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ABSTRACT

We use a 2D elastodynamic boundary integral equation or
boundary element method (BEM) in this paper and apply it to solve
crack scattering problems. The method is based on the integral repre-
sentation of a scattered wavefield by assuming a fictitious source
distribution on the scattering objects or inclusions (i.e. mathematical
description of Huygens’ principle), and the fictitious source distribu-
tion can be found by matching appropriate boundary conditions at the
boundary of the inclusions. We present two numerical examples to
demonstrate the versatility of the BEM method. The first example
shows that different spatial arrangements of the same scatters lead to
profound differences in scattering characteristics, in particular the
frequency contents of the transmitted wavefields using the method of
time-frequency analysis. The second example shows the effects of
power-law or fractal distribution of scalelengths on transmitted
wavefields, and we conclude that frequency characteristics, such as
the frequency of the peak attenuation, can be related to spatial size
parameters of the model.

I. INTRODUCTION approximation has been used widely (Hudson, 1977;

Hudson and Heritage, 1981). Itis only valid for weak

When an elastic wave meets an obstacle, it is
scattered. If there are several obstacles the wavefield
scattered from one obstacle will induce further scat-
tered fields from all the other obstacles, which will
induce further scattered fields, from all the other
obstacles, and so on. This process is called multiple
scattering. The simplest approximation, called single
scattering or the Born approximation, is to ignore
the multiple scattering field completely. This

*Correspondence addressee

scattering or when the obstacles are small compared
to both the wavelength and the spacing between the
obstacles. Clearly, it has serious limitations when
dealing with large scale inclusions or fractures such
as in hydrocarbon reservoirs. Several theories exist
for the computation of elastic wavefields which take
into consideration of multiple scattering, but few are
valid for large sizes and short wavelengths except nu-
merical approaches. When the size of inclusions is



358 Journal of the Chinese Institute of Engineers, Vol. 23, No. 3 (2000)

substantially less than wavelengths, various equiva-
lent medium theories are available which produce azi-
muthal variation of elastic properties if there is a
strong alignment of the inclusions (for examples,
Hudson 1981). The presence of spatial correlations
of different systems cannot be accounted for with any
effective medium theory. The use of numerical meth-
ods seems to be the only way which is capable of pro-
viding accurate solutions without restriction of size
to wavelength ratio.

Finite difference methods (FDs) have been used
widely in the study of scattering of seismic waves by
crustal heterogeneities with continuous variation of
physical properties, and they have also been used to
model scattering by thin cracks (Fehler and Aki,
1978). However, it is not easy to handle discrete in-
homogeneous bodies with FDs. In this paper, we use
a method known as the elastodynamic boundary ele-
ment method (BEM) and show how it can be utilised
to compute wavefields from discrete inclusions with
various spatial distributions. Note that previous ap-
plications of this method to elastodynamics include
study of the effects of topography on seismic waves
(Sanchez-Sesma and Campillo, 1991; 1993; Yokoi,
1996), wave propagation in laterally and smoothly
varying media (Bouchon and Coutant, 1994), scat-
tering of elastic waves by cracks (Bouchon, 1987;
Chen and Zhou, 1994; Murai, Kawahara and
Yamashita, 1995; and Coutant, 1989); diffraction by
hydraulic fractures (Liu, Crampin and Hudson, 1997,
Pointer, Liu and Hudson, 1998); and downhole source
radiation (Dong, Bouchon and Toksd6z, 1995; Dong
and Toksoz, 1995).

II. INTEGRAL REPRESENTATION OF
ELASTIC WAVEFIELDS

In scattering problems the total wavefield is usu-
ally written as the superposition of the scattered field
u* and the free field u® (i.e. the field in the absence of
inclusions):

u=u+u’. (1)

Considering the domain § surrounding an inclusion,
and its boundary L (Fig. 1), the wavefield generated
when a steady-state time-harmonic wave is scattered
by a void of arbitrary shape in an elastic solid, can be
derived using the reciprocal theorem (Cruse, 1968).
In the indirect BEM representation, the scattered
wavefield can be written as (Coutant, 1989; Sdnchez-
Sesma and Campillo, 1991; Pointer, Liu and Hudson,
1998):

u?(x)=fL GG 6, x ML’ , i=1,2, 3 2)
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Problem configuration: A scattering object S bounded by
the curve L with outwards normal n. Upon an incidence
of u” located at source the total wavefield received at re-
ceiver is the superposition of the incident wavefield u” and
the scattered wavefield u’

Fig. |

where u{ is the ith displacement of scattered waves
atx; and ¢ is the fictitious source evaluated at x” on L
with outwards normal n. Einstein summation con-
vention is understood throughout. G;; (x, x) is the
Green'’s tensor, i.e. the displacement in the ith direc-
tion at point x due to the application of a unit force in
the jth direction at point x’, and is given by (Pao and
Varatharajulu, 1976):

Gx,x))= I

2 ’ ’ ’
4”pwz{k_clgs(x,x )+ VV[g (x,x)-g (c, x)]}

(3)

where I is unit matrix, and for the 2D wave propaga-
tion we have:

8y, X)=imH (ks 1), (4)

where p is density, @ is circular frequency, k,=w/v,,,
and k=w/v, are P- and S-wavenumber, respectively
(v, and v, are P- and S-wave velocities in solid); r=
[x~x’|; and H(()') is the Hankel function of the first kind
of order zero. Explicit Green’s tensors can be found
in Sdnchez-Sesma and Campillo (1991); Pointer, Liu
and Hudson (1998).

The traction representation (Banerjee and
Butterfield, 1981) is given by:

()= 00+ | 0@ XML,
i=1,2,3 (5)

where Tj; is Green’s traction tensor, that is, the trac-
tion in the ith direction at point x on the boundary
due to the application of a unit force in the jth direc-
tion at point x’, and is related to the Green’s stress
tensor by Hooke’s law. The coefficient ¢,=0 when x
is not on the boundary L; ¢,= 0.5 when x approaches
the boundary L from inside S; and ¢,=-0.5 when x
tends to L from outside, provided the following two

3
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conditions are not violated (Banerjee and Butterfield,
1981; Pointer, Liu and Hudson, 1998): (1) The point
x’ is not located at any edge or a corner (i.e. there
must be a unique tangent plane at x’); and (2) The
surface integral in Eq. (5) must be understood as a
Cauchy principal-value integral.

The above equations deal with the presence of a
single inclusions. However, the expression derived
for the outward scattered field is still valid for a
boundary L made up of N distinct boundaries L', L?,
..., L" surrounding separate inclusions with surfaces
S', 8% ..., §". The scattered field expressed by Eq.
(2) takes into account the interactions between
inclusions, and we obtain the complete multi-scattered
wavefield:

=% [ gwogeons. ©

To achieve the single scattering approximation, we
consider that each inclusion is only submitted to the
incident wavefield but not to the scattered field radi-
ated by other inclusions. Consequently, when com-
puting the boundary conditions at a discretized point
of a given surface, we must cancel in Eq. (6) each
term describing the interaction between different
inclusions; i.e. by setting the corresponding terms to
zero before the inversion of the system.

To evaluate the wavefield inside the inclusions,
we treat the interior of each inclusion as an indepen-
dent medium with no interaction between other
inclusions. Egs. (2) and (5) are the two boundary
integral equations governing the solution of any well-
posed problem, and the boundary element method
based on discretizing Eqgs. (2) and (5) is called the
indirect BEM because the fictitious source distribu-
tion ¢ on L has no physical meaning.

III. DISCRETIZATION AND BEM
IMPLEMENTATION

Egs. (2) and (5) form the basis for the boundary
element computation, but they are not useful unless
coefficients ¢ on the boundary L are known. To ob-
tain @, we also need to obtain an integral representa-
tion similar to Egs. (2) and (5) for the interior mate-
rial with an appropriate Green’s function (as in
general, neither the displacement nor the stress van-
ishes on the diffracting boundary). The essence of
the BEM implementation is to discretize each bound-
ary into a finite number of boundary elements, and
the boundary conditions, i.e. the continuity of dis-
placement and stress across all elements, are then
applied at each element. In the 2D isotropic case,
SH-waves are decoupled from P-SV waves, so we
shall treat them separately.

SH-wave case

In a simple antiplane case (SH-waves), the Egs.
(2) and (5) for (i=2) become:

ude)= fL &,x")G yox, x )L’ , (7

and

)=t 100+ [ 00T gL, (®)
JL

and the choice of the sign in the first term of the right
side of Eq. (8) depends on whether x is evaluated from
inside or outside L. The boundary conditions are the
continuity of displacement u, and traction f, at each
element on the boundary L for the solid/solid contact
(assuming that the source is located outside the
inclusions):

u(e) + usx) = u3(x) and 190x) + 1500) = 15(x),
for x on L, 9

where the terms with prime (") refer to the material
of the interior. Displacements and stresses are cal-
culated from the contribution of fictitious sources for
all elements. These boundary conditions are satis-
fied at the centre of each element in the local co-or-
dinate system, which is defined such that the normal
of each element is the positive axis and a clockwise
right-hand co-ordinate system is assumed. In order
to calculate the displacement at the nth element due
to the source at the mth element, we discretize Eqs.
(7) and (8) into M line segments AL, with normal #n,,
(m=1, 2, ... M) using the Green’s function for both
interior and exterior materials, and assume the force
density per line unit is constant on each segment. We
then have:

o)+ £ e, Glatex i

m

= f ¢»2’(x,,,)J'AL Gyx,,x, )L’ (10)

m=1
m

and

tg(x rl) - %¢2(x n) + nﬁ’l ¢2(x "')JAL T22(x X m)dL,

nm
Law e $ gey[  Thew e, (1)
"2 2% n e 2% m AL 2% 0t m .

The prime in the second variable in the Green’s
functions is dropped without causing any confusion.
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By manipulating the above two equations, we have:

ﬁ ¢2(x m) G ?7(x n m - ”g] ¢7(x m)[ G 77(x n xm)]

m=

=—u(2’(x,,), (12)

and

”g] ¢2(x /11)[2 amn +722(x n ,,,)]

- ”g] ¢2(x m)[ ) +72,2(x n xm)] =- Ig(x n) . (13)

2 mn
The two integrals (12) and (13) contain,
respectively, weakly- and strongly-singular kernels
associated with displacement and traction Green’s
tensors, and can be evaluated using the method given
by Sdnchez-Sesma and Campillo (1991) or Pointer,
Liu and Hudson (1998). G”, G”, T27, and T77 are
given in Appendix A. The above two equations can
be re-written in the following condensed forms:

ﬁ ¢m mn+ ﬁ ¢m IHII_ (14)
and

5 0,8+ 5 08,10, (15)

m=

where we have written:

¢m=¢2(xm)7 and ¢,:, = ¢21(xm) s (16)
ul=—ude,), and 1’ =—1%x,). (17)
The coefficients A’s, B’s, A”’s and B”’s in Eqs.
(14-15) are coefficient matrices and are given in Ap-
pendix A. The terms on the right side of Egs. (14-

15) given in Egs. (16-17) are displacements and stress
of the incident waves at the surface L.

P-SV wave case
Similarly, in the case of P-SV waves, we have
the following boundary conditions for the continuity
of normal and shear displacements:
udee)+uix)=ul(x), i=1, 3, forxon L,  (18)
and for the continuity of normal and shear stresses:

1) +1200)=17(), i=1, 3, for x on L, (19)

Putting Eqgs. (2) and (5) into Eqgs. (18-19) and
following the same procedure as outlined for the case

of the SH-wave incidence above, we can derive a sys-
tem of linear equations similar to Eqgs. (12-13) using
the Green’s functions for both interior and exterior
materials. The detailed derivation is omitted here,
and only the final result is given in a condensed ma-
trix form:

ij o0 .
,,,ﬁ_| ¢J”’A T Z /HA am = Wiy 5 1= 1,3 (20)
and

o0 .
ﬁ ¢j!ll nm (menm {jn’ i=1 ’ 3 (2 1 )

m=

where again we have written:

¢im=¢i(xm)s 'dnd ¢,‘l,,, = ¢i’(xm)’ i=1, 3 (22)
ul =—udx,), and 1 =—1(x,). i=1,3  (23)

Coefficient sub-matrices A’s, B’s, and A”’s, B”’s
in Egs. (20-21) are given in Appendix B. ¢; and ¢/
(i=1, 3) are the unknown fictitious surface stress
distributions. The terms on the right side of Egs. (20-
21) given in Eqs. (22-23) are the displacements and
stress of incident waves on the boundary L.

After solving these linear equations for ¢ on the
boundary L, the final step is to compute displacements
at any location x outside L through numerical inte-
gration of the following formulae for the ith compo-
nent of displacement:

u,(x):u?(x)+ ‘ ¢j(x’)GU(x,x’)dL’, i=1,2,3 24)
JL

Equation (24) also needs to be discretized:

ui(x)=u?(x)+ f_‘,l q)j(xm)G o xly, i=1,2,3 (25)

where the elements of {?,j} are given in Appendi-
ces A and B.

In general, Eqs. (14-15) for SH-waves and
(20-21) for P-SV waves form a system of 2M linear
equations with 2M unknowns for the antiplane case
(SH-wave), and 4M for the inplane case (P-SV-waves)
for a general solid/solid interface, and can be further
reduced if we consider some special cases, such as
inclusionss filled with liquid or gas. For the non-
viscous liquid case, the boundary conditions are the
continuity of normal displacements and normal stress,
and vanishing of shear stress. For the empty inclu-
sion case, boundary conditions are the vanishing of
both normal and shear stress (stress-free boundary
conditions). In both cases S-wave displacement is
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meaningless. For a detailed discussion, readers are
directed to Coutant (1989) and Pointer, Liu and
Hudson (1998).

The coefficient matrices of the equation systems
(14-15) and (20-21) are fully populated compiex ma-
trices and are non-symmetric. This is often regarded
as the disadvantage of BEM in comparison with fi-
nite element methods. Nevertheless, this matrix can
be easily manipulated as the number of elements is
not exceedingly high and the system of equations is
only solved once for each frequency. A standard
method such as the Gaussian elimination or LU de-
composition method can be used, and for large M, a
conjugate gradient method can be used. For examples
presented in this paper, the number of boundary ele-
ments is not too large, therefore we only use a stan-
dard LU decomposition method to solve the linear
equations. The maximum number of elements is re-
stricted by the power of current computers and it also
depends on the specified accuracy. In general, the
number of elements depends on the particular fre-
quency considered: at low frequencies, a minimum
number of elements is required, while at high frequen-
cies this number should be chosen such that at least
three surface elements are sampled per seismic wave-
length to give satisfactory results (Bouchon and
Coutant, 1994).

1V. NUMERICAL EXAMPLES

Before we present numerical examples, it is nec-
essary to mention that special care must be taken for
corners and edges as the constant ¢, given in Eq. (5)
is not valid for non-smooth interfaces, such as cor-
ners or edges. There are two ways to circumvent this
difficulty. The first and the simplest way is to take
the field point to be slightly away from the corner by
two separate nodes, i.e. by considering two corner
nodes defined to be close to each other (typically
0.05 times the length of the local element apart). The
second method is to re-calculate the constant ¢, using
its original definition for a given corner or edge.
Banerjee and Butterfield (1981) also indicate that
these two methods can give very similar results. In
our implementation, we have used the first method.
Note that the BEM formulations in the previous sec-
tion are given for elastic inclusions, but for simplicity,
we will only show examples for empty inclusions or
cavities.

In the first test example, the inclusion was as-
signed the same material properties as the surround-
ing medium. Clearly, this test should produce the
free-field conditions, and in fact it did. The program
was subsequently validated by comparing our results
with results obtained using similar approaches. Mal
(1970) computed the crack opening displacement for

1.0

o 08170

= o-.

5

g 0.6 O ka=3.2

g

oy ©

T 0.4
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0 0.2 04 0.6 0.8 1.0
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Fig. 2 Amplitude of the displacement of the face of a crack cal-
culated using Mal (1970) for a vertically incident P-wave
for two frequencies corresponding to ka=3.2 and ka=6. The
result is normalised to the displacement at the centre of
the crack. Curves are from Mal (1970) following Manolis
and Besko (1988) and symbols are from the BEM studied
in this paper

various wavelengths of excitation using a boundary
integral equation method which involves a P-wave
normally incident on a very thin crack located in an
infinite elastic medium. Our results are compared
with his solution in Fig. 2. In our model the crack
contour is represented by 80 points (40 points for each
face of the crack), and each end of the crack is repre-
sented with an additional two points to make the crack
tip smoother. The distance between the two faces of
the cracks is given a finite value which may be cho-
sen arbitrarily small. The particular value used here
is 1/1000 the crack length. A good agreement has
been achieved between our results and Mal’s results
(1970).

The first example is given in Fig. 3, which we
attempt to model four different realisations of
random distributions. In each model, there are 30
cavities (i.e. with stress-free boundary conditions)
randomly distributed in a 120 m x 120 m area. Note
that there is a problem of overlap of inclusion
positions, and this was overcome automatically ei-
ther by randomly moving adjacent inclusions so that
the distance between the centre of adjacent inclusions
is greater than the inclusion diameter, or by remov-
ing the overlapping inclusion and generating another
inclusion until the desired number of inclusions is
reached. The second method is used in all examples
in this paper. As a result of this process, the final
distribution is not necessarily completely random,
nevertheless, the purpose of this paper is to illustrate
the technique and to see how different distributions
affect the multiple scattering. Each inclusion has a
radius of ¢=2.5 m, and is discretized into 8 elements.
The surrounding solid (matrix) has v,=3500 m/s,
v,=2020 m/s, and density p= 2.3 gcm™. Plane wave
sources are used. Plane waves travel along the
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Fig. 3 Example 1: model used to compute synthetic seismograms from spatially distributed inclusions: (a) Gaussian, (b) exponential, (c)

uniform; and (d) Gamma distributions. Plane waves (SH, SV and P) travel along the positive x-direction, and 90 receivers are
located along the z-axis at x=120 m starting from z=150 m and with an increment of Az=-1.6 m

positive x-direction, and 90 receivers are located
along the z-axis at x=120 m starting from z=150 m
and with an increment of Az=-1.6 m. A Ricker wave-
let with a dominant frequency of 100 Hz is used, so
that k,a=0.45, and k,a=0.78 (k, and &, are P- and
S-wavenumbers), or equivalently Ap/2a=T7 and
Ad/2a=4 (A, and A; are P- and S-wavelengths,
respectively).

The resulting synthetic seismograms are given
in Fig. 4 for SH-wave sources. The SH-waves are
polarised out of plane in the y-direction, SV-waves
in the z-direction and P-waves in the x-direction. The
coda waves last shorter for the SH-waves from mod-
els (c) and (d) and this can be explained by the fact
that inclusions are more clustered in the centre for
models (a) and (b), whereas inclusions are more scat-
tered or more uniformly distributed for models (c)
and (d). This is exactly what we expected. A slight
time delay can be seen in the middle of the plots
(middle receivers) and this is due to the fact that the

middle receivers are located immediately behind the
inclusions so that more scattering interferences are
expected.

Fig. 5 shows comparison of waveforms from the
middle traces (number 45) of Fig. 4 and their corre-
sponding Fourier spectra. It is apparent that the am-
plitudes from uniform and Gamma distributions
(traces ¢ and d) are much smaller and have relatively
low frequency contents. The explanation is that
for both of these two distributions, inclusions are dis-
tributed widely spread across the model areas, and
scattered or coda waves last longer than from expo-
nential and Gaussian distributions (a and b). Further
analysis using the time-frequency analysis shown in
Fig. 6 confirms not only the variation of frequency
contents due to variation in position distributions, but
also variation in duration of scattered or coda waves
on the spatial variations. One of the advantages of
the time-frequency analysis is that frequency contents
from multiple arrivals, such as the scattered
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Fig. 3 Comparison of synthetic seismograms and corresponding spectra from various distributions in Figure 4 (trace number 45)

wavelields. can be identified.  This example demon-

strates that different distributions ol inclusions have
a significant influence on the multiple scattering.

Qur second example 1s (o demonstrate that
BEM can be used to model wave scattering from dis-
crete inclusions with scalelength distribution. The
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Fig. 6 Time-frequency analysis of synthetic traces in Figure 5
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Fig. 7 Example 2: (a) model used to compute synthetic seismograms from inclusion distribution with power-law distribution of crack
sizes. (b) Power spectra of size distributions as shown in (a) and Horizontal axis is spatial wavenumber (in log scale)

particular model that we use is given in Fig. 7a, where
with variation of sizes follows a von Kdrman corre-
lation function. Other correlation functions, such as
Gaussian or exponential functions can also be easily
calculated, and the use of von Kiarméan correlation
function is purely for mathematical convenience.
Readers are referred to the paper by Ikelle, Yung and

Daube (1993) for discussion about the generation of
random media. The model given in Fig. 7a is gener-
ated with a correlation length of 3.5 m and variance
of also equal to 3.5 m. The largest radius is 5.5 m
and smallest is 1.25 m. The peak frequency is 100Hz,
which gives ka ranging from 0.4 to 1.7 (k is
wavenumber and shear-wave velocity is 2000 m/s).



E. Liv and Z Zhang: Elastodynamic BEM Modelling of Muitiple Scattering of Elastic Waves

Higy

il

20
30
40
50
60
70
80

90 =
50 100 150 200

Time in msec.

Fig. 8 Synthene SH wavelield corresponding ta model shown
Figure 74

The source and receiver positions are arranged in
the same way as described in the earlier example
(Figure 4). Fig. 7b shows the power spectrum of the
size distributions shown in Fig. Ta (ploted in log-
log scale). and as expected. the variation can be
litted with a straight line. Such a model. i.e. with
linear variation of power spectrum with spatial
wavenumber. is often called fractal or power-law
distribution (Leary, 1997). The corresponding syn-
thetic SH wavelield wavefield is given in Fig. 8. As
we can see. the wavefield is quite complicaied.
and there is long duration of coda wave energy.
Fig. 9 shows the comparison of scattering attenua-
tion estimated from Fig. 8 with single scattering
solution derived by Wu (1982). The scattered attenu-
ation is estimated using the approach described by
Yomogida. Aki and Benites (1997). We can see that
there is a fairly good agreement between the BEM
numerical results and single scattering solution of Wu
(1982).

V. CONCLUSIONS

We have computed multiple scattering
wavefields in media containing cracks or inclusions
of various spatial distributions wsing the
clastodynamic boundary element method. From this
study. we can draw the following conclusions: (1)
Scattering by cracks/inclusions can be solved rela-
tively easily using the boundary element method.
Multiple scattering can be included without additional
difficulty. The method has unique advuntages over
other numerical methods in a number of ways. [is
primary disadvantage hes in the difficulty of model-
ling lateral variation. and high computer costs when
tand only when) there are many inclusions to be
discretized. (2) Numerical studies show that in the

‘e
=
n

0.03

%  Numerical
Wu (1982)

0.025

0.02

0.01

0.005

Ka

Fig 9 Comparisan ol scattering attenuation estimated from syn-
thete sersmograms shown n Figure 8 with by Wu's ( 1U82)

single scattering solution

presence ol inclusions, spatial and scalelength distri-
butions are important and cannot be ignored in mod-
elling cracked rock. Different spatial arrangements
of the same scatters lead o profound differences
in scattering characteristics. in particular the fre-
quency contents ol the transmitted wavelields. The
frequency characteristics. such as the frequency of
the peak attenuation, can be related to spatial size
parameters of the model. (3) The complex character-
istics of scattering wavefields from our examples have
two immediate implications: On the negative side. in-
creases in complexity due to multiple inclusions gen-
erate incoherent buckground scattered wavefields that
tend to complicate the observations. So the interpre-
tation becomes more difficult: On the positive side.
this provides more insight into the complex mecha-
nism of multiple scattering. By careful analysis. it
should in principle be possible to ohtain more infor-
mation aboul the nature of spatially distributed
inclusions,
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APPENDIX
A. Coefficients for SH-waves

The coefficient matrix elements in equations
(14-15) are given by:

A = 622(xn’ xm) = J GZZ(x n? xm)dL, ’ (A ])
ALy,
| - 1 ' ,
Bnm == iénm + T22(xn’ xm) == 551"" + JA[ T22(xn’ xm)dL ’
~m

(A2)

A I’ll” = _6‘2,2(x n’ xm) == J-AL G ',.’2(xn’ xm)dL, ’ (A3)
m
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and

’

B, =-

1
mm 2 5

L
nm TZZ(x x )

n n

__ 15 f T, %, ML (A4)
2 aL,,

m

Equation (A2) and (A4) become

’

B =B =

nm nm = E ’

if n=m, (As)

when x, approaches x,, (Banerjee and Butterfield,
1984; Pointer et al., 1998). In all cases, n, m=1, 2,
v M.

B. Coefficients for P-SV-waves

The coefficient matrix elements in Egs. (20-21)
are given by:

A ; =Eij (xm X”,) = [ G U(x n? xm)dL' ’ (B I)
JA

nm
m

B, ==%6,,8;+T;&,.x,)

mem

_2 nmYij m

=-1s, 6.+ f T, ,.x,)dL’ (B2)
AL

m

A:{Hl =_E;j(xn’xm)=_ [ G;j(xn’xm)dl’,’ (B3)
JA

m

gii—_lg ;- T;x,.x,)

nm - 2 nm=y n m

x L’ . (B4)

n

-_ls 5.._J‘
AL

’
_2 nmYi Tij(x
!

n

Equation (B2) and (B4) become

j g -_1
an - Blun - 25

i if n=m, (B5)
when x, approaches x,, (Banerjee and Butterfield,
1984; Pointer et al., 1998). In all cases, i, j= 1, 3,
and n, m=1,2, ..., M.

Discussions of this paper may appear in the discus-
sion section of a future issue. All discussions should
be submitted to the Editor-in-Chief.
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