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ABSTRACT

A numerical algorithm for an external Dirichlet problem of the
Poisson equation is considered. The domain Q extending to infinity is
divided into a bounded subdomain €2, and the unbounded subdomain
Q,. The finite and the boundary element methods are applied to the
boundary value problems in the bounded and the unbounded
subdomains, respectively. An iterative scheme using the Dirichlet-
Neumann map on the interface an is presented. The convergence of
the scheme is mathematically guaranteed. A simple numerical example

shows the effectiveness of our scheme.

I. INTRODUCTION

In practice, we often confront external problems,
in which domains are extended to infinity. Let Qc
R? be an external domain with the smooth boundary
[y Let fe L*(Q) be given, whose support is assumed
to be compact. We denote by H'(Q) and H"*(T') the
usual Sobolev spaces. Then, we consider the follow-
ing external boundary value problem:

Problem 1. For given Dirichlet data ge H'"*(Iy), find
ue H'(Q) such that

—-Au=f in Q,
u=g on T
A domain decomposition method for the exter-

nal problem was suggested in the middle 1980s.
Gatica and Hsiao (1995) considered the method of

*Correspondence addressee

solution that treats a problem with an unbounded do-
main as a problem with a bounded domain. Recently,
Yu (1996) suggested a non-overlapping domain de-
composition method for an external Dirichlet
problem. His method is called, by himself, the
Dirichlet-Neumann alternating method. The mapping
from the Dirichlet data to the Neumann data is called
a Dirichlet-Neumann map, and this map is expressed
by a boundary integral operator. His method is based
on the Dirichlet-Neumann map. This is different from
the method presented by Feng and Owen (1996).
The purpose of this paper is to inquire further
into the Dirichlet-Neumann alternating method for the
external Dirichlet problem of the Poisson equation
(Harayama et al., 1998.7, 1998.10, 1998.12). The un-
bounded domain Q is divided into an internal bounded
subdomain and the external unbounded subdomain.
We apply the finite and the boundary element
methods for the internal and the external subdomains,
respectively. Different from Yu’s method we apply
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the boundary element method for the external
subdomain in order to cope with an arbitrary shape
of the interface between the internal and the external
subdomains.

II. THE DIRICHLET-NEUMANN
ALTERNATING METHOD

We consider a closed curve I'y, which satisfies
the following conditions.
eThe unbounded domain  is divided into an
internal subdomain Qg and an external
subdomain €, by the interface T',.

oThe interface I';) encloses the support of the
function f.

eThe distance between 'y and '} is always

positive.

Let ng and »n; be unit normal outward vectors
corresponding to Q, and Q, respectively. Then, we
consider the following method in order to solve Prob-
lem 1.

Step 1. Pick a boundary value A%e H"*(T"}) and set
k:=0.
Step 2. Solve the Dirichlet problem in Q:

—auP=0  inQ,

uP=2% onl,.

Step 3. Solve the mixed boundary value problem in
Qol

—AM(()k)=f in Qo,

k «
ul  ouP r
g, om, M0
o n)

ufr=g on [y.
Step 4. Modify the boundary value:
A =0pu® +(1-a)A® on Ty,

where a relaxation parameter ¢ is selected as a suit-
able real number.

Step 5. Set k:=k+1 and go to Step 2.

The Dirichlet-Neumann map % for Q, is defined
by

_ouy

K'/l:_an,’

where u, is a solution to the Dirichlet problem of the
Laplace equation in Q;:

—AMIZO in Q],
u;=A onT.

Then, we notice that the equations in Step 2 and 3 are
equivalent to the following equations:

—Au®=f in Q,
ou®

—_anoo =— %A% onT,

ul=g on Ty.

III. DISCRETISATION

We adopt the boundary element method to solve
the external Dirichlet problem in Step 2. We start
with the problem mentioned in Step 2:

-Au;=0  in Q,

w;=A onT,.

We consider the fundamental solution of the Laplace
equation

Gx; §)=21n1nm ,

which satisfies
-AG(x; &)= dx- &)

with the Dirac measure on the right-hand side.
At the point & on the boundary, the following
boundary integral equation holds:

S+ [ w3l are= | g w6 are

with F|=BQ| and q,(x):&ul(x)/anl.

Problem 2. For given u; on the boundary T'}, find ¢,
such that

| a,@66: garw=1u,@+ | u@2Ca: pare).
T T ny

We shall describe a discretisation procedure for the
boundary integral equation by introducing finite ele-
ments on the boundary. To begin with , we approxi-
mate I'| by a polygon consisting of n; small line seg-
ments called elements as I[';=U]1 ,['9). By using the
finite element base functions ¢¥(x) corresponding to
the subdivision of I'|, we approximate &, and ¢, in
the form:
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u ,(x):jgl uY)(p(i)(x), q](x);jg,l q({)¢0>(x),

where u{) and g% are, respectively, nodal values of
the functions u, and g, at the jth node x? on the
boundary. Then, we take n; points of collocation x
(i=1, 2, ..., n;) on the boundary. After replacing the
exact u; and g, by the above approximations, we can
obtain the following linear system of equations:

Hu=Ggq,
where
u) g
u(|2) q(lz)
u = . ) q =
Lt(l"l) q(lnl)

Since the Dirichlet data A is given on the boundary
", in Step 2, the linear system of equations can de-
termine unknown g from

=HA

with given A such that

We adopt the finite element method to solve
numerically the mixed boundary value problem in
Step 3. For the sake of convenienge in mathematical
discussion, we take the boundary value g of Problem
1 as 0 without losmg generality. We define a func-
tional space ' () such that

' (Q0):={ ve H'(Qp), v=0 on T,}.

Problem 3. Find ue A' (Q,) such that

LO Vu - Vvd9+fr| (%u)vdrzfgofvdﬂ,

Vve H' (Q),

where X is the Dirichlet-Neumann map for the
domain Q.

We divide the domain Qg into a set of triangu-
lar elements. We write down each triangle of Qg as

7, and let 7 be an open set. We denote the aggregate
of triangulation by T". For each subdivision 7", the
symbol A is the positive integer such that h=

max d(1), where d(e) expresses the diameter of the
te T"

set.

Let S'"cAH' () be a finite element functional
space such that

Si={vpe C(Q); vhl =0y +opx+osy, e T'},

where ¢, a,, o3 are coefficients to be determined.

Problem 4. Find u,e S), such that

Vi, + Vv, dQ J IT = f 490 |
-[Qo Uy, Vy,ald+ FI(KI“/:)UI:( Qof Uy,

VU/ZG Sh- (])

Let N be the number of the vemces P;in T” We
notice that dim §,=N. Let {P } - and {P } K be
the vertices of QO\I“, and F,, respectlvely We de-

note by {¢; }1—1 and {(;),(},‘_I the sets of the following
piecewise linear functions:

¢,’(Pj)=5ij’ ¢,‘(131)=0a
ék(Pj)zo’ &k(ﬁl)zcskl'
Since the functions @, @, ..., Ok, @), .-, Py _g are

the basis of S, and ¢;|r =0, Eq. (1) is equivalent to the
following system:

Vu, +VodQ=| fodQ, i=1,2, .., K,
h i i
Qq Q

[ Vu, + V3.dQ + fr (Ku )BT = JQ 13492,
| 0

Ja,
.oy N-K. (2)

Denoting nodal values by u=u,(P;) and iy =uh(13,),
we can write

ﬁ N-K
u, =j=l ujq)j+ 1§1 o .

Then the linear system (2) can be written in the ma-
trix form:

Avll A.l2 {U}_: I;I (3)
AT An,+K|\V] (b2
12 22

We substitute the Dirichlet boundary condition
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Fig. 2. Finite elements and boundary elements (800 finite elements,
40 boundary elements)

u,=g=0. Let A be the Dirichlet data prescribed in Step
2. Then, we notice that KV=KA, where A:(/I(IS] ),
/l(ﬁz), ey /"L(ISN_K )". Hence, the linear system can
be written as

ApAg {U}={ b, }
AszAzz v b,-KA

Therefore, we can get the following recurrence
formula:

AHAIZ {Uk}= bl (4)
A1T2A22 Vi b,-KA,
A=V +(0-a)A, (k=0,1,2,..)

with the relaxation parameter . The coefficient
matrix of Eq. (3) is partially asymmetric and full. On
the other hand, the coefficient matrix of Eq. (4) is
symmetric and sparse. This is the advantage of our
method.

Fig. 3. Exact u.

IV. NUMERICAL ALGORITHM

From the methods of approximation described
in the previous section, our numerical algorithm can
be summarized as follows:

Step 1. Pick an initial value A and set k:=0.

Step 2. Solve the Dirichlet problem in Q, using the
boundary element method to find KA, .

Step 3. Solve the mixed boundary value problem in
€ using the finite element method to find V.

Step 4. Update the boundary value:

A =0V +(1-0)A,.
Step 5. Set k:=k+1 and go to Step 2.

We obtain the following theorem about this
algorithm.

Theorem (Yu, 1996) If the relaxation parameter ¢
satisfies the inequality O<oy<1, then the iteration us-
ing Step 2 through Step 4 is convergent.

The convergence of our discrete iterative scheme
with an arbitrary initial value A, is thus guaranteed
from this theorem.

V. NUMERICAL EXPERIMENTS

In this section, we demonstrate the effectiveness
of our numerical method through numerical
experiments.

We notice that the function u=cos/r is a solu-
tion of the Laplace equation, where (r, 8) denotes the
polar coordinates. Suppose that the function « is
unknown, and consider the Laplace equation in the
external domain Q={(r, 6); r>1, 0<6<2r} with the
boundary condition u=cos@ on the boundary I'g=
{(1, 6); 0<6<2rm}.
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Fig. 4. Calculated u) .

4

H

i

o aof
nng
W™
11

T

us 3n/2 2
central angle § / !

0 /2

Fig. 5. Calculated A® v.s. exact A (A=0).

The external domain Q is decomposed into
the bounded subdomain Qu={(r, 0); 1<r<3, 0<6<2r}
and the unbounded subdomain Q,={(r, 6); r>3, 0<6
<2r} by the interface I'|={(3, 6); 0<0<2x} (see
Fig. 1).

The domain €  and the boundary I'; are divided
into triangular finite elements and boundary elements
respectively as shown in Fig. 2. We set 04=0.5 (k=0,
1,2, ..). Asan initial guess, we take A¥=0 along the
circle I'y. Fig. 3 shows the contour lines for the ex-
act solution, and Fig. 4 the calculated contour lines
at the number of iterations k=3. We can see by com-
paring these two figures that the numerical solution
is in good agreement with the exact one. Calculated
boundary values A¥(8) with two initial values A”=0
and sin@ are plotted against central angles 0 with ref-
erence to the exact A(8)=u(3, 6)=cos6/3 in Figs. 5 and
6 respectively. It is independent of the choice of ini-
tial values that calculated boundary values A*’ con-
verge to the exact A, which yields that it is possible
to pick arbitrary initial boundary values. The errors
IA=AB 2 )= (2727 | |A(8)—-A®(8)1/m} " for each
mesh size are plotted in Fig. 7, where we take A©=0
and set 8;=2x(i—1)/m with m boundary nodes. We
can see that the convergence rate is independent of
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Fig. 6. Calculated A® v.s. exact A (1%=sin@).
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Fig. 7. Errors for each mesh size.
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Fig. 8. Errors for each oy (1).

the mesh size of finite and boundary elements.

Figures 8 and 9 show the errors {27[21.';, |A(6,)-
ABB)Im) ' for each oy with A9=0 and m=40. The
convergence is oscillatory as ¢y tends to 1. On the
other hand, the convergence is not oscillatory as oy
tends to 0. It is clear that our scheme with =0 is
not convergent. When o is near 0.5, the convergence
is very rapid. In this problem, we observed from Fig.
10 that the optimal ¢ is 0.5 or 0.6.
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Fig. 9. Errors for each o (2).

V. CONCLUSIONS

We considered an iterative numerical algorithm
for an external Dirichlet problem of the Poisson
equation. The Dirichlet-Neumann alternating method
proposed by Yu consists of the following steps: 1)
The domain of the problem is decomposed into a
bounded subdomain and an unbounded subdomain by
an interface. 2) For arbitrarily given Dirichlet data
on the interface, the boundary value problem in the
unbounded subdomain is solved. 3) By using the so-
lution in 2), the boundary value problem in the
bounded subdomain is solved by the finite element
method. For a circular interface, the solution of the
boundary value problem in the unbounded subdomain
can be given by the Poisson integral. In order to use
this integral, we need to treat numerically the
hyper-singular integration.

In our algorithm, applying the boundary element
method, we can solve, numerically, the boundary
value problem in the unbounded subdomain without
treatment of the hyper-singular integration. We dem-
onstrated effectiveness of our algorithm by the nu-
merical experiments.

NOMENCLATURE
Aj coefficient matrix in FEM
f inhomogeneous term of the Poisson equa-

tion
G(x;E) fundamental solution of A
g Dirichlet data
H, G coefficient matrices in BEM

K coefficient matrix corresponding to X
Sy finite element space

uyv nodal column vectors in FEM

u solution of the Laplace equation

u,q nodal column vectors in BEM

oy relaxation parameter

T 0Q, the boundary of Q

I, interface

A0S >> 0>

s k
S
(-] ® o N £

IS
T
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Fig. 10. Number of iterations for each o.

Laplacian

central angle in radian

nodal column vector corresponding to A
unknown value of # on T,

), ¢; finite element base functions

unbounded domain of the problem
Dirichlet-Neumann map
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