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ABSTRACT

This article considers weakly singular, singular and hypersingular
integrals which arise when the boundary integral equations (BIE) are
used to solve problems in the theory of elasticity and fracture mechanics.
For their regularization, an approach based on the application of the
Gauss-Ostrogradskii and the Green theorems has been used. The
expressions, which allow an easy calculation of the weakly singular,
singular and hypersingular integrals for any convex polygon, have been
constructed. Such an approach may be generalized easily and applied
for the calculation of multidimensional integrals with various

singularities.

I. INTRODUCTION

The method of potentials is one of the most
powerful and effective methods for the solution of
different problems in science and engineering
(Gunter, 1953; Muskhelishvili, 1968; Kupradze
et al., 1976; Michlin, 1962). The essence of
this method is to transform a boundary value prob-
lem into the BIE. One of the most important ad-
vantages of such a transformation, when a pro-
blem is being solved numerically, using the bound-
ary element method (BEM), is the dimension reduc-
tion of the problem by one. One of the difficulties
found with such an approach, is the presence of
the divergent integrals and the integral operators
with kernels that contain different kinds of singu-
larities.

In mathematics, singular integrals and integral
operators with singular kernels have a well-estab-
lished theoretical basis (Muskhelishvili, 1968;
Kupradze et al., 1976; Michlin, 1962). For example,

*Correspondence addressee

the weakly singular (WS) integrals are considered
as improper integrals, the singular integrals are
considered in the sense of Cauchy as principal
values (PV) and the hypersingular integrals are
considered in the sense of Hadamard as finite parts
(FP) (Gunter, 1953; Muskhelishvili, 1968; Kupradze
et al., 1976; Michlin, 1962). The theory of dis-
tributions (generalized functions) lets us consider
divergent integrals and integral operators with
kernels containing different kind of singularities
using the same approach (Gel’fand and Shilov,
1962). )

The divergent integrals must be calculated
when the BIEs are solved numerically using the
BEM. There are several methods for the calculation
of the weakly singular and singular integrals
(Muskhelishvili, 1968; Kupradie et al., 1976; Michlin,
1962). Hypersingular integrals are more complex
and there are some problems with their numerical
calculation. Therefore, the BIE with singular inte-
grals (in the sense of Cauchy PV) have been used
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until recently. However, there are some kinds of
problems where the BIE with hypersingular integrals
are preferable and closer to the physical sense of the
problem. Such a situation takes place in the theory
of elasticity and fracture mechanics when the BIE
method is used to solve problems for bodies with cuts
and cracks.

Several approaches to solve the BIE with
hypersingular integral operators have been developed.
For example, the BIE with hypersingular integrals
may be transformed into the BIE with weakly singu-
lar or at the most with singular integrals (Tanaka, et
al., 1994). Then, the theoretical and applied results
developed for those last two integral operators may
be used. The essence of another approach is to cal-
culate the finite part of hypersingular integrals, which
consists of their regularization. There are different
regularization techniques (Krishnasamy ez al., 1992).
The standard one consists of subtracting the diver-
gent part of the hypersingular integral, followed by
its calculation and then adding the result obtained to
the regular part (Chen and Hong, 1999). Such an
approach has some disadvantages, which will be
discussed briefly later. A detailed discussion and
comprehensive review of these problems and their
solution methods can be found in (Krishnasamy
et al., 1992; Tanaka et al., 1994; Chen and Hong,
1999).

Based on the theory of distribution an approach
has been developed for the regularization and
numerical calculation of the hypersingular integrals
that arise in the BIE of elasticity and fracture
mechanics(Zozulya, 1991; Guz and Zozulya, 1993).
The mathematical methodology of this approach is
well known and widely discussed in the mathemati-
cal literature (Gel’fand and Shilov, 1962) but until
recently, it had not been used for the numerical solu-
tion of the BIE with hypersingular integrals. The
advantage of this method is that it can not only be
applied for the numerical calculation of hypersingular
integrals, but also for integrals with different
kinds of singularities, for example weakly singular
and singular ones. One-dimensional (1-D) and
multi-dimensional divergent integrals can also be cal-
culated using this method, for example, two-dimen-
sional (2-D) hypersingular integrals from the BIE
solution of the 3-D static and dynamic problems of
fracture mechanics (Zozulya, 1991; Guz and Zozulya,
1993).

In the present paper, an approach based on the
theory of distribution is developed for the solution of
3-D problems of the theory of elasticity and fracture
mechanics. The equations that permit easy calcula-
tion of the weakly singular, the singular and the
hypersingular integrals over any convex polygonal
area, are presented here.

II. INTEGRAL EQUATIONS FOR BODIES
WITH CRACKS

Consider a homogeneous, isotropic and linearly
elastic body, which in the 3-D Euclidean space R’
occupies the volume V with a smooth boundary. The
boundary of the body contains two parts 0V, and 9V,
such that 0V,ndV,=@ and aV,udV,=dV. On the part
dV,, the displacements u;(x) of the body points and
on the part dV,, the tractions pi(x) are prescribed
respectively. There are N arbitrarily oriented cracks
in the body which are described by their surfaces
QFuQ;, where QF and Q; are the opposite crack
edges. The body may be affected by volume forces
bi(x). We assume that the displacements of the
body points and their gradients are small, so its stress-
strain state is described by the small strain g;(x) and
stress Oy(x) tensors, which are connected by Hook’s
law.

The crack surfaces Q; and Q; are locally paral-
lel and their curvature is relatively small. Therefore
we assume that Q7=Q"=Q . They will be distinct
by the direction of their external normal unit vectors,
n*(x)=—n"(x)=n(x). The vector of discontinuity dis-
placements ,

Au(x)=u*(x)—u"(x) VxeQ'uQ",

N
. =0 Q)

n=1 n=1

N
Q+= U Q+

characterizes the mutual displacements of the crack
edges.

During the deformation process, the overlapping
of the opposite crack edges is not allowed. This
means that between the crack edges may arise unilat-
eral contact with friction, which has been investigated
in (Chen and Hong, 1999; Zozulya and Lukm, 1998).
Here, the contact crack edges will not be taken into
account.

The problem formulated above may be trans-
formed into the BIE of the following form (1)

+ %M,-(Y) = J (P U ji(x —y) — u ;)W ;(x, ydS
v

# [ AW, x9S + [ p, @)U, -yt
Q v

#1p,0)= [ 00K .0 - @F .y
Vv .

+JAuj(x)Fﬁ(x,y)dS +J.p,.(x)Kj,(x,y)dV
Q

1%

The kernels in these integral representations are
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the fundamental solutions of the elasticity theory.
Any book regarding the BEM contains the expres-
sions of these kernels (see for example (Kupradze et
al., 1976; Guz’ and Zozulya, 1993)).

As is well known (Guz and Zozulya, 1993) when
y—x in the 3-D case

Usilx, )™, Wix, y)—>r72,

Kji(x, y)—>r7, Fji(x, y)—>r™

where r= \/()cI _)’1)2 + (xz—yz)2 + (x5 —y3)2 is a dis-
tance between the points x and y. In the 2-D case

Uji(x, y)—=In(r), Wix, y)—r,

Kj,‘(x, y)—)l'_l, Fj,-(x, y)—)r‘z

here r =\/(x| —yl)2 +(x2—y2)2 .

These kernels are W.S., singular and
hypersingular. The integrals with such kernels are
divergent, they can not be considered in the usual
sense (Reimann or Lebegue). These integrals need a
special consideration in order to make some sense,

III. DIVERGENT INTEGRALS AND
DISTRIBUTIONS

Divergent integrals and integral operators
with divergent kernels are used in mathematics, ap-
plied science and engineering (Gunter, 1953;
Muskhelishvili, 1968; Kupradze et al., 1976; Michlin,
1962; Hadamard, 1932; Gel’fand and Shilov, 1962;
Krishnasamy et al., 1992; Tanaka er al. 1994; Chen
and Hang, 1999; Zozulya, 1991; Guz’ and Zozulya,
1993; Zozulya and Lukn, 1998; Zozulya and
Menshicov, 1999; Guz’ and Zozulya, 1995).
Nevertheless, their correct mathematical interpreta-
tion has recently been shwon by the theory of distri-
butions (generalized functions) (Gel’fand and Shilov,
1962). This aspect of the problem is not discussed
often by specialists in mechanics. For this reason,
we will briefly consider divergent integrals from the
point of view of the theory of distributions and com-
pare it with traditional approaches.

Definition. Consider two points with coordinates
x, ye R” (where m=3 or m=2) and a region V with

smooth boundary dV. The boundary integrals are of
the type:

J]%dS(x), >0, VyedV

where f(x) is bounded in dV and their kernels are

weakly singular if O<a<m-—1, singular if m—1<a<m
and strongly singular or hypersingular if a>m.

1. 1-D Divergent Integrals

For clear and easy consideration, 1-D divergent
integrals will be studied first. We apply the
definition of integrals with different singularities from
(Gunter, 1953; Muskhelishvili et al., 1968; Kupradze
et al., 1976; Michlin, 1962; Krishnasamy et al., 1992;
Tanaka et al., 1994) to the boundary integrals which
are used in the BIE methods.

The WS integrals must be considered as
improper. They are defined as

b Y-£€|

b
) . £ £
W. | 3 d
S [ G, E?LO[J (x—y)"”’”_[ G-y
a ,\'+€2

(020<1), (a<y<b)

where f(x) is bounded in [a, b] function. In the same
way as the WS integrals are defined with the function
Inlx-yl instead of 1/(x—y)*

The singular integrals must be considered in the
sense of the Cauchy PV. They are defined as

X—-£€ b
RVJJLLI_I J O e | 90y,
Ja-yT Tes0) xoy Xy
(a<y<b)

where f(x) is bounded in [a, b] and Holder continu-
ous function at y.

The hypersingular integrals must be considered
in the sense of the Hadamard FP. They are defined
as

b,

RRJ NN
x-y)

a

X—-€ b

=lim[J f(x)7dx+J ) I_ﬂ]( <x<b)
L O N

The smoothness requirement at the function f(x)
has been discussed in (Krishnasamy et al., 1992;
Tanaka et al., 1994). Here this problem will not be
considered. We assume that all the functions consid-
ered here are sufficiently smooth.

Now, we will show how to calculate some of
the divergent integrals using these definitions. For
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simplicity, the divergent integrals with f{x)=1 will be
considered. The following integrals are easy to cal-
culate

b
W.S. f lnlx—y Ia’x

xr—=£€ b
=1im[J' 1n|x—y’dx+f ln‘x—y|dx]
5—)0“ Je
=(b—y)ln|b—y|—(a—y)ln|a—x , a<y<b)
b x—€ [) b
P.V.J——dx :lim[f dx +J dx 1| =2,
X=y &-0) x-y xX-=y a-y
a a X+ &
(a<y<b)
[7 X —-€ b
dx P dx dx 2
FP | —2—=1lim| + - £]
J(x—y)2 Hﬂf(x—y)z J(x—yf ¢
. a a X+E
__ 1 1 .
R R

At the last equation can be found an interesting ex-
ample of a function that is positive everywhere in the
integration region, but, its integral is a negative one

a,

. "d;
F.P.J o2

yz ~a- a>0

-da

In the same way the divergent integrals for some an-
other functions f(x) may be calculated.

2. 2-D Divergent Integrals

The WS integrals are defined as:

£-0

o f)
WSJWQ'S(X)— lim f WdS(x),
A% VIV .

O0<a<2, VyedV

Here 0V, is a part of the boundary, its projection on a
tangential plane is the neighborhood of the point x.
In the same way, the WS integrals are defined with
the function In|x—y| instead of 1/(x—y)“

The Cauchy PV of the singular integrals are de-
fined as:

P.V.J /&) zdS(x):limJ (f(x) 2dS(x)

@ -y) £=0 x —y)
k% IV (r <€)

Here dV(r<g) is a part of the boundary, its projection
on a tangential plane is the circle Cg(x) of radivs €
with center at the point x.

The Hadamard FP of the hypersingular integrals
are defined as:

f) . fex) f)
F.P. J a _y)3dS(x)—ggn0( « _y)3JS(x)+ Wi < g))
o Wv(r <€)

In the above definitions, assume sufficient
smoothness for function f(x) and boundary dV.

The calculation of the divergent integrals for the
2-D case using these definitions is not as simple as
for the 1-D one. Now we will consider the divergent
integrals which can be easily calculated using polar
coordinates:

Here C(y) is the circle of radius r with center at the
point y.

Using the above definition of the Hadamard FP
for a hypersingular integral, even for this simple
kernel, only small changes increase dramatically the
problem of this integral calculation. For example if
the point y is not located in the center of the circle
C(y) or if C(y) is a rectangle or triangle with the point
y located inside it, the calculation becomes not so
simple.

We will demonstrate here that using the ap-
proach developed in (Zozulya, 1991; Guz’ and
Zozulya, 1993, 1995; Zozulya and Menshicov, 1999)
one can easily calculate the divergent integrals which
arise in the application of the BIE method to elastic-
ity and fracture mechanics for any polygonal region,
analytically or numerically.

3. Distributions and Divergent Integrals

Most of the distributions, which arise in applied
science and engineering may be presented in the form

Jx)=0"g(x)

where g(x) is a continuous function. In general
d'=d1...d,m is a partial derivative of order r with re-
spect to xy, ..., x, and d{1 =9"1/dx|! is a partial de-
rivative of order r) with respect to x;.

As usual, f(x) is a regular function everywhere
in a region V except in the smaller subregion V*. In
the region V'=V/V' the generated function g(x) has
continuous derivatives d’g(x), but in the region V* the
functions d"g(x) can have singularities concentrated
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in separated points, curves and surfaces. These
singularities are taken into account automatically
when we operate with them according to the theory
of distributions (Gel’fand and Shilov, 1962).

Now, we will consider the concept of a definite
integral of the distribution. First consider a function
of one variable f(x) with strong singularities which
concentrate on x€ V'=[a, b]. What does this symbol
means for such distribution?:

b,

Io= |

a

To define the definite integral for functions with
strong singularities in the sense of the distributions,
let us use the test function @(x)e C~(V), such that
p(x)=1, Vxe[a, b] and ¢(x)=0, Vxe V. We arbitrarily
prolong the function ¢@(x) in the region V. In this
case, its derivatives are equal to zero in dV'={aq, b}.
Also we assume that the function d’g(x) is continu-
ous near the points x=a and x=b. Now consider the
scalar product:

(ﬁ@=fﬂﬂ%ﬂh=J8%©waﬂx
Vv v

In the 1-D case, d'=d’/dx" is an ordinary derivative of

r order.
Because the derivatives of the test function
@(x) equal zero in dV*, the integration by parts gives

jymwamh=<—wfguw¢@ux
v v

=(—ng0ﬁW@ﬂx

vr

At the last right integral the integration by parts in
reverse order leads to the result:

x=b

fgaﬁwaw»— l)JB%&MvMA+W ' g)

X=da

Taking into account that:
[ JOP)dx = f Jx)po)dx — f JX)e)dx
Vé

we will find the finite part of the divergent integral
according to Hadamard in the form:

b
F.p. ff(x)dx —FP. [ fode =" ?)
VS ¢

a

We can use this equation to calculate weakly singular,
singular and hypersingular integrals.

For regular functions this is a usual formula from
integral calculus which connects infinite and finite
integrals. Obviously for r=1 we have:

b

FP. | foas =

a

(3)

X=a

Using this formula one can easily calculate the 1-D
divergent integrals which were calculated before, us-
ing a standard technique. Evidently, the function

f(x)=1/(y—x)* can be represented in the form f(x)=

—9%In|y—x| and dg(x)=—1(y—x), then from (2) it fol-
lows

b
F.P. [ dx sdx ==F.P. [821n‘y—X‘dx
x=-y) Y
v.Y
x=b 1

| _ 1
G-y) @y’

- _x—y

(a<y<b)

The same result may be obtained for such represen-
tation of f(x)=—0d(y—x)"' and g(x)=—1(y—x).

If we consider the functions f(x)=(y—x)"' and
g(x)=In]y—x|, the singular integral, which is consid-
ered in the sense of Cauchy PV, comes from (3)

X

’

PVJ() —PV 8ln|y xldx—ln Z_x

(a<x<b)

If we consider the functions f(x)=In|y—x| and
g(x)=—]y—x|In|y—x|-(y—x), the WS integral, which is
considered as an improper integral comes from (3)

b
W.S.fln‘y—x‘dy:(b—x)lnlb—x’—(a—x)ln'a—-x| ,

(a<x<b)

Now we will find multidimensional analogies
for Egs. (2) and (3). The symbol 37~" in the multidi-
mensional case may be represented in the form
0/~ '=07'9!i, where symbol 97 ' is defined as an in-
verse operator for the operator of partial derivative
d; and also as an indefinite integral operator with re-
spect to x;. If the regions V and V* and their bound-
aries satisfy some special conditions, which are dis-
cussed in any standard course of analysis, we can find
the equation:

F.P. J foe)dV = [ o7 'gen x)dS”

S*
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or, for r=1, the equation:

F.P. J foe)dV = J 9,80 (x)dS”

14 5*

Here S” is the boundary of V* with such parameter-
ization that the right integrals do not have integra-
tion with respect to x;. n'(x) is a unit vector normal
to the surface S*. For the multidimensional case, the
regularization of the divergent integrals use, instead
of these equations, the Ostrogradskii-Gauss theorem
in the form:

| rextv = [ ageav = | 9,gaas )
v v 1%
and the second Green theorem in the form:

f [P () — g )AP(X)dV
v

=f [px)d, g (x) - g(x)d, P )ldS (5)

oV

as it has been shown in (Zozulya and Lukin, 1998;
Zozulya and Menshicov, 1999).

In the next section we will apply this approach
for the calculation of integrals with singularities that
arise during the application of boundary integral equa-
tions to three dimensional elasticity and fracture
mechanics.

IV. TRANSFORMATION OF DIVERGENT
INTEGRALS INTO REGULAR INTEGRALS

Ostrogradskii-Gauss theorem will be applied for
the regularization of divergent integrals, which arise
at numerical applications of the BIE using the BEM
in elasticity and fracture mechanics. For that pur-
pose the boundary of body dV is divided into N bound-
ary elements S, such that

N
V=Ss=US

n=1

S,NS, = if n+k

n?

For simplicity, only the boundary elements that
are plane convex polygons and the interpolation poly-
nomials that are constants with nodes of interpola-
tion located inside of elements will be considered.
The 1-D singular and hypersingular integrals for 2-D
problems in the theory of elasticity and fracture me-
chanics are obviously very simple (Chen and Hong,
1999). For this reason, 3-D problems and the corre-
sponding 2-D weakly singular, singular and
hypersingular integrals will be considered here.

The rectangular coordinate system will be

considered with the x| and x; axes located in the plane
of the boundary element and the x5 axis perpendicu-
lar to this plane. For this case, all the integrals with
singularities in the integral Eqgs. (2) and (3) may be
presented in the form

! m
JL,INIJ' (xl )1) (X2 yZ) ds (6)

rk

N

n

where r = \/(xl -y 1)2 +(x, ‘)’2)2 , Xa» Vg are the coor-
dinates connected with the boundary element »n and
o=1, 2.

The main idea used for the regularization of the
divergent integrals may be illustrated by the example

F.P.J ‘i—f:F.P.fAﬁdV:f Vol eneouds
3, s

Sy n

= f 3,-ds (7)
5,

Here A,=07+03 is a two dimensional Laplace
operator, V,=0,+d, is a two dimensional Hamilton
operator, dS,, is the boundary of the element S, or its
perimeter. In the 2-D case, the Ostrogradskii-Gauss
theorem with g(x):% andf(x):%:Az% has been
applied. Eq. (7) shows that for the regularization of
the divergent integrals using the Ostrogradskii-Gauss
theorem it is necessary to find the function g(x) such
that fix)=A,g(x).

Here the Ostrogradskii-Gauss theorem (4) and
the Green theorem (5) will be used for the transfor-
mation of the 2-D divergent integrals into 1-D regu-
lar contour integrals. The divergent integrals, which
will be considered here, may be divided according to
the type of kernel in the integral (6). Each type of
divergent integral will be considered separately.

1. Integrals with Kernels of the Type ™, k>0

Integrals of this type may be regularized using
the Ostrogradskii-Gauss theorem (4), from which it
is easy to calculate the following representation of
the kernel for this type of integral. In this case and
and

Replacing the kernel at integral (6) by this equation
and taking into account the Ostrogradskii-Gauss
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theorem (4) it is easy to find that

J%0=Fp. [ﬂ —L_FP. J A—L_ds
' S k- 2) 2k
=1 J i (8)
2 n_k-2"
(k=22) "r

After the calculation of the normal derivative, the
regular contour integral has the form

ko k=2)
5, 3,

J0= F.P. J R (8a)

Here r,=(xq—ya)ny and a=1, 2.

These equations may be used for the regulariza-
tion of integrals with the kernels 1//* for every inte-
ger k>0 and k#2.

Let us consider, for example, the hypersingular
integral with kernel 1/r°. In this case f(x)=1/r" and
g(x)=1/r and Egs. (8) and (8a) with k=3 are trans-
formed into the following

J3O=FP. | [ 0= J%d! )
5 ds, ds

n n

This result completely coincides with (7).

For k=1 we have the weakly singular integral
with kernel 1/r, which may be transformed using the
Egs. (8) and (8a). In this case f(x)=1/r, g(x)=r and
+=Ayr. Now from the Ostrogradskii-Gauss theorem
(4) comes the regular contour integral in the form

) r”
J?":W.S.j@:W.S.JAZNJS:J a,,mz:%J Lugy
F)

s 3,

S n n n

(10)

The Eqgs. (8) and (8a) are used to calculate this
type of integral for the general case, but they can not
be used to calculate the integral with kernel 1/7%. The
singular integral with kernel 1/r* must be considered
separately. After the regularization of this integral
the final result is the following regular contour inte-
gral

s0=pv. | 45 - 2J (00 %3, 1~ L3, 0n
Sy Sn
=[ L an
. r-
as

Now any divergent integral with a kernel of the
type 1//* for any positive integer k can be calculated.

2. Integrals with Kernels of the Type Yo , k>0

Like the previous case, for the regularization of
this type divergent integral, the Ostrogradskii-Gauss
theorem (4) may be used. The kernels of this type of
integral may be presented in the following form

Xoq =Yg _ 1
R ) (e

Xg—y
A a o
2 k-2 ¢
r

k>0, k#2, k#4.

For k=2 and k=4 this representation is not valid.

Using this representation with the Ostrogradskii-
Gauss theorem (4) divergent integrals with kernels
of the type (x,~y)/r* may be transformed into the
following regular contour integrals

1L0_ Yo=Yy jo_ 1 ' xa )a
J! _F.P.f s (k_z)(k_zl)F.P.J AyErdsS
S" Sll
X~ )a

(k 2)(/\ 4)Ja d

k=D a=yara
gl @f[kz EEE
k>0, k22, k+#4 (12)

Now let us consider several examples. The in-
Xa=Yqo
r

tegral with kernel is in fact a regular one, but

it may also be transformed into the regular contour
integral, Wthh 1s edsy to calculate. Taking into ac-

1A2r(va—y ) and using Eq. (12)

count that r

it can be shown that

J:’O=J @ds =%J Ayrx g =y S

Sa Sh

%J anr(xa—ya)dl=%J [n”r+(x—a_r)’+‘)r”]dl (13)

a5, oS

n

The singular integral with kernel (x,~yq)/r’
is calculated using Eq. (12). In this case, f(x)=
()ca—)za)/r3 and g(x)=—(xa—ya)/r Taking into account
Tada__pte"a B (12) with k=3 is trans-

3
formed into the following one

that

r
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J§°_ij "dS_—PVfA Te Ve g
)’

=—J a,,x“,;.yadz:J [(X"’_—z‘)()r”—”T"‘+dl (14)

r
ds EN

n n

For k=2 and k=4 the general Eq. (12) is not
valid. But these integrals may be evaluated using
the Green theorem (5). For the regularization of
the weakly singular integral with kernel (xo—yq)/r?,
the functions f(x)=1/r and @(x)=r(x,—y,) must be
placed into the Green theorem (5). Taking into a-
3cg-y,)

- it is easy to show

count that Ayr(x,—ye)=
that

Jho- W'S'J ff’__zﬁdg
r
S”

=—%a[ [ =y 0,k = 13,1 — y Dl
S

n

:j [(i‘?;r’zi + ey (15)

ds

n

The hypersingular integral with kernel (x,—yq)/
r* is calculated with f(x)=1/4r" and @(x)=xo—yq. Tak-
i;g into account that F=ZAZF it is easy to show
that

JLOZFP. j ZaYays
r

=%f (0007 00,5 =50, =y Wl
a8,
2=y Jr, n
=-%f ["r—f"+—r%]dl (16)
as

n

Also, divergent integrals with kernels of the type
(xg=ye)/r* can be calculated using Eq. (12) for any
positive integer k.

2
3. Integrals with Kernels of the Type Ca=yq) kya) ,
k>0 r

This type of divergent integrals will be regular-
ized using the Ostrogradskii-Gauss theorem (4). The
kernels of these integrals may be presented in the

following form

xg=yy) | (rg— )) 2
ko k-k- 6){A2 g2 )

k>0, k#2, k#6.

This representation is not valid for k=2 and k=6.
Using this representation, divergent integrals of
this type may be presented in the form

Y
J§'°=F.P.JQ—“—A_y—QLdS
r
S

n

(F.P. Az—("’ Yo g5 2FP’ ds
r r 2

— 1
 (k=2)k -6)

N

S n

At the right part of the previous expression the last
divergent integral may be calculated using Eq. (8),
and the first one may be regularized using the
Ostrogradskn Gauss theorem (4). In this case f(x)
G-y, (=Yg’
rk k - 2)k —6yrk-2"
these functions in the integral (6) and taking into ac-

count the Ostrogradskii-Gauss theorem (4) it is easy
to find that

and g(x)= Replacing

2
JPO=F.P. [ e P
r

.
SII

g ) )L11-2FP j ds y,
.

D 6)f o

s
k>0, k2, k#6

After the calculation of the normal derivative and the
divergent integral, the regular contour integral has the
form

- _v )2
Jf*‘):F_p_J’("a—k)a)dS

r
SN

— 1 [2("‘0(_))(1)”01 + 2)’”
T k-2)k-6) rk-2 (k —dyrk-2

k==Y )
2 e nyg) | (7

r

These equations may be used for the regularization
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2
Cg=yy)

rk

of integrals with the kernels for every i-

teger such that k>0, k#2 and k#6.

The weakly singular integral with kernel
gy,
3
account that ———%—
to show that

is calculated using Eq. (17). Tdkmg into
(x a” Y ) 2 (xa y )
r? 3( &2

), it is easy

2
- 2x - ]
5] Fatd T Hatdle By )
p
SII
2
(xa_ya) is

]
calculated using the Green theorem (5). Taking into

(a y) 1 (xa y)
TG

The singular integral with kernel

account that A, ) it is

easy to show that

J20=pyv. j S{‘X_y)_ds

e
SI'I
=1 ds 1 ( )
=3PV | 5 4P.V.JA2 —--ds
Sn S”
2
_1{ds 1| 5 &a=Yo)
=3 &3 2, - dl
SII ‘asn
_1f Eamyere Gazyna ryinr
A Sl (19)
as

The hypersingular integral with kernel

2
(g Sy—"‘) is calculated using Eq. (17). Taking into
r 2 2
Xo— -
account that %:%(%_Ag_(xaﬂya) Y, it is

easy to show that

2
JXO=FP. [ (x"‘—sy'x)—ds

r

S"

=ipRaJ¢§i[%gi;Llw)
3 r? r

Sll S”

Wa=Y4)" y)

n
r ri

zfa—ds——j

n

g —ya)zr” 20 =Y Mo 2r,
[ p 37 + 3r3]dl (20)
as”

For k=2 and k=6 the general Eq. (17) is not valid.
The corresponding integrals can be calculated using
the Green theorem 55). For example, the integral
Xg=Yy)

r2

it may also be transformed into a regular contour in-
tegral which is easier to calculate. In this case f(x)

with kernel is in reality a regular one, but

=1 and OX)=r(xg=yo)* 2Taking into account that

-
Az"(xa—ya)z 2r +ﬁ(‘1—y)

2
J ComVe) s
p

Sll

it is easy to show that

-H [ =y )0,k = 19, rGe g - y )2l
a5,

2 2 .
2,0 _ (xa_y ) _] (xa_y )rn
J3 —J42 & dS—E [——r2°‘ +x0(no,]dl——2

(21)

4. Integrals with Kernels of the Type
=y ), =y,
rk

, k>0

Integrals of this type may be regularized using
the Ostrogradskii-Gauss théorem (4) using the fol-
lowing representation for kernels

(x]_yl)(xz_y2)= 1 A (x]_yl)(xz—yz)
o Ck-2k-67 2
k>0, k#2, k#6.
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This equation is valid for every positive integer k,
except k=1 and k=2.

In this case f(x)=(x'—-)Lix2:y—2)

=y )=y,
(k —2)k —6)rk-2"
integral (6) and taking into account the Ostrogradskii-
Gauss theorem (4) it is easy to find that

and g(x)=

Replacing these functions in the

I =FP. f &=y )& =y) _y‘)E_xz_y2)dS
r

SH
O &)=y )Yy o
-m”’-f SR
Sll
[ ) )(x’) )’2)
Tk 2)(k 6) rk=2
[ I (k—2)(x,—y1)(x2—y2)r,,
= 2)(k 6) rk
a5,
(22)

Where r.=xny+x3n,.
These equations may be used for the regulariza-
0 =y =y, for

tion of integrals with the kernels .

,
every integer, such that k>0, k#2, and k#6.

The weakly singular integral with kernel
X -y )X —y,)

3 is calculated using Eq. (22).
G-y -y 1,

AL [AAC L& S 1V

e 3

, it is easy to show that

,
Taking into account that

=y =y,

.
J;v'=W_s.f————(x'_y‘)(3x2_y2)ds
r
S”
=-1ws. A y')r(x2 YD ys
aS”
=_%f a"(x|—y|)r(x2—)’2)dl
S”
%f - ,)(er Yo - (23)
E)

The singular integral with kernel

=y e =y,)

2 is calculated using Eq. (22).

r

Jdi

X =y o, —
Taking into account that M=—£A2
X, =y X, — r
M—z——yz—), it is easy to show that
-
X =y )a,—
J);':P.vf—_—( ! y')r( 272 4
S"
X, -V )x,—
=—lP.V.fA2-—*———( ! )‘)(2 27Y9) g
r
SH
____l a( yl)(x2 yz)
4 n r2
a5,
=l r(xl—yl)(x2_y2)r” —&dl 24
2| o5 (24)
as

The hypersingular integral with kernel
(xl_yl)(x2_y2)

3 is calculated using Eq. (22).

r . — _
Taking into account that M:—%Az
_ _ r
M;z_yz), it is easy to show that
r
X, =y ), —
J}':F.P.f——( ' yl)(s 272y
r
S"
X, =y ), —
=_lFP.JA2———( ! y])(3 2702 4
r
SH
__l a ( y])(xz 2)
- 3 n r3
3s,
x r .
lf yl)(° yz)n__L]dl (25)
3 r3
Js,

For k=2 and k=6 the general Eq. (22) is not valid.
The corresponding integrals can be calculated using
the Green theorem (5). For example, the integral with

¢, —)’1)()52—}’2)
2

kernel is in reality a regular one, but

. r
it may also be transformed into the regular contour

integral, which is easier to calculate. In this case
f(x)—-l— and @(x)=r(x,—y|)(x,—y,). And taking into ac-

S, - yl)(xg YD)

count that A,r(x—y)(xo—y,)= tis

easy to show that
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j(xl y)(x2 yz)

= =y =0, = 10,y ey
95,

and that
x -V X -V
Jé‘l:f( i )|)(?2 )z)dS
2
Sll
_yl)(xz_yz)r,, Fx

_1f = LI
_ZJ[ > + ol (26)

ds

n

V. CALCULATION OF THE DIVERGENT
INTEGRALS OVER ANY POLYGONAL
ELEMENT

Divergent integrals of type (6) have been trans-
formed into regular integrals and may be easily
calculated. For example, the integral (8) for a circu-
lar area with the point y located in the center of the
circle leads to the following result

2r
Jo0_ 1

i 1
k (k 2) J an ,\ 2 (k 2)2! dr r )rd(p

e 27)

Where polar coordinates are used and r is the circle
radius.

In the application of the divergent integrals in
the BEM, it is necessary to calculate the above inte-
grals over any triangular, rectangular or polygonal
elements. For that purpose these integrals must be
transformed into a more convenient form for the cal-
culation (Zozulya and Lukin, 1998; Zozulya and
Menshicol, 1999).

Let us consider the contour dV, as a polygon
with Q angles. To calculate the divergent integrals
of type (6) the approach developed in (Zozulya and
Lukin, 1998; Zozulya and Menshicol, 1999) will be
used. All the calculations will be done using the lo-
cal rectangular coordinate system with its origin lo-
cated in the point y, the x| and x, axis located in the
plane of the polygon and the x; axis perpendicular to
this plane.

The coordinates of an arbitrary point on the con-
tour dV,, may be represented in the form

x1(D=x,(q)—tny and xy()=x,(g)+tn,

where x(q) and x,(g) are the coordinates of the g-th
side of the contour, n(n;, ny) is a unit vector normal
to the contour and t€ [-A,, A,] is a parameter of inte-
gration along the g-th side, 24, is the length of a g-th
side.

These are some useful notations

rA(O=0+2tr (@) +r2(q), r{q)=—x,(g)n2(q)+x2(q)n(q),
r()=x}()+x3(q), ru(@)=xq@Ine(q),

rdq)=x(g)n(g)+x2(q)n(q)

Aq Aq
li !
Im,l zf Htr dr = ! 1/2dt
o 2 +2tr (@) + r¥g)"
—8y -4y
A‘l
In (r(t))
12, In= 2 dt
@)
—A

Using these notations the integrals under consider-
ation may be represented in a convenient form for
the calculation.

1. Integrals with Kernels of the Type r™*, k>0

Q Q -
0,0 ,0
Ji | =—(k+2)q§| @l I =q>;| @ o>
0,0 < 0,0 g
‘13’ == qgl rn(_q)13,0 > JZ, =_q§l rn(q)ll In (28)
. xa—ya
2. Integrals with Kernels of the Type % k>0

Q
Z o@Dy 20

1,0 _
I T (k- 2)(k 4),=

— (k- Dr (@)x @ o~ ”ﬁ(Q)]k, E

J10= E " DI 10~ 1@ @ 1 o= 1 @, 1)
Jy°= E " @A, + 7, @Y @ =1 @), 1)
1,0 1 2

57 =3 2, 0o o= r@)e o5 0= n @), 1)

0 |
T30== 3 X 0a@l0= 2, @ a@),0 74N, )

(29)
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-y

3. Integrals with Kernels of the Type k ,
r

k>0

2,0 _
J20= m/z (k = 2r (@ 5

=2ngg¥ @Iy, + X5 )
+2n @) g@ o1 =X o@Dy _2,0)

=2r, (@ o, o/k =4)
2,0 _1 2
Jy = 342:31 @O H@ 52— 21 5@ @) 5y + X 5@ 5.0)
=2no@ng@I 1 =x ol 1 0)+2r,(@) 1,0)

Ji0= E (@Y H @I 4, 2 = 20 gGW @4, 1 + X5 4. )

=21 (@0 g 5, | =X oD, 0) + 1, (@) 5, 1/2)
2,0 _ 1 2 2 2
Js g g (",,(q)(”ﬁ(Q)Is, 2~ 2’1;3(61)’Ca(‘])15, 1+ x5 o)
=21 @)X g3, =X D5 0) = 2r , (@) 3 )
o_1 g
J3°= ZEI (W @Xn @y, 5 = 21 @ (@ 5, + x5 o)

+2n a(q)(nﬁ(q)Af, -2 I(Q)Aq)) =S, (30)

4. Integrals with Kernels of the Type

ML‘J’.L) , k>0
r
U P 2 (e = 2r (X (@ @) 2
=@l =X @@ )+ 0@ - 3@ sy
+ r*(q)lk -2, 0))
Jé : l 2 n(q)(_ n l(q)n 2(q)]2’ 2 + r_(q)]l !

242

3, @@, 0) - (0 2G) ~ nHGNAL2 + r (@A)
L,1_1 2
Iy =13 X @ 2+ @,

+X|(Q)x2(fl)]3, o)~ (’1%((])—”%(61))11,1 - ’*(51)11.0))

0
Jtlly 1 = %z[gl (I‘"(([)(— n I(q)" 2(q)]4- 2 + I’_(C])l4. !
+X,@ A 0) = ()= n3 @ 1 +7o@) 5,0 2)
5'=3 %, S Gr X n gn@Vs 2 + @,

+x (@@ 5,0) — (1@ = 5@ 5. 1 + 1) 5, 0)
(31
VI. CONCLUSION

In the present publication weakly singular, sin-
gular and hypersingular integrals, which arise when
the BIE are solved using the BEM have been
considered. The approach based on the theory of
distribution, (Zozulya, 1991; Guz' and Zozulya, 1993;
Zozulya and Lukin, 1998; Zozulya and Menshizov,
1999; Guz' and Zozulya, 1995) has been used. The
equations to calculate the divergent integrals with
various singularities have been given. This approach
may be used to calculate various multidimensional
divergent integrals.
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