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ABSTRACT

In this paper, the pavement-subgrade system is modeled by a lot
of rectangular thin plates on an elastic foundation, and the various joint
restraints between these connected plates are simulated by generalized
boundary conditions with a number of undetermined parameters. A
boundary element method is developed for the free vibration problem
of plates resting on an elastic foundation. The identification proce-
dure is performed by combining the boundary element method with
optimization techniques. Two examples, respectively associated with
plate structures and the pavement-subgrade system, are presented to
illustrate both the boundary element method and the identification pro-

cedure proposed in this paper.

I. INTRODUCTION

Research on the mechanical behavior of the
pavement-subgrade system is an important category
in aeronautic and transport engineering. In general
the pavement-subgrade system can be modeled by a
rectangular thin plate on an elastic foundation sub-
jected to an aircraft load. Although such topics have
already been reported on the literature, there are still
some weak aspects in practical applications. In most
investigations, one of the major drawbacks is that
classical boundary conditions are assumed, which
may be quite insufficient for actual cases. In fact,
most real pavements are constructed of many rectan-
gular plates, and these plates are joined together in
various different ways (as shown in Fig. 1), so the
load transfer capacity of these joints should be

*Correspondence addressee

accounted for fully. In our recent papers (Zheng and
Yao, 1993) it was shown that the various joint re-
straints for the pavement-subgrade system could be
effectively simulated by elastic restraint edges with
a number of undetermined parameters. In this paper,
we focus our attention on developing an identifica-
tion method to determine the boundary conditions of
the pavement-subgrade system. In this case the
Rayleigh-Ritz method is unsuitable because the con-
structing trial function is quite difficult for various
complicated boundary conditions. The finite element
method is also disadvantageous for such problems
since a lot of repeated computation would be neces-
sarily required when the boundary conditions are
changed as the iteration proceeds. However the
boundary element method is very convenient for such
problems (Tanaka et al., 1988).
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In this paper, a boundary element method is
developed for the free vibration problem of plates
resting on an elastic foundation. The fundamental
solution of the problem is derived by Hankel
transform. Based on the direct boundary element
method, a complete set of boundary integral equa-
tions and a relevant numerical scheme are established.
The inverse problem of identification procedure is
performed by combining the boundary element
method with optimization techniques. The objective
function for this procedure is taken to be the
difference, in the least-squares sense, between the
computed and the measured natural frequencies of the
system. The design variables are defined in terms of
some undetermined boundary parameters. An impor-
tant feature in this procedure is that the sensitivities
with respect to these boundary parameters can be di-
rectly obtained from the boundary element formula-
tion by using the differentiation approach. Finally,
the conjugate gradient algorithm for unconstrained
optimization is adopted for minimizing the objective
function.

II. FUNDAMENTAL EQUATIONS

In the general the pavement-subgrade system can
be modeled by a rectangular thin plate on an elastic
foundation subjected to an aircraft load. Here, con-
sider a thin plate resting on an elastic foundation and
occupying the region Q bounded by the boundary
curves I'. The governing differential equation deal-
ing with the free vibration can be expressed as

DV*W+(K—p@*)W=0 (N

where D is the bending stiffness of the plate, K is the
foundation modulus, p is the mass density of the plate,
and @ is the frequency parameter of the system.
Moreover, the deflection W must satisfy the bound-
ary conditions and the corner conditions.

In order to simulate the various joint restraints
in the pavement-subgrade system (as shown in Fig.
1), the following generalized boundary conditions and
corner conditions are employed

Bi©+p.M =,

C 1 WH+CyRP=C;y; at the corner point k  (3)

In expressions (2) and (3), o, B; and Cy, (i=1, 2,
3) stand for undetermined parameters, respectively
defined on the boundary I" and at the corner point k.
W, ©, M and Q respectively are the deflection,
rotation, bending moment and Kirchhoff equivalent

(b)

© @

Fig. 1 Different connecting forms of the plates in the pavement-
subgrade system

shear force along the plate boundary, W and R™ are
the corner deflections and corner concentrated forces,
which can be expressed as
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where n and s respectively stand for the outward nor-
mal and tangent of the boundary T'; (---)*! means the
discontinuous jump at the point k.

The boundary conditions (2) and the corner con-
ditions (3) are more suitable for the practical problem,
from which many kinds of conventional boundary
conditions, including the mixed boundary conditions,
can be derived.

III. BOUNDARY ELEMENT FORMULATION

We define the fundamental solution W* of the
Eq. (1) by

DV*W*+(K-pa*)W*=8(r) (5)
The fundamental solution W* of the problem can
be derived by Hankel transform (Puttonen and

Varpasuo, 1986). By using Kelvin functions of the
second kind, the fundamental solution W* can be ex-

pressed in the following form
4/ K- pw? ”
Vo ") ©

By using the general reciprocal theorem (Bezine,

¥ y=__1 /D g
W*(r) 7D K—paﬂ Kei
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1988), the boundary integral equation for the direct
method can be expressed in the following form

CW(P) = [ W*Q - @M+ M*O—Q*WldT
JT
+ % [(W*)(k)R(k) -R *)(k)w(k)] (7)

where the value of a coefficient C depends on the
position of the point P. When P—T, C is the inner
angle between the tangents.

From Eq. (7) all other variables can be computed
when the values of W, ©, M, Q and R® are known.
For the solution of these unknown variables, two
boundary integral equations are needed at every
boundary point. One of these can be obtained by P—T’
in Eq. (7) and the other can be obtained by differenti-
ating Eq. (7). By using the notation Wi=W" and
W’{:BW*/an, these two boundary integral equations
can be written as follows

CWP) = Jr (W0 — ©*M + M O - Q*WldT
+ g [(WHORP_RHOWH] (i=1,2)  (8)

The boundary integral Eq. (8), together with the
boundary conditions (2) and corner conditions (3)
constitute a set of simultaneous equations, which can
be solved to yield the solution of the problem.

Now we discretize the boundary I' into bound-
ary elements and require that all of the boundary cor-
ners are contained in the nodes. Inside the element a
boundary variable is defined as a linear function of
its nodal values. By using the standard boundary el-
ement discretization for the above set of equations, a
linear system of algebraic equations with respect to
the unknown nodal values a on the boundary can be
expressed in an abbreviated form

A(L)a=0 )

where A is the non-dimensional frequency parameter
associated with the frequency parameter @ of the
system. Since the singularity of the fundamental so-
lution W in Eq. (8) is strong, an auxiliary boundary
technique has been employed to calculate the influ-
ence matrices A(A).

In order to determine the natural frequency, the
determinant of the coefficient matrix A(4) is zero,
which can be solved by the step-by-step search tech-
nique (Kitahara, 1985).

IV. THE IDENTIFICATION PROCEDURE

The identification of the boundary condition

may be viewed as an optimization problem. The
objective function to be minimized is written as a
least-squares difference between the computed fre-
quencies A;(z) and the measured natural frequencies
A, of the system.

A -1
fo=2 ¢[%l (10)

i

where ¢; is an arbitrary weighting parameter to change
the sensitivity in the minimization process; and the
design vector z is defined in terms of some undeter-
mined parameters that can completely describe the
boundary environment of the system. For the mini-
mization of the objective function f(z), a conjugate
gradient technique of optimization was adopted. The
method starts with an initial guess zg, and generates
the improved value as

e 1=+ O (1

where k is the iteration number, 6, is the search
direction that is modified at each step by the conju-
gate gradient technique, and [, is the step-length
along the search direction. In the present study,
the Golden section method is employed for determin-
ing the step-length, which requires the scalar /; sat-
isfy

S@xe)=min{f(Z;+16rs1l120) } (12)

The algorithm for the minimization of the function
f(z)) is considered to have converged when the suc-
cessive evaluations are such that ||f(z)]|<eg, where € is
a prescribed tolerance.

Moreover, the gradient of the objective function
f(z) in Eq. (10) may be written as

af(z)_2>5 ¢/l(z) Z o,

(13)

where d4,/0z are the natural frequency sensitivities
that can be conveniently obtained from the bound-
ary element formulation by using the implicit-differ-
entiation approach in (Saigal, 1989). An important
feature of these derivations is that they do not require
the computation of the inverse with respect to the Hes-
sian matrix of the objective function.

V.NUMERICAL EXAMPLES

Two examples, respectively associated with the
plate structures and the pavement-subgrade system,
are presented to demonstrate the effectiveness of the
formulations developed in this paper. All of these
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Table 1 Identifying the boundary conditions of square plates
Case 1 (§-C-5-0) Case 2 (S-F-S-F)

k o Bi Szp) k o B Sz

1 0.5000x10" 0.5000x10™ 0.1293x10! 1 0.5000%x10™" 0.5000%x10™" 0.3536

2 0.7253x107? 0.7136x1072 0.7447x10™" 2 09756 0.1426x10' 0.6108x10™"
3 0.9443x107° 0.4855%x1072 0.3609x10™" 3 0.4517x10? 0.4201x10" 0.3693x10™
4 0.7251x10™* 0.1843x107? 0.9623x107? 4 0.1650x10° 0.6731x10' 0.3382x1072
5 0.5790x10™ 0.8938x10™ 0.2543x1072 5 0.8405x10° 0.6917x10? 0.2088x107?
6 0.3254x10™*  0.7051x10™* 0.1721x107? 6 0.1373x10* 0.2639x10° 0.5219x107?
7 0.9827x107° 0.2677x10™ 0.9354x10™* 7 0.3428x10* 0.8087x10* 0.1078x107*
8 0.8618x107° 0.5109x107° 0.8407x10* 8 0.7807x10* 0.6878x10° 0.9525x10™

Table 2 Identifying the boundary conditions of
the pavement-subgrade system

k o (05} B B2 Sz

1 1.00000 1.0000 1.0000 1.0000 0.0812
2 154592 9.2355 1.9525 2.4142 0.1501
3 20.4155 8.8859 1.5709 1.9041 0.1390
4 27.5261 6.5993 2.8655 1.5860 0.8235
5 29.0520 6.0573 3.5747 0.8452 0.4547
6 28.2797 5.3056 3.4757 0.3897 0.1598
7 27.0568 4.8842 3.1787 0.4685 0.0925
8 26.8147 5.0823 3.0244 0.4345 0.0602
* 294118 5.2360 2.7443 0.4051

*) Zheng and Yao 1994

problems are concerned with the rectangular plates,
which are assumed to have symmetric elastic
restraints respectively along one pair of opposite
edges I') and the other pair of opposite edges I', as
follows

W.=a,0,

0.=BM (14)

}on I; (i=1, 2)

where ¢; and f; are the identified parameters.

1. Identifying the Boundary Conditions of Square
Plates (without foundation)

In this case, the square plates are simply sup-
ported along one pair of opposite edges I';. On the
other pair of opposite edges I'}, they have symmetric
elastic restraints as in Eq. (14). Poisson’s ratio is
chosen to be 0.3. Sixteen linear boundary elements
of the same size are employed for the computation.
The actual boundary conditions along T'; are given in
the following two cases:

(1) Clamped edges (¢;=0 and §,=0)
(2) Free edges (a;=c and f3;=o0)

The first four actual frequencies are obtained
from Leissa’s exact values (Leissa, 1973). The con-
vergence histories for the design variables are shown
in Table 1.

2. Identifying the Boundary Conditions of the
Pavement-subgrade System

The following properties for an actual pavement-
subgrade system are given:

length of the pavement a=5m

width of the pavement b=4m

pavement thickness h=0.24m

mass density p=552.03 kg/m?

Young’s modulus of pavement material E=

3.5x10° MPa

Poisson’s ratio of pavement material y=0.167

Winkler modules of the foundation K=6.35x10°

kg/m?

The first six frequencies are obtained by mea-
suring an actual pavement-subgrade system. The con-
vergence histories for the design variables are shown
in Table 2. A comparison between the results in this
paper and the results obtained by other methods
(Zheng and Yao, 1994), is also listed in Table 2, which
shows good agreement.

VI. CONCLUSIONS

In this paper, we focus our attention on devel-
oping an identification method to determine the
boundary conditions of the pavement-subgrade
system. The various joint restraints for the pavement-
subgrade system are simulated by elastic restraint
edges with a number of undetermined parameters.
The identification procedure is performed by com-
bining the boundary element method with optimiza-
tion techniques. From this investigation we can see
that boundary element methods seem to be superior
to some domain methods in the boundary identifica-
tion of certain structures.
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