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ABSTRACT

The dynamic response of rigid massless cylindrical and hemi-
spherical foundations embedded in transversely isotropic elastic soils
is investigated in this study. The axis of symmetry of the foundation is
assumed to be parallel to the material axis of symmetry of soil. The
foundations are subjected to time-harmonic forces acting in the verti-
cal and horizontal directions and a time-harmonic moment. The prob-
lems under consideration are solved by using the boundary element
method. The kernels of the boundary integral equation correspond to
elastodynamic Green’s functions of a transversely isotropic elastic half
space subjected to buried ring loads. Analytical solutions for Green’s
functions are used in the analysis. The solutions for impedances
obtained from the present study are compared with those reported in
literature for foundations embedded in isotropic soils. Selected nu-
merical solutions are presented to portray the influence of material
anisotropy, frequency of excitation and foundation geometry on
impedances.

I. INTRODUCTION foundation and assuming that the lateral soil reaction

can be evaluated independently by simplyfying the

Analytical solutions for embedded foundations
subjected to dynamic loading can be obtained for a
few special cases based on linear elasticity. Luco
(1976), and Apsel and Luco (1976) presented ana-
lytical solutions for torsional response of rigid hemi-
spherical and semi-ellipsoidal foundations embedded
in isotropic soils. The majority of existing solutions
for dynamics of embedded foundations have been ob-
tained by using approximate analytical or numerical
techniques. The Baranov-Novak approach (Baranov,
1967; Novak and Beredugo, 1972) has been used to
obtain impedances of rigid cylindrical foundations
by uncoupling the soil reaction at the base of the

*Correspondence addressee

stress field in soil. Kuhlemeyer (1969), Wass (1972),
Kausel and Roesset (1975) and Day (1977) developed
finite element methods to study dynamics of embed-
ded foundations. Dominguez (1978) and Rizzo et al
(1985) used the boundary integral equation method
to study rigid foundations embedded in isotropic
soils respectively. Apsel (1979), Luco and Wong
(1986) and Apsel and Luco (1987) used an indirect
boundary integral equation method to study founda-
tions embedded in layered viscoelastic soils.
Geomaterials (soils, rocks) are rarely isotropic.
Transverse isotropy described by five independent
material parameters can be used to model the
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anisotropic behavior of soils (Gibson, 1974; Gazetas,
1983). A review of literature indicates that only a
few studies considered soil anisotropy in dynamic
soil-structure interaction. Freedman and Keer (1972)
considered the dynamics of a rigid strip on an
orthotropic elastic half plane. Kirkner (1979) exam-
ined the dynamic response of a circular surface foun-
dation on a transversely isotropic medium. Gazetas
(1981) presented a semi-analytical procedure to study
the dynamics of a rigid strip foundation on an
orthotropic soil layer. All of the above studies are
concerned with surface footings. Wang and
Rajapakse (1991) studied rigid strip foundations em-
bedded in orthotropic soils including the through soil
coupling between two embedded foundations. An in-
direct boundary integral equation method was used
in the analysis.

The above studies dealing with soil anisotropy
do not consider common cases such as large cylin-
drical foundations (e.g., bridge piers, tower founda-
tions etc.). Solutions for strip foundations have
limited applications in practical situations. The as-
sumption of rigid behaviour is acceptable for stocky
and massive foundations supporting large structures.
However the flexibility is an important consideration
in the study of piles.

The objective of the present study is to apply
the boundary element method to study the dynamic
response of rigid cylindrical and hemispherical foun-
dations embedded in transversely isotropic elastic
soils. The foundations are subjected to time-harmonic
loading as shown in Fig. 1. The response of the foun-
dation is characterized by vertical, horizontal, rock-
ing and coupled impedances. The convergence and
accuracy of the present boundary element solutions
are established by comparing with the existing solu-
tions for foundations in isotropic soils. The influ-
ence of soil anisotropy, frequency of excitation and
foundation geometry on the dynamic response is
discussed.

II. GREEN’S FUNCTIONS

Consider a homogeneous transversely isotropic
soil with a Cartesian and cylindrical polar coordinate
systems defined as shown in Fig. 1. The z-axis is
parallel to the material axis of symmetry and normal
to the free surface of the soil. The stress-strain rela-
tionship for a homogeneous transversely isotropic ma-
terial can be expressed as (Lekhnitskii, 1963)

Orr=C11€,+C12€909FC 13€E; ( 1 )
0gg=C12€,+C1) €gatC13€, (2

0. =C13€,1C|3€091C33€;; (3)

Transversely
isotropic soil

(b) Embedded hemispherical
foundation

(a) Embedded cylindrical
foundation

Fig. 1 Axisymmetric foundations embedded in an elastic soil

Cre=(C11—C12)€rp (4)
0-02=2C44€925 o-rzzzc-’lllerz (5)

where ¢, ¢)», €13, €33 and ¢44 denote the material con-
stants of a transversely isotropic soil.

Positive definiteness of strain energy requires
that C) ]>O, C33>0, C44>0, C) |>|C|2| and (C| 1C33—
2¢35+¢12¢33)>0 (Payton, 1983).

In geotechnical engineering practice, it is com-
mon to use a set of Young’s moduli (£, E,), a shear
modulus (G,;,) and three Poisson’s ratio (v, Vi, Vio)
instead of the stiffness coefficients ¢;; appearing in
the Eqns. (1)-(5). The moduli E,, E, and G, denote
the Young’s moduli in the x (also y) and z directions,
and the shear modulus in the plane xz (also yz). The
Poisson’s ratios vy, v, denote the transverse con-
traction in the plane of isotropy to tension on the same
plane and tension in the vertical direction
respectively. The material constants £y, Ey, Gy, Vi
and v, can be related to the coefficients c;; in the
Egs. (1)-(5) in the following manner.

o . 2
ey —cpey eyt e ey —2ci;)

E,= — > (6)
C1€33=C3
. . 2
E =C|1633+612633_2‘13 7
’ Ciptep
2
C1yCrn—C
_Cif33—Ci3
vlzh__ R 2 (8)
C1€33—C3
13

Vi TS Gui=Cags Vil Eh=v),/E,  (9)

The application of boundary element method for
semi-infinite soil domains requires Green’s functions
corresponding to a set of ring loads applied in the
interior of the soil. The uniform ring loads required
in the analysis of an axisymmetric foundation under
vertical loading is shown in Fig. 2(a) and 2(b). The
analysis of an axisymmetric foundation subjected to
a horizontal force in the x-direction and a moment
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Fig. 2 Buried ring loading required in the boundary element analysis

about the y-direction requires the Green’s functions
corresponding to three buried ring loads with circum-
ferential variations as shown in Fig. 2(c) to 2(e).
Rajapakse and Wang (1993) discussed the derivation
of time-harmonic Green’s functions for loads applied
in the interior of a transversely isotropic elastic half
space. The displacement Green’s functions corre-
sponding to the loading shown in Fig. 2 are given in
the Appendix.

III. DYNAMICS OF RIGID AXISYMMETRIC
FOUNDATIONS

Rigid cylindrical and hemispherical foundations
subjected to time-harmonic dynamic loads are shown
in Fig. 1. The axis of symmetry of the foundation
coincides with the z-axis. The foundations are sub-
jected to forces Pge™ in the z-direction and Qge™' in
the x-direction and a time-harmonic moment Mye™'
about the y-axis at the point A with coordinates
(0, 0, 7). The foundations are assumed to be per-
fectly bonded to the surrounding soil along the con-
tact surface S. For axisymmetric foundations, the
contact surface S can be generated using a curve L in
the rz-plane. The displacement at an arbitrary point
on the foundation can be expressed in terms of the
displacements and rotations of the point A. In the

case of a vertically loaded foundation, the displace-
ments at an arbitrary point on S can be expressed
as

u(r, 6, 2)=ue(r, 6, 2)=0 (10)

u(r, 8, 2)=Ay (1)
where Ay denotes the vertical displacement at the
point A.

In the case of a laterally loaded foundation
(horizontal and moment loading), the displacements
at an arbitrary point on S can be expressed as

u,(r, 6, =[Ay+(z=7 )p,lcos6 (12)
ug(r, 6, 2)=—[Ay+(z—=7 )9,]sin0 (13)
u(r, 6, 2)=—ro,cos (14)

where Ay and ¢, denote the horizontal (x-direction)
displacement and the rotation about the y-axis of the
point A, respectively.

The resultant forces and moment acting on a
massless foundation with respect to the point A
can be expressed in terms of traction components
T(r, 6, ) (i=x, y,z) on § as
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P0=J T.dS (15)

s

Q0=J' T dS (16)
s

M0=f T.r cosOdS +f T (z-7)S (17)
s - s

The dynamic response of a rigid foundation un-
der the loading shown in Fig. | is characterized by
the following nondimensional impedance matrix.

P, K, 0 0 Ay
Q) |=acy| 0 Ky Kyy || Ay (18)
M, 0 Kyy Ky ag,

where Ky, Ky, Kyy(=Kyy) and Ky, are the vertical,
horizontal, coupled and rocking impedances
respectively; ‘a’ denotes a unit length parameter such
as the radius of a cylindrical or hemispherical
foundation.

The impedances of a foundation as defined by
Eq. (18) can be computed by expressing the tractions
in Egs. (15)-(17) in terms of the rigid body displace-
ments Ay, Ay and ¢,. Such a relationship can be de-
veloped through the application of the boundary ele-
ment method to the soil domain under the vertical and
lateral loading cases separately.

Computation of Contact Tractions by BEM

In the case of axially symmetric bodies subjected
to asymmetric loading, it is convenient to apply Fou-
rier expansion with respect to 8 and reduce a given
boundary-value problem to a set of uncoupled prob-
lems corresponding to each Fourier harmonic. For a
vertically loaded axisymmetric foundation, only the
zero-order (m=0) symmetric Fourier harmonic needs
to be considered in the modelling of surrounding soil
domain. For the loading shown in Fig. 1(b), only the
first-order symmetric (m=1) harmonic needs to be
considered. The application of direct boundary ele-
ment method to axially symmetric bodies subjected
to asymmetric loading results in the following inte-
gral equation for each Fourier harmonic.

€ 00u ) + JL Hi;(',\f_,x)uj’»”(T)TdL

= f G X)) (X )TdL (19)
L

where m denotes a Fourier harmonic; (i, j=r, 6, z) and
summation is implied over j; x and X denote posi-
tion vectors on the generating curve L; 7 denote the
radial coordinate of the point ¥ ; Gj(¥ x) and

m

H (X x) are the mth harmonics of displacement and
traction Green’s functions corresponding to the point
X in a transversely isotropic half space due to a ring
load through a point x having circumferential depen-
dence identical to the mth Fourier harmonic (Fig. 2);
u'(¥) and T}"(Y) denote the mth harmonic of dis-
placements and tractions at the point X on L.
The coefficients ¢;;(x) are given by

1, x inside V
12, x on L . (20)
0 x outside V

c;te)=

In the present case, x is selected such that xe L,
ie., x is located on the generating curve L, and Cij is
equal to 1/2. The Eq. (19) can be solved by
discretizing L by a set of node points. The functions
G} and Hj in Eq. (19) can be obtained from the dis-
placement Green’s functions G;; given in the
Appendix. All Green’s functions appear in terms of
semi-infinite integrals with complex-valued oscilla-
tory integrands. Rajapakse and Wang (1993) dis-
cussed the numerical evaluation of the Green’s
functions. In the present study, numerical quadra-
ture is applied to evaluate the Green’s functions fol-
lowing the details given by Rajapakse and Wang
(1993). The application of numerical quadrature to
Eq. (19) together with the treatment of singularities
is extensively discussed by Banerjee (1994). For cy-
lindrical foundations, integration of Green’s functions
over the tributary areas can be carried out analyti-
cally for constant elements except for diagonal terms.
The application of numerical quadrature to Eq. (19)
results in the following matrix relationship between
displacements and tractions at node points on L.

%Iu m +ﬁ’"um ='G—’"Tm (2 1 )

where I is a unit matrix; #™ and T" denote the mth
harmonic of nodal displacement and traction vectors
respectively.

For a vertically loaded foundation, the matrices
G and H' corresponding to Green’s functions in-
tegrated over nodal tributary areas can be expressed
as

How, %) H o, %)

T e (22)
H xj) H _(x, xj)

—0
H ysom=

G0, %) G ok, T)

—o0 L —0 - (23)
G, x,x)GC ;X))

—=0
G oyxom =
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Table 1 Convergence of impedances with number of node points (h/a=1.0, ay=1.0, v=0.25)

279

M Ky Ky Ky
10 (7.52, 10.61) (9.28, 11.01) (11.37,5.16)
13 (7.34, 10.45) (9.31, 11.01) (11.37,5.15)
15 (7.29, 10.40) (9.29, 10.99) (11.26, 5.16)
17 (7.25,10.38) (9.26, 10.96) (11.25,5.16)
20 (7.24,10.37) (9.24, 10.94) (11.25,5.16)
Ref. [3] (7.57, 10.79) (9.30, 11.13) (11.31, 5.32)
Table 2 Comparison of impedances at different frequencies (h/a=1.0, M=15, v=0.25)
ag 0.25 1.50 2.00
Ky Present (8.44,2.68) (7.11,16.07) (6.76,22.01)
Ref.[3] (8.25,2.73) (6.94,16.57) (6.44,22.70)
Ky Present (9.73,2.90) (8.82,16.49) (8.39,22.18)
Ref.[3] (9.57,2.96) (8.90,16.57) (8.49,22.70)
Ky Present (13.58,0.58) (10.57,8.84) (9.98,12.46)
Ref.[3] (13.44,0.75) (10.60,9.03) (10.11,12.76)

For a laterally loaded foundation the matrices G and
H can be expressed as

H 0, %) Hgkx,¥) HL&,T)

1

Hiym=| H ok, X)) How, ) Hlglx,, X))
H ., %) Hyk,¥) HLx,x)

(24)

G, T) Gaun¥) GLa,T)

?;wa: E;I'H(xiafj) E};g(xpfj) 6.!,0(";’71')
G, ) Gok,¥) G, 7X)

(25)
A solution for T" can be obtained from Eq. (21)
™ =(E'")“(%1 +H ™™ m=0, 1 (26)

The vector u™ in the above equation can be expressed
in terms of Ay by using Eqgs. (10) and (11) for verti-
cally loaded foundations, and in terms of Ay and ¢,
for laterally (including moment) loaded foundations.
Therefore, the vector T" can be expressed in terms of
Ay or Ay and ¢,. The integrals in Egs. (15)-(17) can
be reduced to integrals over L and subsequent appli-
cation of numerical quadrature with Eq. (26) results

in the solution for impedances defined by the Eq. (18).

IV. NUMERICAL SOLUTIONS AND
DISCUSSION

The numerical stability and accuracy of the
boundary element solutions are studied by varying
the number of node points (M) on the generating curve
S of a foundation. A cylindrical foundation with
length-radius ratio A/a=1.0 in an isotropic soil is ini-
tially considered. Table 1 shows numerical solutions
for impedances Ky, Ky and Ky, for different values of
M. These results correspond to normalised frequency
aglap=wa(plcsy)*1=1.0. In the case of cylindrical
foundations, the impedances computed in this study
are defined with respect to the center of the founda-
tion base [i.e. point A has coordinates (0, 0, )] Table
1 also shows the impedances reported by Apsel and
Luco (1987) for the same problem using an indirect
boundary element approach. The results obtained in
the present study are numerically very stable and are
in close agreement with those reported by Apsel and
Luco (1987). Table 2 presents a comparison of im-
pedances of a cylindrical foundation with A/a=1.0 at
ap=0.25, 0.75, 1.5, 2.0 with Apsel and Luco (1987).
A comparison of present solutions and those given
by Luco and Wong (1986) for a rigid hemispherical
foundation is given in Table 3. In the case of hemi-
spherical foundations, the impedances are defined
with respect to the coordinate origin (i.e, point A is
at 0) to facilitate comparisons with Luco and Wong
(1986). The numerical results presented in Tables 1
to 3 clearly confirms the accuracy and numerical
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Table 3 Comparison of impedances of a hemispherical foundation (M=20, v=0.25)

ap 0.01 1.00 2.00

Ky Present (7.19,0.00) (6.93,7.57) (6.60,15.11)
Ref.[17] (7.19,0.00) (7.01,7.64) (6.62,15.54)

Ky Present (7.96,0.00) (7.98,7.73) (7.72,15.33)
Ref.[17] (7.95,0.00) (8.03,7.97) (7.75,15.55)

Ky Present (10.36,0.00) (9.08,3.01) (8.34,7.42)
Ref.[17] (10.34,0.00) (9.09,3.18) (8.35,7.59)

Kym Present (4.06,0.00) (4.18,3.23) (4.12, 6.44)
Ref.[17] (3.98,0.00) (4.16,3.32) (4.09, 6.49)

stability of the present boundary element solutions.

Numerical solutions for impedances of rigid cy-
lindrical and hemispherical foundations are presented
in Figs. 3-7. The soils considered in this study are
silty clay, beryl rock, clay and an isotropic soil. The
relevant material constants are given in Table 4 where
normalised constant ¢y =cij/caa 1s used. The fre-
quency range 0.0<a(<2.0 is considered in the numeri-
cal study since most forced vibrations of machine
foundations are within this range (Gazetas, 1983).

It is noted from Figs. 3-6 that the real part of
vertical impedance, ie. Re(Ky), of cylindrical foun-
dations decreases smoothly as the frequency ay in-
creases for A/a=0.25, 0.5 and 1.0. A minor increase
is initially noted for very small frequencies. However,
for h/a=2.0, Re(Ky) decreases in the range 0<a(<0.8
and thereafter increases slowly with increasing
frequency. The general trend of variation of Re(Ky)
with aq is similar for all four materials although the
magnitude of Re(Ky) depends considerably on the
type of soil. The influence of material anisotropy on
Re(Ky) is also evident. The largest Re(Ky) is found
for a foundation in beryl rock followed by founda-
tions in clay, isotropic soil and silty clay. The imagi-
nary part of Ky shows a linear variation with a, for 0.
0<a(<2.0. The influence of material anisotropy on
Im(Ky) is generally negligible and become smaller
with increasing ag. The order of magnitude of Ky
can be related to the order of magnitude of ¢,; in
Table 4. This implies that the influence of material
anisotropy on the vertical impedance is mainly gov-
erned by the normalised material constant T,; rep-
resenting the elastic moduli of the soil in the vertical
direction.

The real part of horizontal impedance K of cy-
lindrical foundations is nearly independent of a, for
h/a<0.5. However, for h/a=1.0, Re(K}) gradually
decreases with increasing ag. The imaginary part of
Ky shows a near linear variation with ¢ similar to
the case of Im(Ky). The influence of material
anisotropy is more significant on the real part of the

horizontal impedance and relatively smaller on the
imaginary part of Ky. The largest Re(Ky) corresponds
to a foundation in clay followed by foundations in
beryl rock, isotropic soil and silty clay. The in-
fluence of soil anisotropy increases slightly with in-
creasing h/a and ag. A comparison of the order of
magnitudes of Ky and normalised material constants
in Table 4 indicates that the influence of material
anisotropy on Ky is mainly reflected by the value of
cl -

The real part of rocking impedance Ky, decreases

a gradually with the frequency for cylindrical

foundations. The variation of Re(Ky,) with frequency
is similar for the four soils. Soil anisotropy has a
strong influence on Re(Ky) for shorter foundations
(h/a<0.5) that is similar to the case of Re(Ky). For
hiaz1.0, the Re(Ky) of a foundation in clay is slightly
greater than a foundation in beryl rock. Therefore it
appears that the influence of material anisotropy on
Re(Ky) cannot be related to a single value of ¢, in
Table 4. A linear variation with the frequency is noted
for Im(Ky) for ay>0.6. Im(Ky,) of shorter foundations
(h/a<1.0) show less dependence on the soil type. Ra-
diation damping in clay is found to be the highest for
rocking mode of vibrations followed by foundations
in beryl rock, isotropic soil and silty clay.

Figs. 3-6 indicate that for shorter foundations
(h/a<0.5), the real part of the coupled impedance
(Kua) initially increases with the frequency for
0<ao<1.0 and thereafter decreases. However for
h/a=1.0, 2.0, the real part of coupled impedance shows
a gradual increase with ag. Re(Kyy) also shows a
strong dependence on the degree of material anisot-
ropy similar to the real parts of other impedance
components. The highest influence of material anisot-
ropy on Re(Ky) is noted for a foundation in silty
clay and followed by foundations in isotropic soil,
beryl rock and clay. A similar influence of soil
anisotropy is noted on the profiles of Im(Kyy). The
imaginary part of the coupled impedance shows the
highest influence of soil anisotropy when compared
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Table 4 Normalized material constants

Material Cii  Cra €33 €13 Cga(x10* N/mm?)
Iotropic 3.00 1.00 3.00 1.00 1.00
Beryl rock 4.13 1.47 3.62 1.01 1.00
Silty clay 2.11 0.43 2.58 0.47 2.70
Clay 470 1.70 3.30 1.20 0.01

to imaginary parts of other impedances. Inm(Ky,,) de-
creases linearly with ay. Comparison of the order of
magnitudes of Ky, and the normalised material
constants in Table 4 indicates that the influence of
material anisotropy on Kp,, is similar to that seen pre-
viously for K} and can be related to ¢, .

Figure 7 show the solutions for impedances of a
massless hemispherical foundation of radius ‘a’. A
comparison of Ky, Ky, K, and Ky, profiles indicates
that the variation of impedances with frequency is
almost identical to that of cylindrical foundations
with A/a=0.5 and 1.0. Note that the coupled imped-
ance show different magnitudes since the point A
is defined at the coordinate origin in the case of
hemispherical foundations. The magnitude of diago-
nal impedances are generally smaller than the corre-
sponding values for a cylindrical foundation with
h/a=1.0 and higher than those corresponding to h/a=
0.5. The dependence of impedances on soil anisot-
ropy also show trends identical to that noted previ-
ously for cylindrical foundations. Comparison of
solutions in Figs. 3-7 indicate that impedances de-
pend significantly on the foundation geometry. An
increase in the depth/radius ratio generally results in
increases in both real and imaginary parts of
impedances.

V. CONCLUSIONS

The boundary element method based on Green’s
functions of a transversely isotropic medium is suc-
cessfully applied to study the dynamic response of
rigid axisymmetric foundations. Numerical solutions
for vertical, horizontal, rocking and coupled imped-
ances of foundations in four soils are presented. The
impedances significantly depend on the frequency of
excitation, degree of anisotropy of soil and the ge-
ometry of foundation. The variation of real parts of
impedances with frequency is non-oscillatory whereas
the imaginary parts show near linear variation with
frequency. The magnitudes of real and imaginary
parts of impedances increase with increasing depth
of embedment. The influence of soil anisotropy on
the vertical impedances is related to the normalised
elastic modulus €3, . In the case of horizontal and
coupled impedances, the influence of soil anisotropy
is governed mainly by ¢,, . The degree of material

anisotropy has a relatively smaller influence on the
imaginary parts (radiation damping) of impedances
when compared to the real parts. The dynamic re-
sponse of a hemispherical foundation is quite simi-
lar to that of cylindrical foundation with #/a=1.0. The
present methodology can be extended to study foun-
dations with other axisymmetric geometries and situ-
ations involving loss of contact with the surrounding
soils.
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APPENDIX 1
The displacement Green’s functions correspond-

ing to the ring loading shown in Fig. 2 can be ex-
pressed as

2 e ~m . N
G0, 0,257 =C§T4Io G;¢dg i, j=r, 6,z (A1)

where m=0 for loading shown in Figs. 2(a) and 2(b),

and m=1 for loading shown in Figs. 2(c)-2(e), and

G" —cosn19 (alp,e +la,\pye,+apes—la,pe,

—ap €5 dyPr€g) (A2)

m . 4 —_— — f— —_
Gez=-smmt911\,—“/(a4p2e, —lapye,+asp,ey+lasp,e,

—agp\€s—aspyee) (A3)

m

G_-—cov719Rv(a7p261 —aspreytagpestagp e,

—aqp€s—dgpye) (A4)

m Q)2+p3)

Ge covn fB[—=——= 7S @éye, —a,éye,+aé estayé e,
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‘C’1§|75‘az‘5276)— é 13(?7 +?3)]
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m (/ z) — — —_
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In eqns (A2)-(A10),

K&\ -6

R=
K62§2

(A1)

V=o&] - ENG + 1VKS?, S = b\ ExEF - EVxg?

(A12)
[7 ()S‘Im(aés) pOSJl” - ](5;;) POSJ,,, + 1(6;3)
p,= -7 p,y,= 4 s Psy= 4
(A13)
fi=&0+plogi—(x-1p)] (A14)
fr= &1+ pylag; — (k- 1)E%p,) (A15)
f3= &1+ plad] - (k- 1)5%p,]
+ &+ p el - (k- 1)8%p,) (A16)

T =fre B0 T = ReFT ] Ty = fem 00 0
(A17)
T, =Re 2| T =0f e 8z i)
:2]‘26"6(4:' "+&52) (A18)
—7=e—c53(z’+z); Ty = e-%7- (A19)
41 298 g (S (A20)
5§| 55 n
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5§[Jm - I(5§r) + ‘lm + l(5§r)]

=== A2
“ P P2 2 (A21)
ag= ﬁ - a_Z _ 64[‘//11— I((SCV)—J", + ](5§I‘)] (Azz)
Py P2 2 .
ofi -+ ol P+ |
p]= IKCZ s = K-§2 (A23)
£ _(YCZ— 1 —oc+\/6)% - _(},g?_]_a_@)%
T e T w
(A24)
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and {=A/8 and A is the Hankel transform parameter;
0=w(p/cas)'"?; a, B, k, y and ¢ are nondimensional
material parameters defined as

-3 p=S1 _(013'*"44)
T Cy’ Caq’ Cag
y=l+af-id, ¢=—1L 12 €n=cpn) (A27)
2¢y :

Discussions of this paper may appear in the discus-
sion section of a future issue. All discussions should
be submitted to the Editor-in-Chief.
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