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ABSTRACT

The purpose of this paper is to present a mixed potential and ve-
locity based boundary element method to solve wave making resis-
tance problems. In this method, the singularity strengths on a non-
lifting body or a lifting body are solved by a potential based boundary
element method, and the singularity strengths on the free surface are
solved by a velocity based method. The interaction between the body
and the free surface is then calculated by an iterative procedure. It is
found that a block iterative matrix solver can be used in the solutions,
and computational time has thus been dramatically reduced. Compu-
tational results are shown for the comparison of the presented method
and a source only velocity based method. Calculated results for both
non-lifting and lifting bodies are also compared with the experimental
data.

I. INTRODUCTION For bodies with lifting effects traveling in a free
surface, such as a surface piercing hydrofoil, dipoles
or vortices have to be distributed on the body surface.

Hess (1972) modified his source only method with

Solving wave resistance problems by a bound-
ary element method, or a panel method, has been stud-

ied for more than thirty years. Hess and Smith (1964)
first presented a velocity based boundary element
method to calculate the potential flow around an ar-
bitrary three dimensional body, and Dawson (1977)
later modified Hess and Smith’s method to take the
free surface effect into account. In Dawson’s method,
sources are distributed on both the body surface and
the free surface, and strengths of the sources distrib-
uted are determined by satisfying the solid body
boundary condition on the body, and a linearized free
surface boundary condition on the free surface.

*Correspondence addressee

the inclusion of a constant strength vortex sheet dis-
tributed on the body surface, and the vortex strengths
are determined by satisfying the Kutta condition. Xia
(1986) later applied this modified method to calcu-
late the wave making resistance of a sailing boat. Xu
(1991) and Maniar (1990) used Havelock singularities
to solve the free surface/lifting surface interaction
problems, in which the panels only needed to be dis-
tributed on the body surface.

In the present paper, the authors use a different
approach by solving the singularity strengths on the
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body surface and on the free surface separately. For
solving the body problems, Green’s identity formula
is adopted, and a potential based boundary element
method is used to solve the strengths of perturbation
potentials (dipoles) distributed on the body surface
by satisfying the solid body boundary condition. For
lifting bodies, a vortex sheet (wake) behind the body
is introduced, and the Kutta condition has to be
satisfied. For the free surface problem, a velocity
based method is used to solve the strengths of sources
distributed on the free surface, and a linearized free
surface boundary condition is imposed on the free sur-
face panel. The interaction between a body and the
free surface is considered by including the induced
velocities of each other as part of the the inflow, and
an iterative procedure is needed to obtain the final
solutions.

II. THEORY

Considering a body (a ship or a hydrofoil) trav-
eling with a steady forward speed, U.., in the pres-
ence of the free surface, and { is assumed to be the
wave elevation due to the interaction between the
body and the free surface. Under the assumption of
potential flow, the governing equation is the Laplace
equation:

V=0 (D

and ® is the total velocity potential. To satisfy
Bernoulli’s equation on the free surface z={(x,y), we
have

g§+%(¢f + 02+ -U2)=0 ()
and the kinematics boundary condition gives
@ (AP, ~D.=0 (3)

Dawson (1977) linearized the above equations
with respect to the “double body” flow, and assumed
the total potential @ to be the sum of the body
potential, ¢4, and the free surface perturbation
potential, ¢y.

=g+ ¢y, (4)

The following equation then can be obtained from
equations (2), (3), and (4):

(@) @], + 8. = 2(9)X,), (5)

where [ represents the derivatives of the potentials
along a streamline on the plane of z=0. The bound-
ary condition on the wetted body surface is the solid
body boundary condition:

,=0, (6)

where @, is the normal derivative of the total
potential.

The above method has been widely applied to
solve wave resistance problems, in which sources are
distributed on both the body surface and the free
surface. Detailed derivation can be seen from Kim
(1981), Lu (1994) or other related documents. The
lifting effect had not been considered until Xia (1986)
applied a modified velocity-based boundary element
method to calculate the wave making resistance of a
sailing boat. Xia adopted the method modified by
Hess (1972), and kept the original structure of
Dawson’s method. However, the final formulation
was very complicated due to the consideration of the
lifting effect, and an iterative procedure was neces-
sary to satisfy the Kutta condition.

In the presented method, we solve the body
(ship) problem and the free surface problem
separately. Both source and dipole sheets are dis-
tributed on the body surface, however, only source
sheets are distributed on the free surface. The singu-
larity strengths on the body and on the free surface
are solved separately, and the influence on each other
is then considered by including the induced veloci-
ties as part of the inflow velocities.

When solving body problem, Green’s theorem
is used,

2m00)=f, W% -Garams+ | andias )

1 .
, R(p;q) is
Rpiq) (p:q)

the distance between points p and ¢, Sp represents
the body surface, and Sy represents the body wake
surface. ¢ is the perturbation potential, and can be
explained as the dipole strength distributed on the
body surface. 0¢/dn is the source strength, and it is a
known term from the solid body boundary condition:

where G is the Green function, G=

0 _ =B —

= U, *n (8)
where 7 is the normal vector of the body, Tf,f is the
inflow velocity including the induced velocities on
the body by the free surface panels, u *:

—5 = .,
U,=U.,+u )
The reason to include the free surface induced veloc-
ity in the inflow velocity is to consider the interac-
tion between the body and the free surface, that is, to
simulate the free surface effect. However, Green’s
theorem is still applied to the computational domain
composed by the body surface and the boundary at
the infinity.
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In Eq. (7), A¢ is the dipole strength in the body
wake, and it has to be equivalent to the difference of
the dipole strengths of panels on the upper and lower
surfaces at the trailing edge to satisfy the Kutta
condition. This kind of numerical Kutta condition
was first used by Morino (1974), and later was ap-
plied to a propeller boundary element method by
Kerwin et. al. (1987). Morino’s Kutta condition im-
plies that the vortex strength at the trailing edge is
zero, therefore, the pressures on the pressure side and
on the suction side are equal at the trailing edge.
Notice that A¢ can be coupled into the dipole term in
Eq. (7) since it equals to the difference of the dipole
strengths at the trailing edge panels.

We begin the solutions of Egs. (7) and (8) with
the “double body” solution, that is, a solution corre-
sponding to the zero Froude number (gravitational
force far greater than the inertial force). Therefore,
the initial solutions (first iteration) of the Eqgs. (7)
and (8) are the solutions of the “double body
problem”, and the influence of the free surface is not
included. In the following iterations, the induced
velocities on the body by the free surface are included
in the inflow velocities, and the solutions of Eqs. (7)
and (8) are called the solutions of the “body problem”.
In each iteration, the term ¢ represents an updated
body solution, @,.

' When solving the free surface problem, the de-
rivative of the total potential in the streamline direc-
tion thus can be expressed as follows:

@),=U,

m

@)+ @), (10)

~where (¢4); can be calculated from Eq. (7), and

(¢f)1=J
S
the free surface panel. The inflow term in Eq. (10) is
U, 1 +(¢,);, which equals the sum of the inflow
velocity and the induced velocities on the free sur-
face panel by the body. Eq. (5) then can be solved to
obtain the source strengths on the free surface panels.
In the above scheme, it needs an iterative pro-
cedure to include the interaction between the body
and the free surface, and the numerical procedure will

be discussed in the next section.

oVGdS, where o is the source strength on

III. NUMERICAL IMPLEMENTATIONS

We have introduced the fundamental formula-
tions needed in this method, and we will now describe
the numerical procedure.

1. First, we solve the double-body problem by solv-
ing the discretized form of Eq. (7) with the bound-
ary condition in Eq. (8). The discretized form of
Eq. (7) can be seen form Kerwin ef al. (1987) or
Hsin (1990,1991), and it can be represented by the

following linear system:

[Kspll941=[RHS ) (1)

In Eq. (11), we define the left-hand-side matrix
[Kgg]) as the “body to body” influence coefficients
matrix. The right-hand-side matrix [RHSg] repre-
sents the influence of the source with the strength
of — U,-f-ﬁ (Eq. (8)). We can then obtain the
solutions, ¢4, by solving the above linear system.
2. We then solve the free surface problem, that is,
solve Eq. (5). In Eq. (5), each term can be calcu-
lated as follows:
(a) (¢4, can be obtained by calculating the induced
velocities of the body on the free surface panels,
(b) (®), is replaced by Eq. (10),
(c) [((j)‘,)lzd),], and (¢,), can be obtained by using a
finite difference method to (¢,,),2<D, and (¢,);.
A linear system thus can be set up from Eq. (5)
with the unknowns, ¢y,

(Krrl[¢7)=[RHSF] (12)

In Eq. (12), we define the left-hand-side matrix
[Krr] as the “free surface to free surface” influ-
ence coefficients matrix. The source strengths of
free surface panels, ¢y, thus can be calculated.

3. Calculate the induced velocities of the free surface
panels to the body panels. The inflow velocity to
the body is updated by including the free surface
induced velocities as in Eq. (9), and the source
strength distributed on the body surface is thus
updated. The singularity strengths on the body can
be solved again by solving Eq. (7), or, step |. How-
ever, the “body problem” instead of the “double
body problem” in the first iteration is solved.

4. We can then repeat step 2 by using the updated
body problem solutions.

The whole procedure is repeated until solutions are

converged.

To further explain the presented method, let’s
go back to Dawson’s method first. In Dawson’s
method, the matrix system can be grouped as follows:

Kb kP ] ,
55V F5 || T8 | (RHS) (13)
Kgr Kep |L7F]

where K?B is the “body to body” influence coeffi-
cients matrix, K2, is the “free surface to body” in-
fluence coefficients matrix, K 5 is the “body to free
surface” influence coefficients matrix, and K 2 is the
“free surface to free surface” influence coefficients
matrix. Op and Of are the source strengths distrib-
uted on both the body surface and free surface. By

comparing Eq. (11) and (12) with Eq. (13), one can
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see that although the influence coefficients are
different, the presented method in some sense decom-
poses the matrix system of Dawson’s method into two
systems (body problem and free surface problem).
That is, only the two diagonal matrices in Eq. (13)
are solved.

It is found that an iterative matrix solver can be
used to solve both the body and free surface problems,
and this is not possible when solving Eq. (13) in
Dawson’s method. Therefore, less computational
time is needed by using the presented method. This
must be because a mixed boundary element method
is used and the “body problem” and the “free surface
problem” are solved separately. If N is the number
of panels distributed on the body surface, and Ny
is the number of panels distributed on the free
surface, then the time to calculate the influence coef-
ficients in both methods are equal and proportional
to (Ng+Np)®. The time to solve the matrix system in
Dawson’s method is proportional to 2/3(Nz+N3)* by
using the LU factorization method. On the other hand,
the time to solve the matrix system in the presented
method is proportional to kg(Ng)+ke(Nf)? (kg and kr
are number of iterations) using an iterative method
when solving the “double body problem” and “free
surface problem”, and is proportional to (Ng)’+(Nf)?
when solving the “body problem” and “free surface
problem” since only back substitution is needed. In
our experience, kr and kg are both around 20, and the
total number of iterations needed in solving the body
problem is less than 5. Overall, the computational
time used in solving the matrix system in the pre-
sented method is around 25X((Ng)*+(Ng)?). For a typi-
cal case, N is around 1000, and N is around 2500,
then the time to solve the matrix system in the pre-
sented method is only 0.63% of that in Dawson’s
method. Since the computational time in solving the
matrix system in a boundary element method is usu-
ally one half of the total computation time, the com-
putational time of presented method is far less than
that of Dawson’s method.

Because the interaction between the body and
the free surface is carried out by the concept of “in-
flow” here, a body with multiple parts can also be
computed by the presented method. The fundamen-
tal philosophy is still the same, however, there are
two different ways to obtain the body solution. One
way is to solve all the “body parts” together just as
described above. The other way is to obtain the so-
lutions of each “body part”, and the interaction be-
tween parts is carried out by the “inflow” concept.
For example, when calculating the free surface around
a catamaran, although both approaches can be used,
the first approach may be easier since two body parts
are symmetrical. However, when investigating the
interaction between the propeller and the ship hull,

ZE presented method

E;\N\ 7\;\

"Y LVWV W///y

gource only method
M AT LA T
X 0

X

Fig. I Comparison of the calculated wave pattern at Froude num-
ber 0.28 between the presented method and a source only,
velocity based method

the latter approach may be more appropriate.
IV. NUMERICAL VALIDATIONS

In order to validate the presented method, we
will demonstrate several numerical examples here,
and these calculations include both the flow around
non-lifting bodies and the flow around lifting bodies.
The computational results will be used for the fol-
lowing purposes:

ethe comparison between the presented method

and a source only method for both the lifting
and non-lifting bodies;

ethe effect of the Kutta condition for the calcu-

lation of flow around a lifting body;

ethe comparison between the numerical results

and the experimental data.

1. Non-Lifting Bodies in the Free Surface

We have first tested the presented method by
computing the flow around a non-lifting body, and
the case selected is the classical Series 60 ship hull
with Cp=0.6. We have calculated the flow around
this ship hull at several different Froude numbers to
obtain the wave profile and the wave resistance. The

Froude number here is defined as F,,=U—, where L

is the ship length. The computational results have
been first compared with the computational results
of a source-only, velocity based, Dawson’s type code
(Lu and Chou, 1994). Fig. | shows the comparison
of the calculated wave pattern at Froude number
0.28 between the presented method and the source
only velocity based method, and the results from two
methods agree with each other pretty well. Note that
both methods use exactly the same panel arrange-
ments in the computations.
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Fig. 2 Comparison of the wave height at Froude number 0.28
between the computational results and the measured val-
ues (bow is at -1.0)

We then compare the computational results with
the experimental data. Fig. 2 shows the comparison
of the wave height at Froude number 0.28 between
the computational results and the measured data by
Kim and Jenkins (1981). In this figure, L is the ship
length, and the ship bow and stern are located at x=
—1.0 and x=+1.0 respectively. Fig. 3 shows the
comparison of the wave resistance coefficients, Cw,
between the computational results and the experimen-
tal data at different Froude numbers. In this
comparison, two different sets of experimental data
are used, one is obtained by Kim and Jenkins (1981)
and the other one is by Kajitani (1987). Here, Cy is

. R .
defined as —W—z, where S is the wetted surface area

of the ship hull, and V, is the ship speed. In both
figures, the comparisons between the computational
results and experimental data are reasonable. In Fig.
3, one can see that the computational results show
the same trend with two different experiment data.
Although the computational results are consistently
higher than the experimental data by Kim and Jenkins,
they are very close to Kajitani’s data for Froude num-
bers lower than 0.3. The larger discrepancies for
Froude numbers higher than 0.3 are due to the linear-
ization of the free surface boundary conditions used
in the presented method.

2. Lifting Bodies in the Free Surface

In order to validate the computations of free
surface flow around lifting bodies by using the
presented method, the calculations of two surface
piercing hydrofoils are demonstrated here. These two
hydrofoils are actually the same hydrofoil with

EXP. (Kim)
—@— EXP. (Kajitani)
— —#— - CALCULATED

1 L s 1 L 1 L 1 L s 1
0.25 0.3 0.35
Fn

Fig. 3 Comparison of the wave the resistance coefficients, Cy,
between the computational results and the experimental
Ry
1R2pV3s

data. Cy is defined as

different immersed lengths. The experiments have
been conducted at David Taylor Model Basin, and
forces on the hydrofoils have been measured (Beaver,
1991) at different Froude numbers and different yaw
angles (angles of attack). The tested hydrofoil has a
NACAG3A section with 9% thickness to chord ratio.
The chord length is 425.45 mm, and the spans under-
water are 1447.8 mm for the “full span” case (the as-
pect ratio is 3.4), and 762 mm for the “half span” case
(the aspect ratio is 1.9). In both cases, the forces on
the hydrofoil have been measured when the hydro-
foil traveled at 2 knots and 4 knots with several dif-
ferent yaw angles. We define the Froude number as

F,,:—\/U—L&— here, where C is the hydrofoil chord length,
8

so the above cases are equivalent to Froude numbers
0.5 and 1.0.

In the presented method, the coordinate system
is fixed on the body; therefore, the inflow directs with
an angle of attack (yaw angle) relative to the body
when calculating the flow around a surface piercing
hydrofoil with a yaw angle. Fig. 4 shows the panel
arrangements on the free surface and on the hydrofoil.
The panels on the hydrofoil are discretized by using
a cosine spacing in both the spanwise direction and
the chordwise direction. This is for the purpose of
having better numerical resolutions near the free sur-
face and at leading edge and trailing edge. The pan-
els on the free surface are discretized by a hyperbolic
tangent spacing upstream and downstream of the
hydrofoil, and aligned with the panels on the
hydrofoil. The panels on the hydrofoil wake are
discretized with a half-cosine spacing such that pan-
els are finer near the hydrofoil trailing edge.

We first examine the convergence of
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Fig. 4 Panel arrangements on the free surface and on the hydro-
foil in the presented method
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Fig. 5 Calculated circulation distributions on the hydrofoil for
F,=0 and F,=0.5 by using different number of panels. C
represents number of panels in the chordwise direction,
and § represents number of panels in the spanwise direc-
tion

computational results. Fig. 5 shows the calculated

circulation distributions by using different numbers

of panels. In this figure, the non-dimensional

circulation, G, is defined as —r—, where T is the
2nRU

circulation strength, and R is the length of hydrofoil
span. The solutions at both Froude numbers, 0.0 and
0.5, are shown in Fig. 5, and the results of both cases
are convergent. Note that the zero Froude number
solutions are equivalent to the double body solutions.
We then investigate the lifting effect and the Kutta
condition. Fig. 6 shows the wave patterns calculated
by the presented method and by a source only veloc-
ity based method previously mentioned (no Kutta
condition imposed), and the difference between two
calculations is obvious. It is more interesting to in-
vestigate the detail flow near the trailing edge of these
two computations, and Fig. 7 shows the velocities

Source only method
(without the lifting effect)

presented method

Fig. 6 Comparison of the calculated wave pattern of the “full
span” hydrofoil between the presented method and a source
only, velocity based method. The froude number is 0.5,
and the yaw angle is 4 degrees

presented method

e

—— —- source only method

et — -
— e e e
P

Fig. 7 Comparison of the calculated velocities near the hydro-
foil trailing edge of the “full span” hydrofoil between the
presented method and a source only, velocity based
method. The Froude number is 0.5, and the yaw angle is 4
degrees

calculated by these two conditions. Apparently, im-
posing the Kutta condition makes the flow smooth
near the trailing edge as one has expected.

We will then compare the calculated forces with
the measured forces on the hydrofoil. Figs. 8 and 9
show the comparisons of the lift coefficients between
the computational results and experimental data at two
different Froude numbers for the “full span” case
(aspect ratio 3.4). For both Froude numbers, compu-
tational results fail to predict the lift coefficients at 8
degrees of yaw angle, however, the comparisons of
the computational results and the experimental data
are good at smaller yaw angles. Figs. 10 and 11 show
the comparisons of the lift coefficients between the
computational results and experimental data.at two
different Froude numbers for the “half span” case
(aspect ratio 1.9). The computational results agree
well with the experimental data even at 8 degreés of
yaw angle, and the comparison is especially good for
Froude number 1.0. In general, the above compari-
sons show that the presented method can predict the
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Fig. 8 Comparison of the computational lift coefficients and ex-
perimental data at Froude numbers 0.5 for the “full span”
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Fig. 9 Comparison of the computational lift coefficients and ex-

perimental data at Froude number 1.0 for the “full span™
case

forces on a surface piercing hydrofoil reasonably
accurately.

V. CONCLUSIONS

The advantages of the presented method are that,
first, it is easy to implement the Kutta condition when
the lifting effect is considered, and the formulation
used is less complicated than research done pre-
viously. Secondly, by using a mixed boundary ele-
ment method and solving the body problem and
the free surface problem separately, the resulting
matrices for both problems can be solved by an itera-
tive matrix solver. Therefore, the computational time
has been dramatically reduced.

In this paper, computational results for free sur-
face flow around both non-lifting bodies and lifting
bodies have been demonstrated. The comparisons
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Fig. 10 Comparison of the computational lift coefficients and ex-
perimental data at Froude numbers 0.5 for the “half span”
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Fig. Il Comparison of the computational lift coefficients and ex-
perimental data at Froude number 1.0 for the “half span”
case

between the presented method and a source only
method show that results from the presented method
are very close to the latter method for non-lifting
bodies, and the results of the presented method are
more accurate for lifting bodies because they impose
the Kutta condition. The computational results have
also shown reasonable agreement with the experimen-
tal data for both non-lifting bodies and lifting bodies.

The multi-zone boundary element method con-
cept can also be applied to the presented method by
appropriately dividing the body into several zones.
Therefore, the analysis of flow around a catamaran,
a trimaran, or a SWATH should be possible by using
the presented method.
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