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ABSTRACT

A principle of maximum energy dissipation rate has been pro-
posed for microbranching in dynamic crack growth. During dynamic
growth, cracks propagate in such configurations, as to lead maximum
energy dissipation per unit of time. A model for 2D dynamic crack
microbranching is presented by employing time-domain dual bound-
ary element method (TDBEM). In this model, the objective function
is the negative sum of the length of crack growth in each time step, and
constraint conditions are that dynamic stress intensity factors (DSIFs)
of all growing cracks reach a critical value. Sequential quadratic pro-
gramming is adopted to solve this optimization problem. In order to
reduce the error of numerical integration and keep the system stabler,
a special method is developed to deal with the weakly singular integra-
tion in TDBEM. The comparison of computational and experimental
results shows that the principle of maximum energy dissipation rate in
crack microbranching is reasonable to interpret some phenomena of
dynamic crack growth in brittle materials.

I. INTRODUCTION

Dynamic crack propagation in brittle materials
has been investigated by a lot of authors in recent
years. Generally, when a cracked body is subjected
to external loads, the energy stored in the elastic field
is significantly focused on crack tips. If the fracture
energy exceeds a certain value, the cracks will
propagate. Thus, the equation of motion of a single
crack can be derived (Freund, 1990). It is assumed
that the medium is linear elastic isotropic and the
crack propagates along a straight line. However, this
model is too simple to interpret some experimental
results and practical situations.

The theory predicts that the velocity of crack
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growth increases smoothly until it reaches the limit
value of the Rayleigh wave speed v of the material,
provided the energy supplied is sufficient. However,
experimental results show that the limit velocity of a
crack is only half of the predicted value (Ravi-
Chandar and Knavss, 1984). The experiments reveal
that the newly formed crack surface is not smooth.
As the velocity of crack growth increases, the frac-
ture surface formed by the crack becomes increas-
ingly rough. This feature can not be explained by the
above-mentioned theory.

Another long-standing problem is that of crack
branching. When the stress caused by the external
load is high enough, a single crack may bifurcate into
two propagating cracks. Some criteria have been
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proposed. Yoffe (1951) found that some singular
component of the stress field remains maximal in the
direction along the crack until the critical velocity of
the crack is reached. Above this velocity, the peak
value appears in a direction inclined to the propaga-
tion direction, which increases continuously with
the velocity v, until it reaches 60°. Yoffe concluded
that a single crack propagating with a velocity be-
yond the critical value is unstable, and branching may
occur.

Experiments indicate that crack branching
started at a velocity much lower than the value
predicted, and there is significant difference between
the measured angles (10~15°) and the theoretical
predictions. Yoffe’s criterion predicts that the
critical velocity of crack branching is independent
of boundary conditions. On the other hand, experi-
mental results reveal some relation between the criti-
cal velocity of crack branching and loading
conditions.

Recently, (Sharon et al., 1996; Sharon and
Fineberg, 1996; Sharon et al., 1995) carried out a se-
ries of tests on the dynamic fracture of brittle plastic,
PMMA. After analyzing the results, they suggested
that the fracture process is related to the existence
and subsequent evolution of the instability, which
causes a single crack to become unstable and to pro-
duce microscopic branching events. A number of
long-standing questions in the dynamic fracture
of amorphous, brittle materials may be understood
in this picture. They found that many questions
could be explained as the results of crack mic-
robranching. These questions include the transition
of crack branching, “roughness”, the origin of non-
trivial fracture surface, and the oscillations in the
velocity of a moving crack. These questions also in-
clude the origin of the large increase in the energy
dissipation of a crack with its velocity, and the large
discrepancy between the theoretically predicted as-
ymptotic velocity and its observed maximum value.
In the fracture process, a crack produces mic-
robranching cracks and the original crack competes
with newly formed cracks to get more energy. The
winner continues propagating, but the others stop.
However, this theory still lacks quantitative ex-
planations.

In this paper, a principle of maximum energy
dissipation in crack microbranching is proposed. It
is assumed that a crack will propagate in such a
configuration, that the maximum energy can be dis-
sipated during a certain time interval. If the crack
velocity is lower than that of the transition to crack
branching, the crack does not have enough energy to
support another branch crack to be produced, and the
crack grows alone. When the velocity of crack propa-
gation is high enough, the crack will give some

energy to branching cracks so that the sum of energy
dissipated by all cracks will be the maximum in all
possible configurations.

In a mathematical model, the whole fracture pro-
cess can be divided into a number of time steps. At
each time step, the paths along which cracks grow
are determined by the principle of maximum energy
dissipation. The principle can be modeled by the
constraint optimization in a given time interval. The
objective function is the negative sum of all energy
dissipated in the system, and constraint conditions are
that all growing cracks satisfy the growth criterion.
In order to solve the constraint optimization problem,
the sequential quadratic programming method is used
due to its efficiency. To check whether the growing
cracks satisfy the growth criterion, numerical calcu-
lations are necessary due to the complexity of the
problem. To avoid the difficulty of re-meshing, the
Time Domain Dual Boundary Element Method
(TDBEM) is used to calculate the driving forces for
all cracks.

II. TDBEM FOR CRACK GROWTH
1. Dynamic Dual Boundary Integral Equations

Consider a linear, homogeneous and isotropic
elastic medium, which contains rapidly growing
cracks, with time-dependent boundary S due to crack
growth. The boundary § consists of initial boundary
Sy and new boundary S¢(7) formed by crack growth.
For a body which is not subjected to body forces, and
which has zero initial displacements and velocities,
the displacement of a point p on the boundary can be
represented by the following boundary integral
equation:

¢ p, z)=f [J;(r) uip, t;q, Ot (g, DdS@)dt
0

—J [ ‘ 15, 15, Du (g, DAS@M T
0 JS(T)
(N

where u3.(p, t; ¢, T) and tf,-(p, t; q, T) are elastody-
namic fundamental solutions, u;(¢, 7) and t,(¢q, T) are
displacement and traction of the field point ¢ on the
boundary, respectively. c;(p) is a constant which
depends on the geometric shape of the boundary
source point p. Summation convention on repeated
subscripts is followed in this paper.

By differentiating the displacement equation,
applying Hooke’s law and multiplying by the outward
normal at the collocation point, the following trac-
tion equation can be obtained
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where n,(p) are the components of the outward nor-
mal at the collocation point p, uw(p, t; g, 7T) and
tku(p, t; g, T) are the elastodynamic fundamental so-
lutions for the traction equation.

2. Numerical Implementation

The discretization of both space and time is
required. The boundary S is divided into M bound-
ary elements with Z nodes in each element. The ob-
servation time ¢ is divided into N time steps with an
equal time interval. The temporal variation of bound-
ary quantities is specified by H values within a time
step. The crack propagation is simulated by adding
new elements ahead of the crack tip. At a given time,
the number of elements is denoted by M(n)=My+
M(n), where My is the initial number of elements
and Mc(n) is the number of newly formed elements
during crack growth. The displacements and trac-
tions are approximated by the interpolation function
Ni(&) in each element and time step by the interpola-
tion function M"(7). After approximations, displace-
ment and traction equations can be written as
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By using discontinuous quadratic element
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approximation on the crack in space and linear inter-
polation for displacements and piecewise constant for
tractions in time, the following convoluted fundamen-

tal solutions can be obtained (Dominguez, 1993;
Fedelinski et al., 1995).
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In addition, c, is the velocity of the wave; the sub-
script o denotes the number of the wave, a=1 corre-
sponds to a longitudinal wave and a=2 to a shear
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wave; R is the distance from the source to a field
point. When the above variables @, x, and v, are
computed, the causality condition must be satisfied.
That is, if R is greater than the distance traveled
by the wave at the given time, the value of the vari-
ables @q, ¥, and y, is greater than 1. In this case, the
terms in Egs. (5)-(8) including these variables are set
to zero.

It can be noticed that both stress kernels con-
tain the expressions 14/ 1 — 2, which are weakly sin-
gular at the front of the wave, (¢,—1). The weakly
singular numerical integration needs to be carefully
handled because even a little error produced by nu-
merical integration may affect the numerical results.
In order to reduce the error in weakly singular
integration, a special method developed by Zhou et
al. (1998) is employed in this paper.

3. BEM Simulation of Dynamic Crack Propaga-
tion

According to Fedelinski (et al., 1997), after
discretization and numerical integration, we can get
equations at time ¢,

N-1
HNNuN=GNNtN+ E (GN”t”—HN”u”) (IO)

n=1

where u”, t" are collocation displacements and trac-
tions of the nth step respectively. H"™, G" depend
on fundamental solutions and interpolation functions.
The superscript Nn indicates that the matrix depends
on the difference between steps N and n. For stable
cracks, it is necessary to calculate two matrices H",
G"" related to the maximum difference of N—n. For
growing cracks, however, two matrices should be
computed according to the current boundary of the
elastic medium, and other matrices need to be ex-
panded and sub-matrices added related to new collo-
cations and elements formed last step. Therefore, dur-
ing crack growth, the sizes of matrices H"", G™" and
vectors u', t" increase.

4. Calculation of Dynamic Stress Intensity Factors
K] and K“

Dynamic stress intensity factors K; and K; can
be calculated from the collocation displacements at
each time step as

7488, - +ﬂz)

Aub€cosd — AubCsing
2r 460 ( i )

K;=2u

(11)

and

1+
=2u M(A BCeos0 + Aub sin6)
2r 43,1 -
(12)
where Au®¢ and AufC are the differences of displace-

ments between collocation and its dual node near the
crack tip with respect to the x-axis and the y-axis
respectively, r is the distance between the crack tip
and the nodes. u is shear modulus, 6 denotes the angle
between the growth direction of the crack and the x-
axis, and f;, B,, are

Bi=/1-Z . o= [1-Z (13)

where v is the growth velocity of the crack tip.

III. PRINCIPLE OF MAXIMUM ENERGY
DISSIPATION RATE

When a crack grows, applied energy and elastic
energy stored in a medium is gradually dissipated.
Some energy is converted to heat energy, and some
to elastic wave energy. Most energy, however, is dis-
sipated to generate new crack faces. There are many
dynamic fracture theories trying to connect energy
with the fracture process. Unfortunately, most theo-
ries fail to explain some phenomena in experiments.
It seems that some energy dissipates during crack
growth.

Experimental observations (Sharon et al., 1996;
Sharon and Fineberg, 1996; Sharon et al., 1995) re-
veal that when a crack propagates in brittle materials,
there exist some crack microbranches which have
lengths from several microns to several millimeters
near the surface of the main crack. This micro-
branching is considered to be the main reason for high
energy dissipation during rapid crack growth and
lower crack velocity. Nevertheless, it is still left to
be explained why a crack generates micro-branches.

It is proposed that in all potential configurations
and paths of crack growing, cracks will propagate
along the one, which corresponds to maximum dissi-
pation of energy. That is, the principle of maximum
energy dissipation rate is followed in dynamic crack
growth.

Assuming that all configurations of the main
crack and branch cracks are known, the configura-
tions of cracks at the next time step need to be
determined. Because of symmetry, it is assumed that
two branch cracks are generated simultaneously.

According to the Dugdale model, the energy re-
lease rate for a single crack during extension is

-6]
g=J o(S)dS (14)
0
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where &, indicates the crack tip open displacement;
o(6) is the stress at the crack tip. For perfectly elas-
tic-plastic materials, o is equal to yield stress oy and
the energy release rate for a single crack is

F=Gob, (15)

where §, is the critical crack tip open displacement.
During crack growth and microbranching, there

are several cracks propagating simultaneously. The

configuration of crack branching can be defined as

X=X(xy, x2, ..., X _)=X(vy, 63, v, ..., 8, v;) (16)

where L is the total number of cracks, including the
main crack and branch cracks; the configuration con-
sists of 2L—1 variables, x|, x2, ..., xo;,_;, which are the
velocity of the main crack v, and the angles and ve-
locities of the branch cracks, 0,,vy, ...,0;, v,
respectively. All these variables are time dependent.

The total energy dissipated by newly formed
fracture surfaces can be written as:

E=20,0.Aq, (17)

where Aa; denotes the length increment of each crack
in the current time step.

Since almost all the energy dissipated in crack
growth is used to produce fracture surfaces, a math-
ematical model can be constructed as a constraint op-
timization problem. The objective function is the
negative sum of crack length increased in the time
step, and constraint conditions are that the driving
force of every growing crack is equal to the critical
energy release rate. Therefore, the principle of maxi-
mum energy dissipation rate can be written

min F:—ZAai
subject to gi—gc=0 i=1,2,...n (18)

where g; denotes the driving force of the ith growing
crack, gc is the critical energy release rate and n is
the number of growing cracks at the current time step.
All the objective function and the constraint condi-
tions depend on the variables of crack branching in
Eq. (16).

Utilizing Irwin’s relationship,

L1 19
g_ E ( )

The constraint conditions in (18) can be written as
K—Kc=0 i=1,2,..,n (20)

where K; is the effective dynamic stress intensify
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Fig. 1 The normalized energy dissipation of the main crack and

first branches with different branching angles

factor of the ith growing crack, and K¢ is the critical

dynamic stress intensity factor.

There are nonlinear constraint functions in the
optimization problem (18) and the evaluation of
constraint functions is time consuming. The best
method to solve such problems is sequential quadratic
programming (SQP) because this method needs a
minimum number of function calls. Therefore, the
numerical procedure to model crack microbranching
can be summarized as follows:

1. Initiate all variables, and set maximum number of
time steps.

2. Search for active cracks, where the driving force
reaches the critical value.

3. Construct an optimization problem by taking the
velocities (proportional to the length increments)
and angles of active cracks as design variables. Do
optimization. Call TDBEM to compute the driv-
ing forces of cracks.

4.1f optimization fails, adjust the number of active
cracks by subtracting from design variables the
crack, which is impossible to grow, and then rerun
the optimization.

5.If optimization is successful and number of steps
is less than the prescribed maximum number, then
go to step 2.

The possible configurations for branching are
those in which all the active cracks satisfy the growth
criterton. However, when an elastic wave front is
just arriving at the crack tip, the driving force for the
crack may be discontinuous with respect to the length
of the crack. The optimization may fail. In fact, there
exists a transition zone at a wave front. So, the re-
sult can still be acceptable if the constraint function
changes sign and its partial differential with respect
to the above-mentioned variables is very large.

IV. NUMERICAL RESULTS AND
DISCUSSIONS

Figure 1 shows the relation between the angle,
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Fig. 2 Dimensions of the Sample and Boundary Conditions

from the main crack to one branch crack, and the nor-
malized energy release rate during the crack
propagation. The results indicate that the maximum
normal energy release rate is reached at the angle of
35°, thus, according to the principle of maximum
energy dissipation rate, the crack will probably branch
at this angle which is close to the test results (Sharon
et al., 1996). However, the angle is only correct for
the first branching of a straight crack. When the
cracks branch again, the next branching angle will be
affected by the first branching cracks.

PMMA sample with dimensions of 0.22 mx
0.05 mx0.00025 m is simulated by BEM. One end of
the plate is fixed, and the other end is subjected to
the traction at the rate £&=10s™". The elastic modulus
of the material E=3GPa, fracture toughness K;c=
| MPav/m.

Three steps of branching are calculated and the
configuration of crack branching is illustrated in Fig.
3. The initial angle of the first branch is 33.74°, the
growth angle is 19.93° at the second step, and the
growth angle is 29.30° at the third step. The initial
angle of the second crack branch is 18.81°, and the
growth angle is 12.02° at the second step. The initial
angle of the third branch is 13.82°. Growth angles at
the second step and the third step from BEM agree
very well with the experimental results 10°~15°
(Sharon et al., 1996), and the configuration from the
computation also resembles the shape of
microbranching in experiments (Sharon et al., 1995).

V. CONCLUSIONS

In this paper, a principle of maximum energy
dissipation rate for microbranching of cracks during
crack propagation has been proposed. A model for
2D dynamic crack microbranching is presented, by
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Fig. 3 Three Step Branching Configuration

employing this principle and the time-domain dual
boundary element method. An example was given,
the results shows that the principle is reasonable for
crack growth in some brittle materials. Growth angles
at the second step and the third step from BEM agree
very well with the experimental results. The configu-
ration from the computation also resembles the shape
of microbranching in experiments. The results also
show that the TDBEM is quite suitable to solve such
kinds of problems.
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