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ABSTRACT

This paper describes an efficient adaptive integration technique
for both internal cell integration and boundary element integration. The
adaptive algorithm can cope with the common situation where the sizes
of adjacent cells and boundary elements are significantly different.
Various cases are examined numerically and some numerical applica-
tions demonstrate the effectiveness of this method.

1. INTRODUCTION

In non-linear boundary element analyses, accu-
rate and efficient integration of the initial stress (or
strain) kernels over internal cells is crucial. While
the singular domain integrals can be accurately evalu-
ated using special techniques, the nearly singular in-
tegrals which arise when source and field points are
in close proximity can require many (expensive) func-
tional evaluations. The usual way to deal with vol-
ume integrals (over cells) is to divide the cells into
sufficient sub-cells and employ multi-dimensional
Gauss quadrature. This method was first coded by
Mustoe (1984) using a criterion described by Lachat
and Watson (1976) for the upper bound of relative
error. Mustoe’s method does not introduce extra
nodes and is equivalent to densifying the Gauss points
towards the singularity.

In this paper, efficient adaptive integration tech-
niques for elastoplastic BEM are developed, based
on two criteria. The first is an extension of Lachat
and Watson’s (1976) method and a practical imple-
mentation of this method is described. The second is
a development of Davies and Bu’s (1995) method for
the integration of boundary integrals. If the required
Gauss integration order exceeds a specified

*Correspondence addressee

maximum, cells are divided into sub-cells. This tech-
nique can deal with both internal cell integrations and
boundary element integrations. Further, the adaptive
algorithm can cope with the common situation where
the sizes of adjacent cells are significantly different.
Some illustrative cases are examined numerically, in
both two and three dimensions.

II. SINGULARITIES IN ELASTOPLASTIC
BEM EQUATIONS

The direct elastoplastic BEM equations, using
the initial stress approach, can be written as (Telles,
1983; Banerjee and Davies, 1984)

cyi+ | Tyidr=[ vpar | Egopae )

where ¢;=1/28;; for smooth boundary points and c;=§;
for interior points; Uj; and T;; are the Kelvin’s funda-
mental solutions for displacements and tractions and
Ejj is the corresponding strain kernel.

In order to evaluate the domain integral in Eq.
(1), the initial stress increments (')'j’k at interior points
must be determined. First, we determine the stress
increments at interior points using the following
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integral equation.

6, = f U T - J T it T + f Eu60dQ +g,(6)
(2)

In the initial strain approach, the terms Ejj, Ejji, (')'2,
and the free term g,-j(o"?,) should be replaced with L,
Ziu, & and fi;(&)), respectively, (Telles, 1983;
Banerjee and Davies, 1984).

The integrals in Eqs. (1) and (2) are interpreted
in the Cauchy principal value sense. In the numeri-
cal implementation, to evaluate these integrals, the
boundary I is discretized into boundary elements and
the domain Q (or, more usually, the expected yield
region) into interior cells. Displacements, tractions
and stresses are expressed in terms of their nodal
values. When the source point is close to the field
point, the integration kernels exhibit the following
singularities (Telles, 1983; Banerjee, 1994)

U;—=O0(nr), UUA—>0(1/r)
T;—0(lr), Ty —0Wr? (3)
E gy —O(r),  Eg — 00/

for 2D problems, and

U;—=00lr), Uy—-o0(lr
T;—=00IrY, Ty —O0(/r 4
Ey— O, Egy —00/r)

for 3D problems. In expressions (3) and (4), r is the
distance between the source point and field point.

When the source point coincides with the field
point, strongly singular integrals (both from the
boundary integrals and domain integrals) arise, so
special integration schemes are necessary. To evalu-
ate the strongly singular boundary integrals, a num-
ber of techniques are available (Cruse and
Richardson, 1996; Guiggiani and Gigante, 1990).
Methods for the efficient evaluation of the strongly
singular domain integrals in Eqs. (1) and (2) can be
found in references (Mustoe, 1984; Dallner and Kuhn,
1993; Gao and Davies, 1998) and (Gao and Davies,
1999).

When the source point is not located in the inte-
gration cell, standard Gaussian quadrature can be used
to evaluate all the integrals in Egs. (1) and (2), since
r is non-zero. However, when the sizes of adjacent
cells are significantly different, the integrals in Egs.
(1) and (2) become nearly singular. For example, Fig.
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Fig. | BEM mesh for a 2D square plate under uniaxial tension

1 shows a typical application where cells of different
sizes might arise. (In this example, a rectangular plate
is subjected to uniaxial tension, under plane stress
conditions.)

In Fig. I, the sizes of the internal cells ¢, to ¢4
differ substantially in size. Thus, for example, node
7 is relatively near to cell ¢4 and, also, the boundary
element defined by nodes 3, 4 and 5. Hence, for node
7, the integrals over ¢4 and the boundary element
(345) are nearly singular. Consequently, computa-
tion of these integrals is difficult. To obtain accept-
able results for such integrals, many Gauss quadra-
ture points are required. Cell (or element) subdivi-
sion is a convenient means to distribute the Gauss
points in the most efficient manner.

III. SUB-DIVISION TECHNIQUE FOR
NEARLY SINGULAR INTEGRALS

The Gauss quadrature formula (with abcissae x;
and weights w;) (Stroud and Secrest, 1966) is:

b i
f Slodx =Lk§1 wfle )+ E, (5)

with the error:

L2n+l( )

20E), a<&<b 6
(2n+1)[(2n)']3f( (&), a<é (6)

n

in which, n is the order of the Gauss integration, and:

L=b-a (7)
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Fig. 2 Gauss integration order (after Mustoe [1])

In the boundary element context, the parameter L can
be interpreted as the length of the boundary element
(or cell) along the integration direction. Thus, from
equation (6) we can see that the error of the Gauss
quadrature depends on the number of Gauss points
and the element size. To achieve consistent accu-
racy for all elements through the body, larger elements
must be divided into sub-elements. We now consider
two criteria which have been employed to determine
the Gauss integration order.

1. Lachat and Watson’s Criterion

Lachat and Watson (1976) implemented algo-
rithms to automatically select the order of integra-
tion over two or three dimensional boundary elements
based upon Gaussian quadrature error bounds. An
extension and generalisation of this approach was pre-
sented by Mustoe (1984).

The N-dimensional Gaussian quadrature formula
can be expressed in the intrinsic co-ordinate system
by:

| S & EME A e 2

e
S s

where §i, §N are the Gauss points, w| wf,
wh are the welghtmg factors, m; is the number of

Gauss points in the i-th direction and E is the total

Wi, & - ED+E  (8)

integration error, i.e., E= ﬁ‘, E; with E; being the in-

i=1
tegration error in i-th direction. Approximate for-
mulas for an upper bound of the relative error E/V,
are given by Mustoe (1984):
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Fig. 3 Gauss integration order (from equation (10))

where p is the order of singularity of the integrand
(1/r7), e; is the prescribed tolerance of the relative
integration error, L; is the length of the boundary el-
ement in the i-th direction, and R is the minimum dis-
tance from the field point to the boundary element.
Fig. 2 shows the relationship between Gauss order
and the ratio of R/L; for ¢;=5x107°.

From Eq. (9) we can see that if R/L; is small,
then the required Gauss order is large. For a pre-
scribed upper limit on Gauss order, elements must be
subdivided into sub-elements using (9). However,
for a given value of m;, one can only calculate the
ratio of R/L;, from Eq. (9), by iteration (Mustoe,
1984). For efficiency, in this paper, we suggest the
approximation:

_ p'in(ef2)
"= 2 nlL J@R)] (10

which yields:

= Zijemy
L,—4R(2) (11)
where

=\ 3p+2 (12)

Fig. 3 shows the resulting approximate relationship
between m; and R/L;, for e;=5x107.

Comparing Fig. 2 with Fig. 3, it is clear that Eq.
(10) is an excellent approximation to Eq. (9). It
should be noted that R/L; may not be less than 0.25,
since then the integration order grows to infinity. This
restriction is similar to that employed by Dallner and
Kuhn (1993). The advantage of Eq. (10) is that we
can directly calculate the Gauss order mi, rather
than through iteration. Or, given a maximum Gauss
order, Eq. (11) yields the sizes of the sub-elements
directly.
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Fig. 4 Gauss integration order (after Davies and Bu [3])

2. Davies and Bu’s Criteria

Davies and Bu (1995) suggested a criterion
based on numerical tests for surface integrals, which
can be expressed (for ¢,=107%) as:

3
8L, \4
111,-=(3R) +1 (13)

for integrand of O(1/r), and,

3
4L, 14
m,—(ﬁ) +1 (14)
for integrand of O(1/r*). These equations are plotted
in Fig. 4.

In order to take into account integrands of
O(1/r), the following unified criterion is proposed
here for the three cases (p=1, 2 and 3) with the error
tolerance ¢;, namely:

3
m,.=p'[—[n (e,./2)/10][(%)4+1] (15)

where p' is determined from Eq. (12). This equation
is plotted in Fig. 5 for e;=107*.

Again, comparing Figs. 4 and 5, we observe that
Eq. (15) provides a very good approximation for Egs.
(13) and (14). From (15), we can calculate the maxi-
mum length L; of a sub- element as follows:

4
_3 —10m; _ 3
Li= SR(p'ln (e,2) 1) (16)

3. Calculation of Sub-Element Length L;

In any element, Cartesian co-ordinates can be
determined from the nodal values, i.e.,
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Fig. 5 Gauss integration order (from equation (15)

N
where Ny(&) with i=1, ..., N (N is the number of in-
trinsic coordinates), are the shape functions (Gao,
1999), N, is the number of the nodes defined over the
element, and xj‘-‘ is the coordinate value at node « in
the j-th direction.

In this paper, the length of a boundary element
is characterised by the length of the curve through
the centre of the element along the integration
direction, which can be accurately calculated using:

1 N, axj2 ! Ny Ne oN )
: J o) J VEE R

(18)

where N,=2 for 2D problems and N, =3 for 3D
problems. 1\7a is simply the degenerate form of the
shape function Ny(&)), in which all intrinsic co-ordi-
nates are set to zero but the i-th one, i.e., 1\7a=Na(O,

e iy ooy 0).
4. Calculation of Minimum Distance R

There is no direct method of calculating the
minimum distance (R) from the source point xj to an
element. In this paper, the Newton-Raphson itera-
tive scheme is employed to calculate the intrinsic co-
ordinates (&;) on the element boundary closest to the
source point (the proximal point). We let r; be the
error in the computation of the j-th component of the
global coordinates of the source. Now, the notation
rj‘ 5," is used to denote the values after the k-th
iteration, i.e.,

N
rh= 3N R - xs (19)

/ a=1]
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To obtain improved values of &;, we expand (19) us-
ing Taylor’s theorem:

N
k+1

oar;
rj =r;+¥A§i=r§+i“f1A§ (20)

where A&; are the changes in &;. Setnng r *1 equal to
zero, we obtain (in matrix form):
[K1{Ag}=—{r") @n
where
: oN
k oy A
k"], = 21 e (22)

Solving Eq. (21) for {A&}, the updated values of &;
are:

E =&+ AL (23)

The proximal point on the element is determined from
the equations:

£ =gkt
£=Sgn(&f Y

(if -1<EH 1<)
(f E*'>lor &<y (24)

The minimum distance can then be calculated from
the equation:

r=./ & R2 (25)

where, R; is the j-th component of the minimum dis-
tance and is determined from the intrinsic coordinates
of the proximal point:

N
- 2' N &%~ x3 (26)

These calculations (Eqs. 19-26) are iterated until sat-
isfactory convergence (of R) is attained. However, for
highly distorted elements (that is, elements where the
intrinsic coordinate axes are appreciably curyed) con-
vergence may be difficult to achieve. In these cases,
extensive trials have demonstrated that satisfactory
results (within a few percent) can be obtained by sim-
ply taking the first (local) minimum value of R.

For domain integrals over a cell, Eq. (21) can
be used directly. However, for boundary integrals,
the number of equations is (one) greater than the num-
ber of unknowns. In this case, Eq. (21) should be
replaced by the least-squares approximation:

[KVIKHAEY=—(K"{ 1} (27

where the superscript 7 implies the matrix transpose.

Excellent convergence is achieved using this
iterative scheme. In general, three iterations are suf-
ficient for an accuracy of [A&|<107°.

5. Adaptive Integration Scheme

The adaptive integration scheme employs an el-
ement sub-division technique. This can be done in
various ways (Mustoe, 1984; Lachat and Watson,
1976; Dallner and Kuhn, 1993). The strategy which
we adopt is as follows:

(a) Calculate element length L; and minimum dis-
tance R to source using Egs. (18)-(26).

(b) Calculate the Gauss order mi using Eq. (10), or
(15).

(¢) If mi€mpyax (Mmax being the permitted maximal
Gauss order), then apply Gauss quadrature for-
mulae to evaluate the integral.

(d) If m;>my., calculate the permitted maximum
length L™ from Eq. (11), or (16).

(e) Divide the element into N (=L,/L™) equal sub-
elements. Calculate the length of each sub-ele-
ment L} (=L/N;). Set n=1.

(f) Calculate the minimum distance R, from the
source point to the n-th sub-element using equa-
tions (18)-(26).

(g) Calculate the Gauss order m} for the n-th sub-
element (using L} and R,) from Eq. (10), or (15).

(h) Apply Gauss quadrature formulae to evaluate the
integral over the sub-element.

(i) Repeat (f)-(h) for all sub-elements.

IV. NUMERICAL EXAMPLES

A computer program (NLBEAS) has been de-
veloped for 2D and 3D non-linear boundary element
analysis employing the methods described in this
paper. Linear and quadratic shape functions can be
used for both boundary elements and internal cells.
An incremental variable stiffness iterative solution
scheme is employed in the program with yield func-
tions coded for Tresca, Von Mises, Mohr-Coulomb,
and Drucker-Prager materials (Gao and Davies,
1999). In the following, two numerical examples are
given. More complicated examples can be found in
Gao (1999). The computation was carried out on a
Pentium PC (233MHz, 64Mb RAM). Five increments
and e,=107° are used for the two examples. The maxi-
mal Gauss order is ten.

Example 1: 2D Square Plate Under Tension

The plate shown in Fig. | was analysed under
plane-stress conditions employing the Von Mises
yield criterion, with Young’s modulus E=1, Poisson’s
ratio v=0.3, initial yield stress 6,=0.8 and hardening
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Table 1 Selected results for a square plate loaded beyond first yield

L,/L, 0.125 0.167 0.2 0.25 0.333 0.5 0.75 L
uy (1-cell) 24.44 33.19 30.12 29.30 29.99 30.00 30.00 30.00
u, Eq(10) 31.76 30.65 30.30 29.47 30.08 30.04 30.01 30.06
(n-cell) Eq(15) 31.80 30.66 30.30 29.41 30.03 30.00 29.91 29.83
n Eq(10) 81 49 36 25 16 9 4 4

Eq(15) 25 16 9 9 4 4 1 1
Egzzz 1-cell 7.0573 6.4307 6.0320 5.4744 4.6457 3.3652 2.0754 1.2546

Eq(10) 7.1199 6.5056 6.0642 5.4765 4.6435 3.3653 2.0754 1.2546
(x1072) Eq(15) 7.1197 6.5054 6.0639 5.4764 4.6433 3.3652 2.0755 1.2547
35uy 2 p=1

N
30 ‘/&-FP l l T E=
25 + l v=03
20 1-coll 7N o, = 0.8
15 —a— Eq(10)
10 10. y
—a— Eq(15) )
5 7
HEEE 10
0 - —— L/L, | v .
0 01 02 03 04 0506 07 08 09 1 i ! 4
|<——— 10. —_—

Fig. 6 Vertical displacement of plate top

parameter H'=0.1. The dimension of the plate is ten.
Computations were carried out for various values of
Ly/L, and Table 1 shows some of results obtained
using various strategies. In particular, data are given
for the domain integral of O(r™®) over cell 4, when
the source is located at node 7.

In Table 1, the values of vertical displacement
values u, (1-cell) were obtained without using a sub-
division technique and ten Gauss points were used
for all integrals. The rows identified by the notation
Eq. (10) and Eq. (15) denote the use of Eqgs. (10) and
(15), respectively. The analytical solution is u,=30
with first yield at u,=10. E3,,, is the domain integral

inEq. (2), i.e., ESp = f E N Q2 where N, is the
cq

shape function of the first node of cell 4, correspond-
ing to global node 11 in Fig. 1.

For greater clarity, Fig. 6 shows how the com-
puted displacement u, at the plate top is affected by
the choice of discretisation scheme and integration
strategy.

We observe that if the ratio of the lengths of the
adjacent cells is between 0.3 and 1, all three integra-
tion schemes can give satisfactory results. However,
if the ratio is smaller than 0.3, the cell sub-division
technique is necessary. In general, criterion (10)

Fig. 7 A cube under tension

gives more stable results than criterion (15), but it
requires more sub-cells.

Example 2: 3D Cube Under Tension

This example is intended to examine the perfor-
mance of the three integration schemes for integrands
of O(r™) appearing in the domain integral in Eq. (2).
The computational model is a cube subjected to ten-
sile load (Fig. 7): i.e., the 3D counterpart of the plate
example described above.

The cube was discretized by four boundary ele-
ments per surface and eight volume cells and the
“’roller’” condition was imposed on the three planes
x=0, y=0 and z=0. The meshes over the sections nor-
mal to the three planes are as shown in Fig. 1. Table
2 shows results for the displacement for the upper
surface of the cube which are analogous to those ob-
tained previously for the plate.

Again, for clarity, the displacements are plotted
(in Fig. 8) in order to illustrate the differences be-
tween the results computed by using the three
methods.

Similar conclusions to those drawn from the 2D
case can be reached from an examination of these
data. Integration without the aid of cell division
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Table 2 Selected results for a cube loaded beyond first yield
L\/L, 0.125 0.167 0.2 0.25 0.333 0.5 0.75 1.
ugs (1-cell) 4.71 17.86 24.06 29.08 30.10 30.00 30.00 30.00
Uy Eq(10) 33.17 30.98 30.40 30.09 30.01 30.00 30.00 30.02
(n-cell) Eq(15) 33.08 30.98 30.59 30.08 30.02 29.97 29.99 29.98
n Eq(10) 1331 512 343 216 64 27 8 8
Eq(15) 125 64 27 27 8 1 1 1
u, 4. Dallner, R., and Kuhn, G., 1993, “Efficient evalu-
35 ation of volume integrals in boundary element
method,” Comp. Methods in Appl. Mech. and
% ul . # Engng., Vol. 109, pp. 95-109. '
%5 5. Gao, X.W., and Davies, T.G., 1998, “Accurate
20 f e 1coll favaluati(.)ns of stron%ly singular domain integrals
15 in non-linear BEM,” In: Boundary Elements XX
o | —e—Eq(10) (C.A.Brebbia et al. Eds.), pp. 85-94, Computa-
[ —a— Eq(15) tional Mechanics Publication, Southampton.
5 ¢ | l I | I 6. Telles, J.C.F., 1983, “The boundary element
0 +——t—t—— Li/L, method applied to inelastic problems.” Springer-
0 01 02 03 04 05 06 07 08 09 1 Verlag, Berlin.
7. Banerjee, P.K., and Davies, T.G., 1984, “Ad-
Fig. 8 Vertical displacement of cube upper surface vanced implementatiop of the boundary element
methods for three-dimensional problems of
elasto-plasticity.” in: Developments in Boundary
breaks down when cell size ratios fall below (about) Element Methods, Elsevier, London.
0.3. The two sub-cell criteria yield very similar 8. Cruse, T.A., and Richardson, J.D., 1996,
results, but the second has the advantage that fewer “Non-singular Somigliana stress identities in
sub-cells are needed, with a consequent saving in elasticity.” Int. J. Num. Meth. Engng., Vol. 39,
computational time. pp- 3273-3304.
9. Guiggiani, M., and Gigante, A., 1990, A general
CONCLUSION algorithm for multidimensional Cauchy principal
value integrals in the boundary element method.
An efficient adaptive integration scheme, based J. Appl. Mech., Vol. 57, pp. 906-915.
on cell sub-division techniques has been described, 10. Gao, X.W., and Davies, T.G., 1999, An effec-
which can deal with the near singular integrals which tive boundary element algorithm for 2D and 3D
arise in non-linear boundary element methods. In real elastoplastic problems.” Int. J. Solids and
engineering applications, robust accurate schemes Structures, (In press).
such as this are essential in order to contain compu- 11. Stroud, A.H., and Secrest, D., 1966, Gaussian
tational costs. quadrature formulas. Prentice-Hall, Inc.,
Englewood Cliffs, NJ.
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