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ABSTRACT

The phenomenon of solitary waves propagating through steep
slopes is numerically analyzed by means of the boundary element
method. With the fully nonlinear boundary condition on the free water
surface, the Lagrangian method is used in the numerical scheme to de-
scribe the motion of the fluid particles. The forward-difference ap-
proximation is used to deal with the time derivative. The processes of
runup and rundown of solitary waves on steep slopes are studied.
Present results are compared to other published results. For waves
with a ratio of incident wave height to water depth, 0.4, the distribu-
tions of fluid velocities are presented.

1. INTRODUCTION

For the design of coastal structures, the propa-
gation and runup of solitary waves over shelf and
slope is one of the most important investigations.
Based on the Boussinesq equation, the numerical
simulations for runup of solitary waves are studied
by Pedersen and Gjevik (1983), Kim et al. (1983).
Synolakis (1987) and Kobayashi et al. (1989) stud-
ied the runup of solitary waves using first order non-
linear shallow water wave equations.

Based on potential flow, the boundary element
method with fully nonlinear boundary conditions has
been developed by many researchers. Nakayama
(1983) analyzed the propagation of tsunami and runup
of a solitary wave against a vertical wall. Grilli et al.
(1994a, 1997) investigated the breaking of solitary
waves on slopes. The characteristics of solitary waves
breaking on immerged or submerged breakwaters
have also been studied by Grilli er al. (1994b). One
of the authors (Chou & Shih, 1996) analyzed the
generation and deformation of solitary waves on

*Correspondence addressee

slopes; the scattering problems induced by the
waves over the shallow water region were also dis-
cussed.

As shown in Fig. 1, Street and Camfield (1966)
studied the runup of solitary waves and presented the
criterion. of breaking type and limitation of wave
height by laboratory investigation. They found that,
for solitary waves on the slope greater than 10°, waves
would not break during runup. Grilli et al. (1994b)
studied the rundown of solitary waves on slope s=1:2
and reported that waves may break during rundown.
In these papers, however, the distribution of fluid
velocity was not fully discussed.

In this paper, the runup and rundown of solitary
waves on steep slopes are numerically analyzed. On
various steep slopes (slope=1:1, 1:2 and 1:5), soli-
tary waves with relative incident wave height H, =
H,/h,=0.2, 0.3 and 0.4 are studied, where H, and A,
denote incident wave height and the water depth of
constant water region, respectively. For the case of
H; =0.4, the distributions of fluid velocities are also
presented.
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Fig. |. The criterion of breaking type of solitary waves published
by Street & Camfield (1966).

II. THEORETICAL ANALYSIS

A numerical wave tank diagram is shown in Fig.
2. The origin of the coordinate is located at the in-
tersection of still water surface and slope. The x-
axis and z-axis are pointed positively right and
upwards, respectively. The fluid domain is bounded
by the pseudo wave generator I'y, free water surface
I',, impermeable slope I';, and seabed I',.

1. Governing Equation

Assuming that the fluid is inviscid and
incompressible, and the flow is irrotational, the ve-
locity potential ®(x, z; r) must satisfy the following
Laplace equation:

0% an, -0
dx? 82

(n
2. Boundary Conditions
(i) Psendo Wave Generator I';:

A piston type of wave generator is modeled. The
fluid velocity normal to the paddle should be the same
as the horizontal moving velocity of the wave gen-
erator U(1):

B—'——U([) on rl . (2)
where n denotes the unit outward normal.

(ii) Free Water Surface I'}:

Assuming that the atmospheric pressure on the
free water surface is constant and equal to zero, the
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Fig. 2. Diagram of a numerical wave tank.

Bernoulli equation can be expressed as

+g§——( )+( )] 0, only (3)

where D denotes the Lagrangian differentiation, g is
the gravitational acceleration and { is the elevation
of free water surface.
(iii) Impermeable Slope T, and Seabed I';:

Since these boundaries are assumed to be

impermeable, the velocity normal to boundaries is
equal to zero.

T_O Onr r (4)

3. Initial Boundary Conditions

For simulating the generation of a solitary wave,
U(t) in Eq. (2) can be expressed as

Ut)=x,- - sech’lo—1,)] (5)
4H,
x0=h0 m (6)
g 3H0 I)
® o\ an, I+ ne (7N
t.=% (8)

where x is a semistroke of the paddle, ¢, is a charac-
teristic time, w is a characteristic angular frequency.
The initial normal derivative of velocity potential on
the pseudo wave generator is

0

—o_ 0D}

T =75 =U0) ©)
where the subscript denotes the boundary and the su-
perscript denotes the time step. Assuming the free
water surface is undisturbed at =0, the initial veloc-
ity potential of the free water surface is

®I=0 (10)
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Since the boundaries of the slope and seabed are
1mpermeab]e the normal fluid velocities are zero at
any time:

D)= %(&_o k=34 (11)

3. NUMERICAL METHOD
1. Integral Equation

If the velocity potential satisfies the Laplace
equation and its second derivative exists, according
to Green’s Second Identity, the velocity potential in
the fluid domain ®(x, z; t) can be obtained by the
velocity potential on the boundary ®(¢, n; 1), and its
normal derivative, d®(&, 1; 1)/dn, i.e.

odb it
Olx, z; 1) = —f —— (gnn in % -, n; r}a%m }]ds

(12)

where r=[({-x)*+(n-2)*]"2. When (x, z) approaches
to the smooth boundary (&', '), due to the singu-
larity, the velocity potential ®(&', n1'; t) can be ex-
pressed as

_ dP(&. m; 1)
O, ;1) = i,,fr [%m Lo mndin-Lis

(13)
where R=[(E-E)+(n-1")">
2. Discretization for Integral Equation

In order to solve the integral equation
numerically, the boundaries I'; through T’ are divided
into N, to N4 discrete segments respectively with lin-
ear elements, and the integral equation can be writ-
ten in a matrix form as:

[@]=[0][® ] (14)

where [®] is the velocity potential, [ ® ] is the nor-
mal derivative of velocity potential on the boundary,
[O] is a matrix of the relative shape function. The
details can be checked in Chou (1983).

3. The Forward-Difference of the Time Derivative

Based on the Lagrangian description and the
definition of velocity potential, we can obtain the fol-
lowing equations;

u=bx %‘}j (15)

_Dz _0d®
w=rrT 5 (16)
where « and w are horizontal and vertical components
of fluid velocity, respectively. To deal with the time
derivative in Eq. (15) and Eq. (16), the forward-dif-
ference approximation is adopted. At the k+1-th time
step, the free water surface (x**', z') can be obtained
by the following equations.

k+1_

(17)

k+1

(18)

The velocity potential on free water surface at k+1-th
time step can be obtained from Eq. (3):

' . D
o =0k + LR+ @A - gt (19)
4. The Distribution of Fluid Velocity
The fluid velocity in the fluid domain can be

derived from the velocity potential and its normal de-
rivative on boundary as follows.

oD(x, z; 1)
= T

{acb(é‘ ;1) é‘ x
27[ r

)

, 2
e 77’[)[3"(__ (é X) ‘% = ?4(77 ) 1dr

(20)

od(x, z; 1)
0z

w=

=L[ {8®(§,n;t)(n—z
r on

27'[‘ r2 )

9z 2E—x)n-2)

(77 z)
- )= §e— T

-, n; t)[ (~
(21)
5. The Distribution of Elements

Figure 3 represents the sketch of/the distribu-
tion of elements. Linear element is adbpted. Ny, Ny,
N3 and N4 denote the numbers of elements on the
pseudo wave generator, the free water surface, the
slope and the seabed, respectively. At the beginning,
for the pseudo wave generator, slope and seabed, the
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Fig. 3. Sketch for the distribution of elements.

elements on each boundary are equally discretized.
On the free water surface, the length of element As=
1.0h, is used for the first three elements near the
pseudo wave generator to reduce the time interval of
numerical computation, As=0.5h, for others. For vari-
ous slopes, the distributions of elements are listed in
Table 1. The water depth of the constant water re-
gion h, is Im and the distance of the constant water
region is taken to be 30 #,. Double nodes technique
(Chou, 1988) is applied to the corner problem on
boundaries which have two different boundary con-
ditions on the corner, e.g. location A, B, C and D in
Fig. 3.

IV. NUMERICAL RESULTS AND DISCUSSION
1. Runup and Rundown on slopes s=1:1 and 1:2

The solitary waves approaching the slopes of
s=1:1 and 1:2 are studied first. Time interval At=
t./200 is adopted first, and Ar=t./200 is used after
t=4t,, 5t. and 6t for H, =0.2, 0.3 and 0.4, respectively.

The solitary waves propagate through the con-
stant water region and rush up the slope without
breaking. The dimensionless maximum runup is
listed in Table 2. The maximum runup R'=R/h, de-
notes the vertical distance between the still water level
and the intersection of the free water surface and the
slope. To investigate the accuracy of the present nu-
merical scheme, the numerical results are compared
with a runup formula derived by Synolakis (1987) as

1 5
R’ =2.831(cotf)2(H Jh )a (23)

where [ is the slope angle. For the case of s=1:2,
numerical results obtained by Grilli et al. (1994) are
also listed. Comparing present results to the runup
formula, for the case of s=1:1, reasonable agreement
is observed. For the case of s=1:2, the maximum
runup is smaller than others. When solitary waves
reach the maximum runup, the profiles of the free
water surface are shown in Fig. 4a and Fig. 4b for the
slopes s=1:1 and 1:2, respectively. For slope s=1:2,
the results obtained by Grilli er al. (1994) are also
presented. Solid and dashed lines denote present re-
sults and Grilli’s, respectively.

Figure 5a shows the rundown of solitary waves
on slope s=1:1. It is found that, except for the case

Table 1. Distributions of Elements for Variant

Slopes
s=1:1 s=1:2 s=1:5
N, 20 20 20
N, 59 61 67
N3 10 20 20
Ny 120 120 120

of H, =0.4, waves break under still water level. For
slope s=1:2, Fig. 5Sb shows present results (solid line)
and Grilli’s (1994) results (dashed line). The differ-
ence is due to numerical techniques. In our scheme,
a linear element is applied; in Grilli’s scheme, cubic
spline element and regridding technique are used.
More details for H. =0.4 on slopes s=1:1 and 1:2 will
be discussed in section 4.4.

3. Solitary Waves on Slope s=1:5

Figure 1, Street and Camfield (1966) indicates
that solitary waves on slope s=1:5 may break during
runup. In this paper, the waves with H =0.2~0.4 are
studied. Time interval Ar=¢/200 is adopted first for
all cases. For the cases of H:, =0.2 and 0.3, At=
t/1000 is used after t=5t,, for the case of H,=0.4
At=t./2000 is used after r=6¢.. Some breaking crite-
ria for solitary waves are usually used: (1) the ve-
locities of water particles on the wave crest is equal
to the celerity of the wave; (2) the angle of water sur-
face profile on the crest is less than 120°% (3) the ver-
tical tangent occurs on the front of the wave profile;
(4) the ratio of wave height to water depth achieves a
specific value, namely the related breaking wave
height H,') =H,/h;,, where the subscription b denotes
the values at breaking. For the related breaking wave
height, many different criteria have been presented.
For example, H;:0.73 (Boussinesq, 1842), H,']=0.78
(McCown, 1891), H;,:O.83 (Yamada, 1957) and
H,', =0.75 (Kishi, 1968). Recent researches reveal that
the H}, should be the function of slope, therefore the
slope is derived into the criterion of related breaking
wave height, e.g., Camfield & Street (1969), Grilli et
al. (19444, 1997) and Otta et al. (1993). However,
these criteria seem to be satisfied only for slopes less
than the slope s=1:10. H,=0.78 suggested by
McCown is used in this paper as an index of a break-
ing wave. When related wave height, H'=H/h, is equal
to 0.78, the water surface profiles are shown in Fig.
6. It indicates that waves break near shoreline. Re-
ferring to Fig. 1, these results agree well with the pre-
diction by Street & Camfield. The breaking wave
height H,, depth and location of breaking wave, A,
and x,, are listed in Table 3. Dean and Dalrymple
(1984) derived the location of breaking wave x, as
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Table 2. Comparison for the Maximum Runup of Solitary Waves on the Slope s=1:1 and 1:2.

8 3 H:)ZT)z/s

:W i (24)

Xp

where B is related breaking wave height and equal

to 0.78. For the comparisons of the present results to
the analytical results by Eq. (24) listed in Table 3,
reasonable agreement is obtained.

4. The Distributions of Fluid Velocities for H, =
0.4 on Slopes

For the waves with H, =0.4 on slopes s=1:1, 1:
2 and 1:5, the distributions of fluid velocities are
investigated. To realize the characteristics of
shoaling, we focus on the region near the slope.

The distributions of fluid velocities for the case
of slope s=1:1 are shown in Fig. 7. When a wave
reaches a coastal region, the fluid velocities in front
of the crest increase due to the decrease of water
depth. At maximum runup (1=6.48t.), the fluid ve-
locities become minimum because of the transforma-
tion from kinetic energy to potential energy. At this

s=1:1 s=1:2
H'=0.2 H'=0.3 H'=0.4 H'=0.2 H'=0.3 H'=04
Synolakis (1987) 0.38 0.63 0.90 0.54 0.89 1.27
Grilli (1994) 0.57 0.92 1.30
Present results 0.48 0.71 0.92 0.49 0.70 0.93
1.2 0.8
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Fig. 4. The water surface profiles for maximum runup. (b) s=1:2

Fig. 5. The water surface profiles for minimum rundown.
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Fig. 6. The water surface profiles of solitary waves on slope s=1:
5 at H/h=0.78.

moment, the fluid velocities on the free water
surface are almost along the water surface profile.
During the process of backwash, the fluid velocities
increase rapidly going offshore. At t=6.8t, the wave
breaks due to the increase of fluid velocities near the
shoreline that rush down to the seabed.
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Table 3. The Location and Depth of Breaking Wave and Breaking Wave Height for Waves with H;:

0.2~0.4 on Slope s=1:5

’ ’

H,=0.2 H=0.3 H,=0.4
Dean & resent result Dean & resent result Dean & resent result
Dalrymple P Dalrymple P Dalrymple P

Xp 2.010 1.573 2.520 2.142 2.950 2.894

hy, 0.402 0.315 0.504 0.428 0.590 0.579

H, 0.314 0.242 0.393 0.335 0.460 0.448

0‘;_ e 10wis Figure 8 represents the distributions of fluid ve-

os locities for the wave on slope s=1:2. Figure 9 shows
£02 e - distributions of fluid velocities for the wave on slope
=~ L t N NS — - . -

N 02 \ ——— s=1:5. As the wave propagates on the slope, fluid
04} NN ST e .. . , -

o6} e e e e velocities increase. At t=6.5¢, H" is equal to 0.78,
0.’?_; 5 - 5 s . ! horizontal components of fluid velocities in front of
{a) t=5.80tc x/h, the crest dominate and lead the wave break.
1
08 —1.0mis
o8y V. CONCLUSIONS

£ 02 N ———

-~ 0 ha — .

N 02 ': ~——— < S The processes of runup and rundown of solitary
o ———— T - waves on slopes are simulated, the distributions of
'°;?1 " 1 5 ; | fluid velocities are also studied for waves with H, =

’ (b) £6.00tc x/hy ° 0.4. Some conclusions are listed below:
: 1. For the waves that break during rundown, at
08 — 1.0mis .
gj \ E‘\ breaking, the fluid velocities near the shoreline
=02 ~N T — change the wave’s direction and turn back toward

X 02} N e _ Ty shoreline. It is a possible reason why the wave
o S —— T - breaks during rundown.
ey 5 \ S . | 2. On slopes s=1:1 and 1:2, waves with H,=0.2~0.4
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(0) £6.20tc x/hy ° propagate through the slope and break during
0‘1’% 1o rundown. For the case of H, =0.2 and 0.3, waves
o8y R break under still water level. For H| =0.4, waves
oozt -, break above the still water level.

~ .0,22 s _' Yy oy vy, \ 3. For waves on slope s=1:1, the values of dimen-
pod - < . T T sionless maximum' runup R’ agree well with the
08 - runup formula derived by Synolakis (1987).
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