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ABSTRACT

We solve identification problems in potential theory,
electrostatics, steady state heat conduction, etc. in conductive plates.
A plate.with simple shape contains a hole. Either the size, shape, and
location of the hole, or the flux across its boundary, is unknown. Bound-
ary conditions are prescribed on part of the plate edge, and voltage or
heat is applied to the remainder. An additional measurement is taken
on part of the plate edge. From this overspecified data, we determine
(1) the structure of the hole, given the flux across its boundary, or (2)
the flux across the hole boundary, given the hole. Boundary elements,
least squares optimization, and special boundary value properties of
Green’s functions are exploited in this numerical treatment of the iden-

tification problem.

I. INTRODUCTION

Suppose that a domain is occupied by an elec-
trically or thermally conductive material which con-
tains a hole. From electrostatic or steady state ther-
mal measurements at the boundary of the domain, we
would like to characterize the location, size, and shape
of the hole, or some other unknown property such as
current flux across the hole boundary.

Numerical methods for solution of inverse
boundary value problems of internal cavity detection
or flux reconstruction have been proposed before; see
(Bryan, 1993; Das and Mitra, 1992; Kassab et al.,
1997; Oguz and Han, 1998; Saigal and Zeng, 1992;
Tanaka and Masuda, 1986); sece also references
therein. These methods use least squares
optimization, coupled with an integral equation for
calculation of a potential at the material boundary as
part of the iteration process. Our method applies the
same idea, except that Green’s functions are used at

*Correspondence addressee

the potential construction stage. Special boundary
value properties of Green’s functions provide a com-
putational advantage that use of the simple logarith-
mic fundamental solution does not provide; namely,
use of a Green’s function situates the integral equa-
tion only on the hole boundary; for each updated data
estimate, maximum error is confined to the boundary
of the guessed cavity, so that accuracy is achieved in
the simulated data at the plate boundary.
Fortunately, Green’s functions or matrices for
elliptic partial differential equations with mixed
boundary conditions exist in closed form for a num-
ber of domains of a variety of simple shapes.
Melnikov (1995) has developed techniques which
make it possible to obtain formulae for these Green’s
functions. The Green’s functions technique has al-
ready been applied to several problems in applied
mechanics; see e.g. (Melnikov, 1977; 1995; Melnikor
and Koshnarjova, 1994; Melnikov and Titarenko,
1995) This paper’s purpose is to demonstrate their
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applicability to the solution of inverse boundary value
problems; see also our previous work (Melnikov and
Powell, 1998).

In section 2, we formulate the inverse problems.
In section 3, we discuss some of their theoretical
aspects. Section 4 contains the numerical procedure
for solution of the direct and inverse problems;
roughly, an initial estimate is made, and the bound-
ary integral equation is solved for the corresponding
potential at the material boundary; then this estimate
is updated by means of the least squares method, with
the object of minimizing the difference between mea-
sured data and calculated data corresponding to the
estimated hole or flux. Numerical examples are pre-
sented in section 5. Our results are summarized in
section 6.

One can find a description in (Melnikov, 1995)
of the algorithm that we use to obtain compact, eas-
ily computable representations of Green’s functions.
It should be noted that the method for Green’s func-
tion construction in (Melnikov, 1995) is not limited
to the harmonic case. (Melnikov, 1995) gives a
method for their construction for two dimensional
Helmbholtz equations, biharmonic equations, and elas-
tic systems. Hence, their application to inverse hole
determination problems can be extended to problems
modeled by those equations. They could be applied
as well to the related problem of determining mate-
rial interfaces; see e.g. (Isakov, 1998), chapter 4, and
(Schnur and Zabaras, 1992).

II. PROBLEM FORMULATION

Let Q be a planar domain with piecewise smooth
boundary

We assume that an electrically or thermally conduc-
tive material occupies Q. The boundary value prob-
lem for voltage or temperature u in Q is

Au=0 zeQ (n
a’aal—?,- +Bu=h;, zely, i=1, ..., m (2)

where A is Laplace’s operator, ¢, f3; are constants
not simultaneously zero on I';, not all 8,=0, n; are unit
normal vectors to I'; exterior to Q, and A; are func-
tions given only on T';.

Suppose a hole exists inside the material that
occupies Q; that the hole coincides with a simply
connected, open set Dy; the boundary I'y of Dy is a
smooth, simple, closed Jordan curve; and 30 cQ. For
the numerical solution of our inverse problem, the

recovery of Dy from measurements on I', we need
numerical solutions u of the “direct” problem

Au=0, ze Q\D, (3)

with boundary data (2), and
oy + Bu=h,, zeT (4)
uano 0¥ =g < 0s

where =0, and possibly A,=0.

In case the location, size, and shape of Dy are
unknown, the inverse hole determination problem is
the following: Given (2), (3), (4), and hy=0 on the
unknown boundary I'y, determine Dy from one addi-
tional measurement

%aaT“i +8u=f, (5)

on one or more parts I'; of the boundary T', where the
pairs (¥, 6,) are linearly independent from (o, ).
Note that if Dy were known, then this additional data
would make determination of u in Q\Dy an ill-posed
problem.

If Dy is known, ap=1, By=0, but du/dug=hq is
unknown, then the inverse flux determination prob-
lem is: Given (2), (3), plus one additional measure-
ment (5) on some parts [';, determine sy on 'y as a
function of a parameter, say arclength or a radial
variable.

For example, suppose =1, B,=0, h;=0 for all i
except, say, i=ip. Suppose ¢;=0, B;=1, h; #constant.
In other words, suppose all edges I';, i#i,, are
insulated, and a voltage is applied to I'; . Then mea-
sure the induced voltage u=f; on some other I';. The
result is Cauchy data, i.e., Dirichlet and Neumann
data, on the edge T;. In case of mixed data on T,
linear independence of (¢, ;) and (¥, ;) would also
result in Cauchy data on this edge. in case j=ig, cur-
rent could be applied instead, and the resulting volt-
age measured; or mixed conditions could be applied,
and mixed conditions measured. However, as will
be shown, it is essential that the combination of ap-
plied and measured fields results in nonconstant i on
some part of T

We remark that Ty and kg cannot be determined
simultaneously from a single set (h;, f;) of
overspecified data for any or all of i, j=1, ..., m. In
fact, let £'€ Q. Then it is easy to find two distinct
open sets D, D, in Q which both contain &, such
that the functions g,(z)=0G(z, £)/9n, k=1, 2, where
zedD; and G is Green’s function for (1), (2), satisfy
g1#g,. Hence, the nonidentical pairs (Dy, gi), k=1, 2,
produce identical boundary data @;0G/dn;+B:G=h;,
¥:90G/9n+6,G=f; on all segments T;.



Y.A. Melnikov and Jeffrey O. Powell: A Green’s Function Numerical Method for Some Inverse Boundary 815

III. THEORETICAL CONSIDERATIONS

If Dy is a crack (Friedman and Vogelius, 1989),
then a single additional measurement (5) on T is
insufficient to uniquely determine Dy; see also (Brian
and Vogelius, 1992). In fact (Friedman and Vogelius,
1989), it takes two separate measurement pairs (A,
fip on T, j=1, 2 in order to uniquely determine a crack
Dy. Physically, this means that a material is tested
twice, with distinct input &;; at each test j=1, 2.
Therefore, we impose the condition of nonempty in-
terior on Dy, the hole which is to be determined. Note
that we are not attempting to solve in this paper the
crack determination problem.

The following uniqueness result could be gen-
eralized to a more complicated hole boundary
structure, and more general boundary conditions; our
purpose is to suggest necessary boundary conditions
for unique determination of Dy, so we avoid these
technicalities.

Theorem 1.

Let Dy, k=1, 2 be simply connected open sets in
€ with nonempty interiors, such that the boundaries
0D, are simple, closed C? Jordan curves. Suppose i
satisfy (2), (3), (4) in Q\Dy, with hy=0. If u;=h,y on
[;, for k=1, 2, for some iy, where hjp#constant, and
for some i,

du, ou,

U1=uy, —al—l,-—aTl,. on l“,<,

then D=D,.
Observe that the normal derivative hy=0 implies
that the conjugate periods

duy, i,
jr _al—ll\‘(f)dr(f)= 0, I]‘O a’—lf](f)dr(f) =0.

Hence (Henrici, 1986), u; has a single valued har-
monic conjugate function v, defined on all of Q\D,.
Furthermore, by the Cauchy-Riemann conditions,
ho=0 implies that the tangential derivative dv;/d7=0
on 9Dy, so that v;=constant on dD;.

Proof of Theorem 1:

Note that u,, u, have identical Cauchy data on
I';, so that by uniqueness of continuation of harmonic
functions, u;=u, on Q\D\uD,. We suppose D #D,
and without loss of generality that D is not contained
in Dy. We consider two cases: (i) D;nD->=@, (ii)
D\nDy#@. For (i), the function u defined by

u, z€ Q\D,

u=
uy, ze D,

is a harmonic continuation of «; into all of D;. In

particular, u is harmonic inside D,, and 9,/d,=0 on
oD, implies that u = constant on D,. Therefore, by
uniqueness of continuation, u = constant on Q, which

contradicts the assumption that u; is nonconstant on
T .

In case (ii), either (a) D,cDy, or (b) there ex-
ists a simply connected component C of D|\D, such
that CcQ\D,. If (a), then the function u=u, is a har-
monic continuation of u, into the set D,\D,, and u
has zero normal derivative on the boundary of this
set. Therefore, the harmonic function u cannot attain
its maximum in D\D, on the boundary of D\D,, un-
less u = constant; see (Miranta, 1970). This contra-
dicts the assumption that u; # constant on I';. If (b),
then the boundary dC is composed of two sets
A=0CNID,, k=1, 2, and may have a complicated,
piecewise smooth geometry. Let u=u; in Q\D|, u=u,
in C. Then u is a harmonic continuation of u, from
Q\D, into C; and du/dn=0 on dC, where n is the exte-
rior unit normal vector to dC, except at points where
dC is not smooth. In general, it is not true that a func-
tion harmonic inside a domain C with zero Neumann
data except at nonsmooth boundary points is constant;
consider even the function u(z)=In|z+1|-In|z—1|, which
has zero Neumann data on the upper and lower semi-
circles of the unit disk. However, in our situation,
the harmonic conjugates v, of uy, k=1, 2, differ only
by a constant, say v,=v;+4 on Q\D,uUD,. Hence,
v=v,—A is a harmonic continuation of v, into C which
is constant, say v=Kk, at all points of dC. Since v is
continuous on the compact set C , it obtains its maxi-
mum at some point zoe C . We claim v=xin C. If
not, suppose that v attains its maximum at zq in the
interior of C, and v(zo)=E>k. Then zq is contained
inside a region R which is bounded by a closed level
curve v(z)=Y, k<y<&; if not, then a path P in the inte-
rior of C from zy to dC exists such that v(z)#y on P,
which contradicts the intermediate value theorem.
The closed curve v(z)=«x is smooth. Therefore, the
maximum principle implies that v is constant on R,
hence on C by uniqueness of continuation. The
Cauchy-Riemann conditions now show that # = con-
stant on C. Thus, u 1s a constant harmonic continua-
tion of u; to all of Q. The theorem is proved.

The authors are unaware of as general a proof
of uniqueness in the hole determination problem. This
proof is a simple extension of the method for proving
uniquess via harmonic continuation which was used
in a related inverse problem of determining a piece-
wise constant conductivity (Isakov, 1998). For this
problem, uniqueness is known to hold in special cases,
namely when the discontinuous piece is in the form
of a disk, a polygon, or a ball; for these cases, a hole
could be construed as a region of zero conductivity.
In (Sylvester and Uhlmann, 1987), a more general in-
verse conductivity problem was examined; but the
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data set consisted of the infinite set of all possible
Dirichlet-Neumann measurement pairs, whereas this
hole determination problem requires only a single
measurement pair.

For flux determination, we have

Theorem 2.

Let Dy be an open, simply connected set, with
'D,cQ, and boundary Ty a simple, closed Jordan
curve. Suppose that u;, u, satisfy (2), (3), and that

du,
(Zo—a—ni+ﬂ0uk=/10k on ro, k=], 2.

If for some i,

du | _au2

U=y, —— = =—=
1=%2 9n; ~ on;

on [,
then 1’10121102.

Proof of Theorem 2:

Let u=u;—u,. Then u has zero Cauchy data on
I;, hence u=0 on Q\D,. Therefore, u;=u, on Q\Dy. It
follows that hg;=hg,, which concludes the theorem.

IV. NUMERICAL ALGORITHM

Let G(z, 1) be the Green’s function for problem
(1), (2) in Q. That is, G satisfies the boundary condi-
tions (2) on T" with A=0 for all i=1, ..., m;

-A,G(z, N=0(z—1), t,2€Q;
and G has the property that as z tends to ¢, G(z, 1)
tends to (=1/2x)In|z—t|. Here, the complex variables
z and ¢ denote the field and source point, respectively.

The solution u of (2), (3), (4) may be constructed
by means of a Fredholm boundary value problem.
First, the Green’s function for (1), (2) in Q is used to
obtain the solution w to (1), (2) in Q without the
hole,

wo)= 3 f G (2, D (0T ()
i=1 r;

where the G; are defined on I'; by

GG 1)le,

‘a%c(z’ 0 1B,

Gi(z’ [):

If o; and B; are both nonzero, then either definition is
valid. u is found in the form u=v+w, where v is the
harmonic function in Q\Dy with homogeneous data
on I' and

Ocoaa’—ro +Byv=hy- (ao%}a +Bw)=g on I
We write
V@)= jr Gz, NUOATQ), ©6)
0

diffferentiate, and solve for the density u in the equa-
tion which then results from the jump condition,
(Muskhelishvili, 1992).

| 2 _
o)+ [ 18035 Gle, 0+ BuGle MUOMT 0 =60

(7)

on Iy, where the normal derivative is with respect to
ze Ty. The numerical solution can be obtained by
means of a matrix equation for y at points on I'.

The following numerical method for solution of
the inverse problems combines the boundary element
method for solution of the direct problem with a least
squares optimization procedure (Marquardt, 1963) for
updating approximations.

We make an initial estimate D for Dy, with
boundary ['y. In the case of flux determination, we
make an initial estimate /2, for unknown /. The in-
tegral Eq. (7) is solved for fi on Ty, which is inserted
in (6) with Ty replaced by T'y. This results in calcu-
lated data f,. on I';. For notational economy, we will
omit the subscript i on calculated data.

The objective functional is

- . 2
FieL= | [7eer-fo]aro

where fis data on I'; for the inverse problem, and ¢=
(cy, ..., ¢,) is the set of parameters which character-
izes T, or /i,. We would like to minimize the differ-
ence F with respect to D, or hi,. We parameterize
the estimate [ with respect to arclength or a radial
variable ¢ by 1(0)=t(0; ¢), so that o will become the
variable of integration in (6), (7). We sometimes use
2(0)=z(0; ¢) to denote the same parameterization. In
the flux determination problem, Iio(o)zﬂo(o; ¢), with
parameterization #(0) given.

We assume that ¢+6, 6=(6;, ..., 6,) to be
determined, gives the closest parameterization of the
unknown, where the first order Taylor approximation
of Fis

oc+0)= | o+ ¥ 4, 36,  fOdT ()
r; j=19c; J

The minimality assumption



Y.A. Melnikov and Jeffrey O. Powell: A Green’s Function Numerical Method for Some Inverse Boundary 817

(c+é) 2J [f(zc>+i l(rc)é f(t)]—’%(r;c)dr(r)

=0
for k=1, ..., n results in the matrix equation
Ad=¢q
for 8. The nxn matrix A=(ay;) and g=(q,, ..., g,) have
entries
J (r c (t c)dl'(t)
and
g,= jr (00~ earo) (8)

respectively.

The derivatives 8f/8cj, for ze T';, are calculated
from & = v +w on the parameterization of the integral
(6), with ¢ given in case hy is to determined,

1'(0) |d o

<

as follows:

a—- _ a~ _ 2 ,
Lo=go=| V(o)|do

r'(0)|liox

where the derivatives dfi/dc; are calculated from the
parameterized integral equations (7), for 0<0<2x

aoaﬂ(e)+ [ w1100

+BG) (oML

Cj

t'(o) |d o

- [ 3 lang-G6) o)
JO

r(o)[Jor o
+ a%[’; 0@(6) — (52— an wz(0) + Bow (O],

The 9/ /dc; terms are zero if Dy is to be determined.
The parameter derivatives of dw/dng are zero if Dy is
known and hg is to be determined.

We solve for § by means of the Marquardt pro-
cedure (Marquardt, 1963). The parameterization c is
updated by ¢=c+8. The procedure iterates until a con-
vergence criterion is met, say, difference of succes-
sive approximations = 0. The final output ¢ will be
the approximate parameterization of the solution to
the inverse problem.

V. NUNMERICAL EXAMPLES

In each numerical experiment, exact data for the
inverse problem was simulated by means of the inte-
gral equation procedure (6), (7). This procedure was
carefully validated by comparing its result with ex-
act solutions, that is, the closed form Green’s func-
tions for the mixed boundary value problem in Q, with
source point fixed in the interior of Dy; this resulted
in exact solutions with nonzero flux on I'y and homo-
geneous mixed conditions on I".

The least squares iteration was terminated upon
satisfaction of the following convergence criterion:
Let N be the euclidean norm of differences between
successive approximations of domain parameters.
Convergence was considered obtained when N<
0.0001.

Estimates for solutions of the inverse problems
were either: disks z(8)=cg+re’®, 0<0<2r, where the
three parameters co=c+ic; and ¢3=r>0 are the center
points and radius, respectively; or ellipses z(6)=
p(8)e®, where p depends on five parameters ¢, ..
Cs.

[

Example 1:
Q={z=x+iy : 0<y<n/2}, an infinite strip. Here,
I'=I",ul,, where T} is the line y=0, and I'; is the line

y=m/2. Let

E\(p)=le"+1|,  Ey(p)=le’-1|

The Green’s function for Q with boundary conditions

ulx,0)= g—;f(x, %) =0, u(teo, y)<oo

1 E(z—z)Ez(z—T)
O D= E Gk G -1)

For hole determination, we suppose du\dy=0 on
I'; and apply nonconstant heat or voltage with com-
pact support u=h(x)=1—cos(nmx/2) in [0, 4]cI";. Volt-
age or heat measurement u=f is simulated on I'; for
0<x<4. Results of application of the algorithm to ob-
tain circular approximations of a circular hole Dy in
Q are depicted in Fig. 1. The boundary I'y is the thick
circle centered at (.2, .7) with radius r=.3. The
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-1 1

Fig. 1. Approximation of a disk in an infinite strip.

initial estimate is the disk with parameters ¢,=—1, ¢;=
.9, ¢3=.2. The convergence criterion was met in six
iterations, the last of which is not visibly distinguish-
able from the true hole.

Example 2:

Q={z=x+iy : 0<x, 0<y<m/2}, a semistrip with
I'=T",ul',ul';, where T}, T, '3 are the lower, left,
and upper boundaries, respectively. Prescribe

a—y—ﬁu) _0

=u |]'1 ay
P20, uoe<oo

Then the Green’s function for Q that satisfies these
boundary conditions is

E (@ +1)E G —DE,z +1)ESz—1)
27r E,Z+E (z—t)ENz-)Esz+1)

Gz, 0=

B3
ngl wv +ﬁ)

where v=(2n—1), z=x+iy, and r=£+in. For the numeri-
cal experiment, we assume that Dy is a disk-shaped
hole centered at (2, .8) with radius r=.3, let =0, pre-
scribe ~;=0, j=1, 2, 3 and flux ho(6)=-2 on Ty, and
simulate measurement u=f on boundary I"; for 0<x<4.
Figure 2 shows the result for circular initial guess
centered at (¢, ¢)=(.5, .7) with radius c3=.2; the thick
circle is unknown Dy. Four updates were required to
meet the convergence criterion; the third is visually
indistinguishable from the true hole.

sm(vy)sm(vn)

Example 3:

Q={z=re"®: 0<r<4, 0<6<m/2}, the right circular
sector of radius 4. For the boundary I'=T",UT,UTl;,
I, is the circular part, I'; is the interval [0, 4] on the
x-axis, I'; is the interval [0, 4] on the y-axis. The
Green’s function for Q with mixed boundary condi-
tions

Pi/2

O

4
Fig. 2. Approximation of a disk in a semistrip.

a b
4 (a) 4 (b)
3 @%% 3 Q)
O O
1 1

1 2 3 4 1 2 3 4

Fig. 3. Approximation of (a) an ellipse, (b) a nonconvex domain.

(%Lri+ﬁu) r,=u|r2=§% r3=0, B0,
is
Gl )= ‘z—tHzHHR —thR +Zt‘
- 2” ‘Z—t||z+t||R —thR +zt’
4R ¥ 1

TS V(v+ﬁR)‘ 7) Sln(Vé’)sm(vo-)

where z=re'® and t=pe'® are the field and source points,
respectively, and v=2n+1. Here, R=4.

For the numerical experiment, we set =0, and
impose boundary conditions du/dr=0 on I'|, du/d6=0
on I'3, and u=h,(r)=1-cos(mr/4) on I';, which satis-
fies matching conditions at endpoints r=0 and r=R.
First, we assume the existence of an elliptic hole
Dg near the upper left part of Q, with zero flux on
I'g. Fig. 3(a) shows Dy approximated by ellipses
depending on five parameters from a circular initial
estimate near the center of € in 32 iterations of the
least squares updating procedure; pictured are updates
2,6, 14, 18, 22, and 28. In Fig. 3(b), we show an
asymmetric domain approximated by disks in six
iterations; using the final disk update as initial esti-
mate for the five parameter procedure resulted in ap-
proximation of the same hole by an ellipse in another
six iterations. The latter procedure therefore entails
updates for fewer parameters, as well as fewer
iterations.
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/\

0.5 -

'
[N}

Fig. 4. Approximation of flux.

For flux determination in the wedge, we apply
homogeneous conditions on ', and simulate measure-
ment u=f on I',, for 0<x<4. Dy is assumed to be the
disk of radius 1/2 centered at (3/2, 3/2). In Fig. 4,
the thick line is the actual flux, the polynomial hy(8)
=(.01)6*(6-2)(6-3)(6-5)(6-2m)*. The initial estimate
is /;0(9)=.5‘ We try to approximate h, with the trigo-
nometric sum

36)= %ao + é] a,cos(k ) + b, sin(k 6))

with respect to the parameters a;, by. The thin line
shows the approximation after 12 iterations of the
procedure. The result of this test is depicted in Fig.
4.

VI. CONCLUSIONS

Considering the form of (8), the optimization can
be expected to show sensitivity to noise, which in-
deed is the case. However, by calculating the lowest
order components of the Fourier series for fand f,
and using these quantities for comparison in the ob-
jective functional F, instead of the full data, we were
able to filter out high spatial frequency effects of
additive random noise to obtain reliable information
about the vicinity of Dy from data with low levels of
noise. Work remains to be done with respect to regu-
larization of this problem.

Constraints were included in the optimization
procedure because otherwise, estimates for Dy were
produced which fell outside of Q; for example, in the
infinite strip, when the program attempted to calcu-
late the potential for an estimate ¢+6 that represented
a disk which exceeded the strip boundary, the esti-
mate was revised by centering it at ¢,=.7 inside the
strip. Constraints were also required in the flux de-
termination problem; otherwise, updates of the higher
order coefficients a;, b, tended to have large
magnitude.

Use of several parameters is unnecessary at the
early stages of approximation; example 3 showed it
is sufficient to approximate an asymmetric domain
with disks, then to resolve the approximation by
means of domains which depend on a larger number
of parameters, as appropriate.
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