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MODELLING OF RADIONUCLIDE MIGRATION THROUGH THE
GEOSPHERE WITH RADIAL BASIS FUNCTION METHOD AND

GEOSTATISTICS

Leopold Vrankar, Goran Turk, and Franc Runovc*

ABSTRACT

The modelling of radionuclide transport through the geosphere is necessary in
the safety assessment of repositories for radioactive waste. A number of key geosphere
processes need to be considered when predicting the movement of radionuclides
through the geosphere. The most important input data are obtained from field
measurements, which are not available for all regions of interest. For example, the
hydraulic conductivity, as input parameter, varies from place to place. In such cases
geostatistical science offers a variety of spatial estimation procedures. To assess the
long term safety of a radioactive waste disposal system, mathematical models are
used to describe the complicated groundwater flow, chemistry and potential radionu-
clide migration through geological formations. The numerical solution of partial dif-
ferential equations (PDES) has usually been obtained by finite difference methods
(FDM), finite element methods (FEM), or finite volume methods (FVM). Kansain-
troduced the concept of solving PDEs using radial basis functions (RBFs) for
hyperbolic, parabolic and elliptic PDEs. The aim of this study was to present a rela-
tively new approach to the modelling of radionuclide migration through the geosphere
using radial basis functions methods and to determine the average and sample vari-
ance of radionuclide concentration with regard to spatial variability of hydraulic con-
ductivity modelled by a geostatistical approach. We will also explore residual errors
and their influence on optimal shape parameters.

Key Words: radionuclide migration, porous media, partial differential equation,

radial basis function, numerical solution, Kansa method, geostatistics.

I.INTRODUCTION

Waste disposal has become a key issue in these
environmentally conscious times (Chapman and
McKinley, 1989). The objective of geological dis-
posal of radioactive waste is to remove it from man’s
environment and ensure that any releases remain
within accepted limits. Extensive research and
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development in the field of management and disposal
of radioactive waste is conducted in many countries.
To improve the understanding of various strategies
for radionuclide transport modelling, an international
cooperation project was set up with the participation
of a number of organisations active in waste man-
agement research. Within the project INTRACOIN
(1986), a comparison has been made between differ-
ent computational codes describing transport of ra-
dionuclides in geologic media. In Slovenia, two dis-
posal concepts/siting options are currently being con-
sidered for afacility: a surface vault disposal facility;
and an underground (tunnel) disposal facility (ARAO,
1999).

The modelling of radionuclide transport through
the geosphere is necessary in the safety assessment
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of repositories for radioactive waste. Confidence in
a model may be gained from its ability to fit dynamic
laboratory and field experiments, which can differ in
scale from a few centimetres to tens of metres. As-
sessment of the release and the transport of long-lived
radioactive nuclides from the repository to the bio-
logical environment is an important part of the safety
analysis of repository concepts. In this assessment,
mathematical models describing the mechanisms in-
volved in nuclide transport from the repository to the
biosphere are essential tools.

When modelling flow and contaminant transport
in the geosphere, it is important to consider both in-
ternal processes (e.g. advection, dispersion,
retardation) within the geosphere, and external pro-
cesses associated with the near-field and the
biosphere. For example, near-field processes can in-
fluence water flow and chemistry in the geosphere
surrounding the disposal facility, whilst biosphere
processes such as flooding, erosion, weathering, re-
charge and environmental change all can have an
impact on the geosphere (SK1 and NEA, 1991).

The general reliability and accuracy of transport
modelling depend predominantly on input data such
as hydraulic conductivity, water velocity on the
boundary, radioactive inventory, and hydrodynamic
dispersion. The output data are concentration,
pressure, etc. The most important input data are ob-
tained from field measurement, which are not avail-
able for all regions of interest. For example, hydrau-
lic conductivity as an input parameter varies from
place to place. In such cases geostatistical science
offers a variety of spatial estimation procedures
(Deutsch and Journel, 1998).

The numerical solution of partial differential
equations has been usually obtained by either finite
difference methods (FDM), finite element methods
(FEM), finite volume methods (FVM), or boundary
elements methods (BEM) (Power and Barrac, 2002).
These methods require a mesh to support the local-
ized approximations. The construction of a mesh in
two or more dimensions is a nontrivial problem.
Usually, in practice, only low-order approximations
are employed resulting in a continuous approxima-
tion of the function across the mesh but not its par-
tial derivatives. The discontinuity of the approxima-
tion of the derivative can adversely effect the stabil-
ity of the solution. While higher-order schemes are
necessary for more accurate approximations of the
spatial derivatives, they usually involve additional
computational cost (Power and Barrac, 2002).

A fairly new approach for solving PDEs is
through radial basis functions. Kansa (1990a; 1990b)
introduced the concept of solving PDES using radial
basis functions for hyperbolic, parabolic and elliptic
PDEs. A key feature of the RBF method is that does

not require agrid. The only geometric properties that
are used in the RBF approximation are the pair wise
distances between points. Distances are easy to com-
pute in any number of spatial dimensions, so work-
ing in higher dimensions does not increase the
difficulty.

The numerical methods are developed both with
regard to efficiency and ability to solve awider vari-
ety of problems. A high efficiency is necessary to be
able to solve physically complicated problemsin two
or three dimensions. The most common present meth-
ods often suffer the drawback that they require fine
discriminations to solve predominantly advective
problems. In the conclusions of the INTRACOIN
project it was reported that there are two complemen-
tary lines of development in the field of radionuclide
transport modelling. The first is towards more so-
phisticated and detailed models for deterministic
analyses and the second towards simpler models for
probabilistic analyses.

The aim of this study was to focus on a simpler
model and present a relatively new approach to mod-
elling of radionuclide migration through the
geosphere using a radial basic functions method
(RBFs) and to determine the average and sample vari-
ance of radionuclide concentration with regard to
spatial variability of hydraulic conductivity modelled
by a geostatistical approach. We will also explore
residual errors and their influence on optimal shape
parameters.

1. GEOSTATISTICS

The term geostatistics is employed here as a
generic term, meaning the application of the theory
of random fields in the earth sciences (Kitanidis and
VoMvoris, 1983). The parameters are distributed in
space and can thus be called regionalized variables.
The parameters of a given geologic formation can
conveniently be represented as realisations of random
variables which form random fields.

Stochastic simulation is a widely accepted tool
in various areas of geostatistics. The goal of stochas-
tic simulation is to reproduce geological texturein a
set of equiprobable simulated realizations. Simula-
tions are termed globally accurate through the repro-
duction of one-, two-, or multiple-point statistics rep-
resentative of the area under study. In mathematical
terms, the most convenient method for simulation is
sequential Gaussian simulation (Deutsch and Journel,
1998) because all successive conditional distributions
from which simulated values are drawn are Gaussian
with parameters determined by the solution of a
simple kriging system.

Sequential Gaussian simulation procedure:

1. First, use a sequential Gaussian simulation to
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transform the data into a normal distribution.

2. Then perform variogram modelling on the data.
Select one grid node at random, then krige the value
at that location. This will also give us the kriged
variance.

3. Then draw arandom number from a normal distri-
bution that has a variance equivalent to the kriged
variance and a mean equivalent to the kriged value.
This number will be the simulated number for that
grid node.

4. Select another grid node at random and repeat. For
the kriging, include all the previously simulated
nodes to preserve the spatial variability as mod-
elled in the variogram.

5. When all nodes have been simulated, back trans-
form to the original distribution. Thisgives usfirst
realization using a different random number se-
guence to generate multiple realizations of the map.

Kriging (named after D. G. Krige, a South Afri-

can mining engineer and pioneer in the application
of statistical techniques to mine evaluation) is a col-
lection of generalized liner regression techniques for
minimizing an estimation variance defined from a prior
model for a covariance (semivariogram) (Deutsch and
Journel, 1998). Since the semivariogram is a func-
tion of distance, the weights change according to the
geographic arrangement of the samples. Kriging can
be used to make contour maps, but unlike conven-
tional contouring algorithms, it has certain statisti-
cally optimal properties.

[11. A RADIAL BASISFUNCTION METHOD

Radial basis functions method for interpolation,
as high accuracy approximations, are not appropriate
only for functions or values, but also for their
derivatives. The method is useful for scattered data
or irregular grids, and can easily be extended to high-
dimensional problems (Zhong, 1999). The RBFs
method will be shown to provide an alternative choice
with respect to FDM or FEM, which require a mesh
to support the localized approximations.

Since Kansa (1990a; 1990b) successfully modi-
fied the radial basis functions for solving PDEs of
elliptic, parabolic, and hyperbolic types, more and
more computational tests showed that this method is
feasible for solving various PDEs.

A radial basis function (Zhong, 1999) is a func-
tion @(x)=¢(|[x—x;[[), which depends only on distance
between xOR® and a fixed point x;JR". Here, @is
continuous and bounded on any bounded sub-domain
QORY.

The commonly used radial basis functions are:

@r)=r, linear,

@r)=r3, cubic,

@r)=r?ogr, thin-plate spline,

@(r)=e"", Gaussian,

@(r)=(r?+c®)¥2, multiquadric,

@(r)=(r?>+c®™¥2, inverse multiquadric,
In our case we used multiquadric (MQ) and inverse
multiquadric. The MQ method was first introduced
by Hardy (Hardy, 1971). The parameter c>0 is a posi-
tive shape parameter controlling the fitting of a
smoothing surface to the data.

V. MODELLING OF THE RADIONUCLIDE
MIGRATION

The central issue in modelling is, on the one
hand, consistency between conceptual and mathemati-
cal models, and, on the other hand, between concep-
tual models and scenarios. A conceptual model is a
qualitative description of the functioning of the sys-
tem in a form which is amenable to mathematical
representation. It should make explicit all the as-
sumptions and interpretations which are necessary to
bridge the gap between the real system and math-
ematical equations. Each scenario is a set of features,
processes and events which has to be considered to-
gether to assess the impact of disposal in the future.
It is convenient to distinguish between process and
model structure identification. The number of pro-
cesses that may affect flow and transport is very large.
Model structure identification refers to the definition
of parameter variability, boundary conditions, etc.
The most important processes affecting the movement
of water and solutes underground are advection,
dispersion, and sorption.

The movement of solutes is mostly simulated
with an advection-dispersion equation (Bear and
Verruijt, 1987). According to this equation, mass
transport is controlled by two mechanisms: advection
and dispersion. Advection accounts for the move-
ment of the solute, linked to the fluid, with the aver-
age water velocity. Average water velocity can be
assessed through Darcy’s law. Dispersion accounts
for mixing caused by diffusion and by random flow
from the mean stream. The dispersive component is
evaluated by assuming the dispersive mass flux to be
proportional to the concentration gradient, similar to
Fick’'s law of molecular diffusion. Without funda-
mental modifications, the advection-dispersion equa-
tion can treat other processes such as sorption, radio-
active decay, chemical reactions, sink sources, ion ex-
change and matrix diffusion.

1. Laplace Equation

The first step of radionuclide transport model-
ling is to solve the Laplace equation to obtain the
Darcy velocity. In this case the Neumann and
Dirichlet boundary conditions will be defined along
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the boundary. Homogeneous and anisotropic porous
media and incompressible fluid were assumed in this
analysis. The equation has the following form (Bear
and Verruijt, 1987):

62p 3%p _
KX0X2 KYay =0 (1)

where p is the pressure of the fluid and K, and K, are
the components of hydraulic conductivity tensor.
The corresponding boundary conditions are:

RSt s =0k y) @
or

P=0g2(X, y) (3

where s, and s, are the components of the unit vector
normal to the boundary. The Laplace equation was
solved by RBF and direct collocation (Fedoseyev et
al., 2002). We add an additional set of nodes (outside
of the domain) adjacent to the boundary and,
correspondingly, add an additional set of collocation
equations. We assume the collocation points are ar-
ranged in such away that the first N, points are in Q,
whereas the last N points are on 0Q.

The approximate solution can be expressed as:

N, +2Ng

P y)= 2 aipi(xy) 4

where aj, j=1, ---, Nj+2Ng are the unknown coeffi-
cients to be determined. By substituting (4) into (1),
(2) or (3), we have:

N, +2Ng a2¢j 62¢J

& K TRy )X’ya,:o
i=1, 2, -, Ni+Ng (5)
N,jglNB(aqugi, y). , 99 g; y.)sy) o= g%, )
i=N;+Ng+1, -+, Ni+2Ng (6)
or
N, +2Ng

].Zl 9%, Y aj = 9ga(%, V)
i=N|+NB+1, ey N|+2NB (7)

The pressure gradient is evaluated by:

Bp — M ENe a¢-(X, y)
Ko 2 Y ox ®)
ap _N'+2NB 99;(x.y)
Ty_ j=1 ] ay (9)

For the calculation of velocity in principal directions
we use Darcy’s law (Bear and Verruijt, 1987):

K

V== oy o (10
K

v = () Gp + P9 (1)

where p is the density of the fluid, wis porosity, and
g gravitational acceleration.

2. Advection-Dispersion Equation

The velocities obtained from the Laplace equa-
tion are used in the advection-dispersion equation.
The advection-dispersion equation for transport
through the saturated porous media zone with retar-
dation and decay is (Bear and Verruijt, 1987):

d Dy 0%u , Py d%u
R u (TU axz Tgayz -RAu

(x, Y)OQ, 0<tsT

Ulx, yyoa 0=9(X, ¥, t) O<t<T

ul=0=h(x, y), (x, y)0Q (12)
where x is the groundwater flow axis, y is the trans-
verse axis, u is the concentration of contaminant in
the groundwater [Bqm™], Dy and Dy, are the compo-
nents of the dispersion tensor [m?y™] in the saturated
zone, w is porosity of the saturated zone [-], vy is
Darcy velocity [my™] at interior points, R is the re-
tardation factor in the saturated zone [-] and A isthe
radioactive decay constant [y™]. In these cases [y]
means years.

For the parabolic problem, we consider the im-
plicit scheme:

u“+1—u“ D 62Un+l D aZun+l
ot ((U ox2 + 0.) ayz )
aun+l n+1
—vxT—R/\u (13)

where 4t is the time step and u" and u™* are the con-
taminant concentrations at the time t, and t,,;1.
The approximate solution is expressed as:

WX Yt ) = 3, 01 19,(9) 14)
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where a}”l, j=1, ---, N are the unknown coefficients
to be determined. ¢;(x, y) is Hardy’s multiquadrics
function (Hardy, 1971):

(% ¥) =4/ (x=x)? + (y—y))? + c? (15)

where c is the shape parameter.
By substituting (14) into (12), we have:

¢ D,0°p. D,0% 04
jgl(Rﬁ_ﬁW;_%W;+VXT£+m¢J)

Xir Yi

[n]n+1 - Run();:’ yl) '

i=1, 2, -, N, (16)
PR TRV LS R

i=N,+1, N (17)

where
09; _ (xi—X)
TX’ ~ (%, BI/i) (18)
0¢; _ (vi—y)
Ty’ ~ (%, );i) (19)
62¢j _ (% _Xj)2 1
o [1- P2, yi)] 9%, V) (20)
2 2

0°¢; _ vi—y) ] 1 (21)

oy 52 0 6166 V)

from which we can solve the NxN linear system of
(16)-(17) for the unknown coefficients a7 **, j=1, -,
N. Let N=N,;+Ng be the number of collocation points,
N, is the number of interior points and N is the num-
ber of boundary points. Then (14) can give us the
approximate solution at any point in the domain Q.

V. NUMERICAL EXAMPLE

The simulation was implemented for a rectan-
gular area 600 m long and 300 m wide. The source
(initial condition) was Thorium (Th — 230) with ac-
tivity 1.10° Bq and half-life of 77000 years. The
source was located on the left side of the area. The
groundwater flow field is presented for a steady-state
condition. Except for the inflow (left side) and out-
flow (right side), all boundaries have no-flow condi-

tion %:O (s taken normal to the boundary). Thein-

flow rate was 1 m/y. At the outflow side, time-con-
stant pressures at the boundaries were set. The
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Fig. 1 Conductivity and velocities based on 8-point data set,
shape parameter: 4.5

location of the radioactive source is presented with
symbol .

The components of the dispersion tensor are ap-
proximated by Dy=asv and Dy=ayv. Longitudinal
dispersivity a, is 500 m and transversal dispersivity
ayis2m, vis Darcy’s velocity. Retardation constant
R is 800. Porosity w is between 0.25 and 0.26
whereas hydraulic conductivity was generated at dif-
ferent points with geostatistics (Deutsh and Journel,
1998) based on two different sets of input data. In
the first one, hydraulic conductivity at 8 different
points is given (values are: 66.00, 71.00, 73.00,
75.00, 76.52, 77.02, 79.74, 83.41 []). Positive vari-
ance contribution or sill sizeis 1.0'and nugget effect
size is 0.0 as variogram parameters are chosen.
Simple kriging is chosen as the type of kriging. A
spherical model is chosen as a variogram structure.
The angles defining the geometric anisotropy are
maximum horizontal range 600 m and minimum hori-
zontal range 300 m. It is assumed that the mean in
the case of simple kriging is known.

In the second case a data base of 16 different
points is used (values are: 66.00, 71.00, 73.00,
75.00, 76.52, 77.02, 79.74, 83.41, 36.00, 21.00,
173.00, 275.00, 96.52, 57.02, 97.74, 63.41 [T]).
Positive variance contribution or sill size 0.7 and
nugget effect size 0.3 as variogram parameters are
chosen. Ordinary kriging is chosen as the type of
kriging where the constant mean value is replaced by
the location-dependent estimate.

Distribution of hydraulic conductivity and ve-
locities based on an 8-point data set are shown in Fig.
1, distribution of hydraulic conductivity and veloci-
ties based on a 16-point data set are shown in Fig. 2.
We can see that the length of the velocity is greatly
dependent on hydraulic conductivity and porosity. In
Fig. 1 we cannot see a lot of variability of hydraulic
conductivity. One of the reasons could be that there
are not many differences between the prescribed val-
ues of hydraulic conductivity. In Fig. 2 we can see
more variability of hydraulic conductivity.

The distribution of the average value of contami-
nant concentration after 100,000 yearsis given. These
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Fig. 2 Conductivity and velocities based on 16-point data set,
shape parameter: 4.9
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Fig. 3 Average of concentrations (8 points), shape parameter: 140
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Fig. 4 Average of concentrations (16 points), shape parameter:
120

values were obtained after repeating 100 simulations.
Distribution of average of contaminant concentrations
(8 points) and standard deviation of contaminant con-
centrations (8 points) are shown in Fig. 3 and Fig. 5.
Distribution of average of contaminant concentrations
(16 points) and standard deviation of contaminant
concentrations (16 points) are shown in Fig. 4 and
Fig. 6. Distribution of contaminant concentration af-
ter 100,000 years for one specific simulation at 8
points and 16 points data sets of hydraulic conduc-
tivity are shown in Fig. 7 and Fig. 8. Comparison of
the results between the average of contaminant con-
centrations (Fig. 3 and Fig. 4) and concentrations for
one particular simulation (Fig. 7 and Fig. 8) shows
that the more realizations we have, the more accurate
are the results. The scatter of the resultsis not large,
which is also indicated in Fig. 5.
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Fig. 5 Standard deviation of concentrations (8 points), shape
parameter: 140
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Fig. 6 Standard deviation of concentrations (16 points), shape
parameter: 120
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Fig. 7 Concentrations based on 8 points data set for one
simulation, shape parameter: 140

. P A L . P .
300 H 220
230
250 | H—220
210
%36
200 H—780
=2
1 — 1150
1504 153
« =Fe
100 1, H— 110
\ =3

j o= |80

50 70

60

50

0 L S B S S S e S
0 50 100 150 200 250 300 350 400 450 500 550 600

Fig. 8 Concentrations based on 16 points data set for one
simulation, shape parameter: 120

VI. OPTIMAL SHAPE PARAMETE

In our problem we used multiquadric (MQ) and
inverse multiquadric RBFs. MQ’s performance
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Fig. 9 Residuals

depends on the choice of a user-specified parameter c,
which is often referred to as the shape parameter. The
shape parameter controls the effective number of col-
location points used in the interpolation at any location.

When c is small, the surface fitted to the data
contains sharp corners at the collocation points. As
c increases, more collocation points are effectively
involved in the interpolation and the sharp corners
spread out to form a smooth surface. When c istoo
large and reaches a critical value, the resulting ma-
trix becomesill-conditioned and the solution is smeared.

In the past, there have been several numerical
experiments and empirical formulas that suggest how
to choose the optimal value of such parameters, which
in general depend on the density of the interpolation
centres (Kansa, 1990a). In practice, the optimal value
of the shape parameter can be determined by numeri-
cal experiments. The optimal shape parameter de-
pends on the properties of the numerical solution,
number and locations of the collocation points.
Therefore, a question of how to find the optimal shape
parameter for an arbitrary real problem given by geo-
metric and hydrological parameters of a continuum
always appears as one of the key problem.

In our case, we always try to answer the question
of how to find a good optimal shape parameter, which
fulfils the equation in the most possible points. Many
realizations of the equations were made using differ-
ent shape parameters at different points. The course
of residual errors from the equation in Kansa (basic
mesh of the problem) and additional points are shown
in Fig. 9. We can see that as the shape parameter gets
larger, the residuals get larger. By increasing the shape
parameter the residual errors from the PDEs showed
in Kansa tend to a minimum value and then grow.

We set the shape parameter at 4.5 and compared
results with the test method (the finite difference
method). The results were very similar.

VIlI. CONCLUSION

This work presents modelling of radionuclide
migration through the geosphere using a radial basis
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Fig. 10 Concentrations based on 8 points data set for one
simulation, finite difference method
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Fig. 11 Concentrations based on 16 points data set for one
simulation, finite difference method

functions method and geostatistics.

In the case of radionuclide migration two steps
of evaluations were performed. In the first step the
velocities in principal directions were determined
from the pressure of the fluid p obtained from the
Laplace differential equation. In the second step the
advection-dispersion equation was solved to find the
concentration of the contaminant. In this case the
method of evaluation was verified by comparing re-
sults with the one obtained from the finite difference
method (Fig. 10 and Fig. 11). Both methods give very
similar results.

Due to different types of conductivity, variogram
input parameters and different types of kriging were
necessary to find an appropriate shape parameter which
can give us results comparable to the test method.

A good parameter assessment was obtained from
graphic presentations. Thus we explore the residual
errors from the equation as an error indicator which
provides a road map to the optimal selection of the
shape parameter value.

In the case of calculating the advection-disper-
sion equation we can conclude that the Kansa method
could be an appropriate alternative to the FDM due
to its simpler implementation.
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