AGH iBGO)Jdx
+Ref|] ——————
—a x_z "
Notice that in (30) 8z, z#*", Z”)=m and Az, 2"V,
~(P)y—
z77)=0.

The system (30) consists of M equations but
there are 2M unknown constants ¢ and Y (m=1,
2, ..., M) and two unknown real functions A(x) and
B(x) (—a<x<a). More equations are obviously needed
to complete the system. They come from (13)-(15)
and (20).

Condition (13) gives
¢(.IJ) ._lul/2(*(l?) gl))w(j(lﬁ), fg)))
if us is specified on C”, (31)

where (£, £2) is the midpoint of C?.
To deal with (14), for (&, &)e R, we rewrite (17)

| . flx)dz
2mif € +ik)= % j [ (€, +i&
14 él “52 m=1 C(,n) [Z - (51 + 152)]2

a F

+J _ o 6y
=& +i&y

Proceeding, as before, in calculating the inte-

gral over C™ and omitting terms having magnitude
O(|z""=z""?), we obtain

J f (Z)dZ - f(ZA(m))J dZ
cm) [z - (é] + ’62)]2 . cm) [z - (él + 152)12

for (&1, S2)ER. (33)

Furthermore, if we repeat the task of calculating the

integral over C™ but with (&, &) approaching (",

A(:n)) (from within R), we find that

fz)dz o N
J;: (m) [Z_—ZW Zf(Z( ))JC ) [Z _d*z(m)]z + 751]”(2( )) ,
(34)

after neglecting terms having magnitude O(|z"*"

(m)
-z2")).
Together with (32) and (34), condition (14) gives

u(x(”) "(P)) ﬁ {[l’l ))’.(Z(m) Z(m+l) ‘*(17))

+n ))q(Z (m), 2.-(m + l)’ Z"(P))]¢(!ﬂ)

+n P, 20,27 = nPre, 2, 27y

a A i
+ ,u(x(])) FORe((f) = in ) [ (t)+lB(t3]dt
L. =27
Lo, O8Ol )
P2 o
2 X ayz' « I'x2)=(-§?1)vf&n))

=GP, 2P R, 7D

if the traction T3 is specified on C?, (35)
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where

-1
qz,w,c)+ir(z,w,c)= +—]—. (36)
w—cC -=C

Condition (15) can be rewritten as

,U(.k 0)[ ﬁ q(z(m) Z(m+]) x)¢(m) I’(Z(m) Z(m+ 1) \,)y,(m)

m=1

A ] B} [ {6(z (’”)’ z(m + l), x) (m)
.[,, (I—x) 23X__ \2=()’”=| ¢
a B [ f
+ A", 20D, )y} + 2 (z(—)d;c)] =0
for —a<x<a, a7)

where ® and #H denote that the real integrals over (—a,
a) are to be interpreted in the Cauchy principal and
Hadamard finite-part sense respectively, i.e. more
specifically (for —a<x<a)

J" B()dr ' (= X)B(t)dt
P m [—

Jle-x+ e

—-a

. a 2
}[J A+ i {J RGO JyNey
e—=0* 2€

, =P Je-x?+ e

(38)

The unknown function A(¢) (—a<t<a) is directly
related to the ‘crack-opening displacement.” To solve
(20), (31), (35) and (37) for the unknown constants
¢ and ¥ and the unknown functions A(r) and
B(1), there are several approaches which can be used
for the approximation of A(r). One such approach is
to approximate A(¢) in the style of Kaya and Erdogan
(1987), i.e.

AW~/ a2 - ,‘22l ¢;U;_\(tla) for -a<i<a, (39)

where ¢, are real coefficients yet to be determined
and U,(x) denotes the k-th order Chebyshev polyno-
mial of the second kind.

From (20), if we write

A(t)dr

1, x9)=(.0)

N o ou
b= 2[ (., 0) ox,

for —a<x<a, (40)

then (30) together with (39) gives (for p=1, 2, ..., M)

_ony= 8

m=1

{¢(m),y(Z (m)’ Z(m + I), Z"(I)))

_ W(m)e(z (m)’ Z(m + l), 2(]’))}

+jz,] cj[ » \/ —¢? UJ_,(t/a)(Re{ }
1 6, a, 27 Ju
+§ U, 0)  0x, M. @0

(v}, x9)=(,0)

and (35) becomes

l'u(/\:(lp)’ j:(zp)) % {[n ({J)r(z (/n)’ Z(m + l), Z(p))
/4 m=1

+n J)q(z(m) Z(m+ 1) Z"(P))]¢(m)

+n ({) q(Z (m)’ Z(m + l), Z’*(j))) -n ))r(Z (m)7 Z(m + I), Z"(P))] !/,(m)}

+ u(\W ‘2”))}i c Re{(n;”-uﬂ(’))f Var-1*U,_ (ta)

1 _i@eairirta ) ou

2 0 Y

(rl-[rgv %, ng) a/i u(, 0) ¢@1‘2
@)1 =GP

ldt}
(x,x9)=(r,0)

=pu' @Y, FPpEY, 7D
if the traction T3 is specified on C%. (42)

If we collocate (37) by choosing =
(in turn) by

to be given

2n -1

X:y(”):a COS(—ZI—) for n=1, 2, ...,J, (43)

then using (39) we obtain

(y(") 0) Z {Q(Z (m) (m + I) (n))¢(m ) I’(Z (m) (m + I)y(n))v,(m)}

m=

- muy® O)ﬁjchj_ @ 'y®)— 1 aa},:‘

(x . xp) =0, 0)

X { ﬁ {0(2 (m), Z(m + l)’ y(n))¢(m) + A(Z(m)’ Z(m + l)’ y(u))v,(m)}

m=1

ra
{D ()= D (y")}dr _y®
B O-Db D,y™in| “=2 1)
21_] ] (I-—y(”)) J a+y(n)
=0 for n=1,2, ..., J, (44)
where
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Pi0= f o
(45)

Now (31), (41), (42) and (44) constitute a sys-
tem of linear algebraic equations in the unknowns
¢ and " (m=1, 2, ..., M) and ¢; (j=1, 2, ..., J). Once
these unknowns are determined, the function f
(and hence u3) can be computed at any point (£, &)
in R.

A much easier-to-implement method of solving
(20), (31), (35) and (37) is to discretize the crack into
smaller elements and approximate A(r) as either a
constant or a linear function over a crack element. In
general, such a simple approximation of A(z), that ig-
nores the asymptotic behavior of the ‘crack-opening
displacement’ near the crack tips, cannot be expected
to yield highly accurate results if fewer crack elements
are used in the computation. However, as demon-
strated in Ang, ef al. (2000) and in Linkov and
Mogilevskaya (1994) for a circular arc crack, reason-
able results can be achieved even with a simple con-
stant approximation of A(z) over a crack element, if a
sufficiently large number of crack elements is
employed. With highly advanced modern computers
and the ability to carry out parallel processing with
multiple processors, the need to use a large number
of elements is not necessarily a disadvantage. In fact,
it appears that a simpler numerical procedure often
opens up a better way for designing a more efficient
parallel algorithm. Thus, simple approximation of
the crack-opening displacement should not be ruled
out, but, is still an option which is worth considering.

IV. STRESS INTENSITY FACTORS

The mode III stress intensity factors at the crack
tips (—a, 0) and (a, 0) are respectively defined by

K™= lim v2¢€ 03;(—a—¢, 0) and
e-0t

K*= lim v2¢€ o3,(a+¢, 0). (46)
-0t

From the analysis in Section 3, the stress inten-
sity factors are approximately given by

w2+ a,0) E

+
K*=E Wa

¢;U;_((£1). (47)

which can be easily computed once the constants ¢;
are determined.

V. SPECIFIC EXAMPLES

We take the shear modulus to be given by u=

U,_ Elay/a®-E*dE.
2l y.xp)=(0)

Table 1. Numerical stress intensity factors.

CVBEM Ref.[5] CVBEM Ref. [5]
K /(sovV2a ) K/(so¥2a ) K*I(sgV2a ) K*/(sgV2a )
0.00 0.702 0.710 0.702 0.710
0.05 0.686 0.692 0.722 0.728
0.10 0.671 0.675 0.742 0.746
0.15 0.656 0.656 0.765 0.764
0.20 0.641 - 0.791 -

Uolex,/(2a)+1]* and the boundary C to be a rectangle
with vertices A(¢ |, ¢,), B(-¢,, ¢,), C(-¢,, -¢,) and
D(¢,, —0,) [where u, is a positive constant, ¢, and
¢, positive constants such that ¢, >a and € is a non-
dimensionalized constant such that |g|<2a/?,].

For a test problem, we first consider the case
where the sides AB and CD are acted on by the stress
Or3=5¢ (5o 1s a given constant) and the remaining sides
BC and AD are traction-free. For ¢,/a=0,/a=8.0, we
divide the square boundary into elements of equal
length, 0.25 units, and put 8§ collocation points on the
crack to execute the CVBEM. The numerical values
of the non-dimensionalized stress intensity factors
K*/(so/2a ) thus obtained for selected values of € are
compared with those given by Ang, Clements and
Cooke (1999) in Table 1. The two sets of results com-
puted by different methods are in good agreement
with each other.

We now study the case where the sides AB and
CD are acted on by the stress Oy3=sg (50 is a given
constant) and BC and AD are fixed (with u3=0) for
€=0.20. To the best of the author’s knowledge, there
is no prior calculation of the stress intensity factors
in the literature for this specific case. For a fixed
¢,/a=2.0, we compute the stress intensity factors
K*/(sv2a ) against various values of ¢,/a in Table 2.
Similarly, for a fixed 02 /a=2.0, the stress intensity
factors K*/(sov2a ) are tabulated against various val-
ues of #,/a in Table 3. It appears that for a fixed
0, /a the magnitudes of the stress intensity factors de-
crease as ¢,/a increases, while for a fixed ¢,/a they
increase with increasing ¢,/a. This observation is
qualitatively acceptable.

The numerical results in Tables 2 and 3 are ob-
tained by dividing the rectangular boundary up into
160 elements and putting 10 collocation points on the
crack. When the number of elements is doubled, con-
vergence of the results to at least 2 significant fig-
ures is observed.

VI. EXTENSION TO A CURVED CRACK

The CVBEM analysis in Section 3 can be ex-
tended to a crack whose shape (on the Ox,x, plane) is
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Table 2. Numerical stress intensity factors.

0,la 1.00 1.50 2.00 2.50 3.00 3.50 4.00
K/(s)V2a )  0.538 0.399 0.281 0.194 0.132 0.0895 0.0603
K /(sqV2a ) 0.615 0.467 0.334 0.232 0.159 0.108 0.0737

Table 3. Numerical stress intensity factors.

0yla 1.25 1.50 2.00 3.00 4.00 6.00 8.00
K/(sV2a)  0.0849 0.149 0.281 0.481 0.590 0.675 0.701
K*/(sov2a ) 0.103 0.179 0.334 0.557 0.670 0.750 0.770

given by the curve I' by following closely the work
in Ang, et al. (2000) or by using using recent results
on the complex hypersingular integrals in Linkov and
Mogilevskaya (1994, 1997, 1998). A practical indi-
cation of how the extension can possibly be carried
out is given below.

Let us discretize the crack by putting N closely-
packed consecutive points (y(V, y), (P, y@), ...,
W=D, y®-=-yand (y, )"N)) on it, with (y{", y{M)
and (y‘N) y(N)) as crack tips. Let us denote the crack
element (straight line segment) from (y®, y®) to
(y*D, y§+D) by I'“. We make the approximation:

r=ror?ou...or®". (48)
The exterior boundary C is discretized as before.

For any (£, &)€e R, the Cauchy integral formu-
lae can now be (approximately) written as:

2mif(§) + &)

_ g f(7('"))[7(z("') 7(m +1) 5 +i 52) +i 9(2('") Z(m +1) 51'”52)]

m=

g y
+ Z 1[();(k+l) y(/‘))+¢(y("+” y(k))]J F(A)(t)df

(49)
27[17]”(61 +i&,)

- ﬁ f(z"(m))[q(z(m)’ Z(m + I),’ 51’”52) +ir(z(’"), Z(m + l), §l+i§2)]

m=1

F®)dr

-1 whO) - (&, +i&y)

1
Z L y“’)+i(v§“'>—yg“)]J

(50)

where

L w®0) - (€ HEN

wOO) =58 +i58 + S0 -y i -y D)
FO0 = lim, [fovO0) - e+ im$)
~fw @) + em + im D), (51)

where [m{), mP1=[(y¢+V -yP)/L®, (y®—yk+Dy/
L™ is a unit normal vector to F“) L® is the length of
' and (y(]"), yz)) is the midpoint of T%. As shown
in Section 3, if (£, &) lies on the exterior boundary
C, (49) still holds but (50) is valid only if the factor
27i is replaced by .

Now, for the curved crack, condition (15) should
be modified (over each crack element) to become:

lim  Refm{+imPhuf (x, +ixy)
1. x9) = K Po.x Py

Lo a“ +m“>a—1f<x, +ixy)

=0 for —I<r<] (k=1, 2, ..., N-1), (52)
where X® ()=Re{w®(r)} and X3 (N=Im{w®(1)}.

To ensure that the limit in (52) exists, it is re-
quired that

20mP + imP X PO, XPO) g w0 ®)
eKy(kH) y(k))+i(),(2k+l) (A))] dt[A @) +iB™0]}

~ L ou +m(k)a—] A%
Y2 = R, x P
=0 for —1<u<1 (k=1, 2, ..., N-1), (53)

if we write FO()=A®(1)+iB®(t) where A®(z) and
B®(1) are real unknown functions to be determined.

If we proceed as in Section 3, we can use (13),
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(14), (49)-(50) (including the modified form of (50)
for (&), &)e C), (52) and (53) to set up a system of
equations from which the unknown constants f(Z™)
(m=1, 2, ..., M) and functions F®(r) (k=1, 2, ..., M—1)
can be determined.

VII. SUMMARY

A CVBEM is described for the antiplane prob-
lem of a straight crack in a nonhomogeneous elastic
body with an arbitrary exterior boundary. The shear
modulus of the material assumes a form which allows
for multiparameter fittings of the shear variation. For
a specific shear modulus, the method is applied to
compute the crack tip stress intensity factors of a
straight crack in a rectangular slab. For a particular
constant shear loading on the boundary of the slab,
the results obtained are in reasonable agreement with
those given in Ang, et al. (1999). A new set of nu-
merical results for a different loading condition is also
obtained.

A discussion on how the method can be extended
to include a curved crack is given. Generalization to
multiple cracks is a trivial matter.

ACKNOWLEDGEMENT

The author would like to thank an anonymous
reviewer for pointing out a missing term in (37) and
(44) and suggesting an extension of the work to
curved cracks.

REFERENCES

1. Aliabadi, M.H., and Rooke, D.D., 1991, Numeri-
cal Fracture Mechanics, Computational Mechan-
ics Publications, Southampton.

2. Ang, W.T., 1987, “A Boundary Integral Equation
for Deformations of an Elastic Body with an Arc
Crack,” Quarterly of Applied Mathematics, Vol.
45, pp- 131-139.

3. Ang, W.T., 1994, “A Hypersingular-boundary
Integral Equation Method for a Class of Multiple
Interacting Crack Problems,” Computational
Engineering: Proceedings of the First Pan-Pa-
cific Conference on Computational Engineering,
Seoul, Korea, Elsevier Science.

4. Ang, W.T., and Clements, D.L., 1987, “A Bound-
ary Integral Equation Method for the Solution of
a Class of Crack Problems,” Journal of Elasticity,
Vol. 17, pp. 9-22.

5. Ang, W.T., Clements, D.L., and Cooke, T.,
1999, “A Hypersingular Boundary Integral
Equation for a Class of Antiplane Multiple Crack
Problems for Inhomogeneous Elastic Materials,”
Communications in Numerical Methods in

12.

13.

14.

16.

18.

Engineering, Vol. 15, pp. 183-191.

. Ang, W.T., Clements, D.L., and Cooke, T., 1999,

“A Complex Variable Boundary Element Method
for a Class of Boundary Value Problems in Aniso-
tropic Thermoelasticity,” International Journal of
Computer Mathematics, Vol. 70, pp. 571-586.

. Ang, W.T., Clements, D.L., and Dehghan, M.,

2000, “CVBEM for a Class of Linear Crack
Problems,” Mathematics and Mechanics of Sol-
ids (accepted for publication).

. Ang, W.T., and Park, Y.S., 1998, “CVBEM for a

System of Second-order Elliptic Partial Differ-
ential Equations,” Engineering Analysis with
Boundary Elements, Vol. 21, pp. 179-184.

. Chen, W.H., and Chen, T.C., 1995, “An Efficient

Dual Boundary Element Technique for a Two-di-
mensional Fracture Problem with Multiple
Cracks,” International Journal for Numerical
Methods in Engineering, Vol. 38, pp. 1739-1756.

. Clements, D.L., 1981, Boundary Value Problems

Governed by Second Order Elliptic Systems,
Pitman, London.

. Clements, D.L., and Haselgrove, M., 1983, “A

Boundary Integral Equation for a Class of Crack
Problems in Anisotropic Elasticity,” International
Journal of Computer Mathematics, Vol. 12, pp.
267-278.

Denda, M., and Dong, Y.F., 1997, “Complex
Variable Approach to the BEM for Multiple Crack
Problems,” Computer Methods in Applied Me-
chanics and Engineering, Vol. 141, pp. 247-264.
Hromadka II, T.V., and Lai, C., 1987, The
Complex Variable Boundary Element Method in
Engineering Analysis, Springer-Verlag, New
York and Berlin, 1987.

Kaya, A.C., and Erdogan, F., 1987, “On the So-
lution of Integral Equations with Strongly
Singular Kernels.” Quarterly of Applied
Mathematics, Vol. 45, pp. 105-122.

. Linkov, A.M., and Mogilevskaya, S.G., 1994,

“Complex Hypersingular Integrals and Integral
Equations in Plane Elasticity,” Acta Mechanica,
Vol. 105, pp. 189-205.

Linkov, A.M., and Mogilevskaya, S.G., 1997,
“On the Theory of Complex Hypersingular Inte-
gral Equations,” Computational Mechanics 95:
Theory and Applications, Edited by Atluri, S. N.,
Yagawa, G. and Cruse, T. A., Computational Me-
chanics Publications, Southampton.

.Linkov, A.M., and Mogilevskaya, S.G.,

1998, “Complex Hypersingular BEM in Plane
Elasticity Problems,” in Singular Integrals in
Boundary Element Methods, Edited by Sladek, V.
and Sladek, J., Computational Mechanics
Publications, Southampton.

Snyder, M.D., and Cruse, T.A., 1975, “Boundary



W.T. Ang: A Complex Variable Boundary Element Method for Antiplane Stress Analysis 761

Integral Analysis of Cracked Anisotropic
Plates,” International Journal of Fracture, Vol.
11, pp. 315-328.

. Telles, J.C.F., Barra, L.P.S., and Guimaraes, S.,

1997, “A Hypersingular Numerical Green’s Func-
tion Generation for BEM Applied to General
Fracture Mechanics Problems-elastodynamics,”
BEM XIX: Proceedings of the 19th World Con-
ference on the Boundary Element Method, Edited
by Machetti, M., Brebbia, C. A. and Aliabadi, M.

H., Computational Mechanics Publications,
Southampton.

Discussions of this paper may appear in the discus-
sion section of a future issue. All discussions should
be submitted to the Editor-in-Chief.

Manuscript Received: June 09, 1999
Revision Received: July 20, 1999
and Accepted: Aug. 06, 1999

SRR EAESREIBTEYENR TR
NS

HEE
BRI B AR

m =

AXRBAEE S AXBHER TR E (ERBEERTRE
CVBEM ) ZEREEM 88 & Ei Lay sy iRg e KT H AR AR BRE % - 39
TSR —EEA S BB B LR - AR REY 7T e
MR AR B 2R - A BT ey B A R B LR o B
CVBEM AR AI AL MEE AR KRHIRIRE » T2 AT AL (2 & P iR th AR AV I

J:o

BAgLE - R BB FUTRIEE - JRE 0 R EEMRE



