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AN ACCURATE SOLUTION TO THE MESHLESS LOCAL

PETROV-GALERKIN FORMULATION IN ELASTODYNAMICS
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ABSTRACT

A meshless local Petrov-Galerkin (MLPG) method for solving elastodynamic
problems is developed and numerically implemented.  The proposed MLPG approach
is based on a locally symmetric weak form and shape functions from the moving least
squares (MLS) approximation.  This approach is truly meshless, as it does not involve
a finite element mesh, either to interpolate the solution variables, or to integrate the
energy.  However, complex vibrating-modes or -frequencies may arise from asym-
metric mass and stiffness matrices formulated by the MLPG method.  Unlike the com-
monly used finite difference methods such as the Newmark method, the accurate ap-
proach in this study is the time-discontinuous Galerkin (TDG) method for solving
second-order ordinary differential equations in the time domain.  Numerical results
indicate that the TDG method provides very stable and accurate results in the sense
that the crucial modes are accurately integrated and the spurious modes are success-
fully filtered out.
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I. INTRODUCTION

Meshless methods have become very attractive
and efficient for developing adaptive methods for
solving boundary value problems because nodes can
easily be added and removed without burdensome
remeshing of the elements.  The meshless local
Petrov-Galerkin approach (Atluri and Zhu, 1998;
2000), based on the local symmetric weak form
(LSWF) and the moving least  squares (MLS)
approximation, is a truly numerical meshless method
for solving boundary value problems.  The primary
advantage of this method over the extensively used
finite element method and other so-called meshless
methods such as the diffuse element method (Nayroles
et al., 1992), the element free Galerkin method
(Belytschko et al., 1994; Zhu and Atluri, 1998), and
the reproducing kernel particle method (Liu et al.,
1995), is that it does not require a finite element mesh,

either to interpolate the solution variables, or to inte-
grate the energy.  Recently, a meshless local bound-
ary integral equation method with the Houbolt finite
difference scheme was successfully applied to solve
2D elastodynamic problems (Sladek et al., 2003).

In this present study, the MLPG approach for
solving problems in elastodynamics is developed. The
method utilizes a local symmetric weak form (LSWF)
and shape functions from the MLS approximation.  In
the present formulation, the test and trial functions
are selected from different functional spaces, and the
trial  functions are approximated by the MLS
approximation, while the test functions are some kinds
of known functions.  A penalty formulation is used
to enforce the essential boundary conditions in the
present method, since the essential boundary condi-
tions cannot be directly imposed when the MLS ap-
proximation is used to approximate the displacement
variables.  As was stated in Atluri and Zhu (1998),
th is  MLPG method for  solving problems in
elastodynamics is a truly meshless method, and needs
absolutely no meshes of either the traditional finite-
element or the boundary-element type, either to in-
terpolate the solution variables, or to integrate the
energy.  The formulation involves only domain and
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boundary integrals over very regular sub-domains and
their boundaries.  These integrals can be easily and
directly evaluated over the very regular shapes of the
sub-domains and their boundaries.

This work adopts a time-discontinuous Galerkin
method unlike commonly used finite difference
methods, such as the Newmark method, to solve sec-
ond-order ordinary differential equations in the time
domain.  This formulation is solved by the time-dis-
continuous Galerkin method in which both the un-
known displacements and unknown velocities are
approximated as piecewise linear interpolation func-
tions in the time domain.  Numerical results demon-
strate that the TDG method yields very stable and
accurate results in the sense that the crucial modes
have been accurately integrated and the spurious ones
successfully filtered out.

II. MOVING LEAST SQUARE (MLS)
APPROXIMATION

Consider a sub-domain Ωk, the neighborhood of
a point k, and the domain of the definition of the MLS
approximation for the trial function at x, which is lo-
cated in the problem domain ΩΩ  (Lancaster and
Salkauskas, 1981).  To approximate the distribution
of function u  in Ωk,  the moving least squares
approximant f h(x) of u, can be defined as follows,
over a number of randomly located nodes {xi}, i=1,
2, ..., n;

f h(x)=pT(x)a(x), ∀ x∈ Ωk (1)

where pT(x)=[p1(x), p2(x), ..., pm(x)]  is a complete
monomial basis of order m; and a(x) is a vector of
coefficients aj(x) , j=1, 2, ..., m, which are functions
of the space coordinates x=[x , y , z]T.   For 2-D
problems,

linear basis: pT(x)=[1, x, y], m=3 (2a)

quadratic basis: pT(x)=[1, x, y, xy, x2, y2], m=6    (2b)

The coefficient vector a(x) is determined by
minimizing a weighted discrete L2 norm, defined as,

    I(x) = wi(x)[pT(xi)a(x) – fi]
2Σ

i = 1

n

    = [P ⋅ a(x) – f ]T ⋅ W ⋅ [P ⋅ a(x) – f ] (3)

where wi(x) is the weight function associated with the
node i, with wi(x)>0 for all x in the (compact) sup-
port of wi(x), where wi represents the value of x at
node i, and n is the number of nodes in Ωk for which
the weight functions wi(x)>0.

Here, the matrices P and W can be expressed
as,

    

P =

pT(x1)
pT(x2)

pT(xn)
n × m

(4)

and

   

W =
w1(x) 0

0 wn(x)
(5)

Notably, fi , i=1, 2, ..., n in Eq. (3) are fictitious nodal
values, and are not the nodal values of the unknown
trial function f h(x) in general;

   f T = f1, f2, , fn (6)

Using I(x) in Eq. (3), take stationarity for a(x) in the
form of,

    ∂I(x)
∂a(x) = 0 (7)

Therefore,

  A(x)a(x) = B(x) f (8a)

or

  a(x) = A– 1(x)B(x) f (8b)

A(x)=PTWP=BP (9)

B(x)=PTW (10)

Substituting Eq. (8b) into Eq. (1), it yields,

       f h(x) = ΦΦT(x) f = φj fjΣ
j = 1

N
,   ∀ x∈ Ωk (11)

where

ΦΦ T(x)=PT(x)A−1(x)B(x) (12)

is called the nodal shape function.  Its derivatives can
be written as,

    ∂ΦΦ
∂xi

= ΦΦ, i = P, i
TA– 1B + PT(A– 1B, i + A– 1

, iB)   (13)

in which stationarity

A−1
,i=−A−1A,iA

−1 (14)
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The MLS approximation is well defined only
when the matrix A  in Eq. (14) is non-singular
(Nayroles et al., 1992).  A necessary condition for a
well-defined MLS approximation is that at least m
weight functions are non-zero (n>m) for each sample
point x in Ω, and that the nodes in Ωk, are not ar-
ranged in a special pattern, such as on a straight line
(Belytschko et al., 1996; Breitkopf et al., 2000).

In implementing the MLS approximation, the
basis functions and weight functions should be cho-
sen first.  The spline weight function with compact
supports is considered in the present work.  The spline
weight function, corresponding to node i can be writ-
ten as (Atluri et al., 1999)

wi(x)=

   
1 – 6(

di
ri

)2 + 8(
di
ri

)3 – 3(
di
ri

)4 0 ≤ di ≤ ri

0 di ≥ ri

(15)

where di=|x−xi| is the distance from node xi to point
x.

III. MESHLESS LOCAL PETROV-GALERKIN
FORMULATION FOR ELASTODYNAMICS

Consider a 2-D linear elastodynamic problem in
the domain Ω:

   σ ij, j + b i = ρui (16)

where σij is the stress tensor, which corresponds to
the displacement field ui; bi is the body force, ui  is
the acceleration field; and ( )i denotes ( )/xi.  The cor-
responding boundary conditions are given as follows:

  ui = u i on Γu (17a)

   ti ≡ σ jin j = t i  on Γ t (17b)

where  u i  and  t i  are the prescribed displacements and
tractions, respectively, on the displacement bound-
ary Γu and on the traction boundary Γ t, and nj is the
unit outward normal to the boundary Γ .

The domain Ω  is subjected to the following ini-
tial conditions:

ui(x, 0)=u0 (18a)

ui(x, 0)=v0 (18b)

where u0 and v0 are the prescribed initial displace-
ment and initial velocity, respectively.

In the Galerkin finite element and element free

Galerkin methods, which are both based on the glo-
bal Galerkin formulation, the global weak form over
the entire domain Ω is used to solve the problem
numerically.  In the present local Petrov-Galerkin
formulation, a weak form over a local subdomain Ωs,
is first determined, and the MLS approximation is
used to develop a truly meshless method, where the
local sub-domain Ωs, is located entirely within the
global domain Ω.  The local sub-domain Ωs is con-
veniently assumed to be a sphere in 3-D, or a circle
in 2-D centered at the point x in question.  A general-
ized local weak form of the differential equation and
the boundary conditions, over a local sub-domain Ωs,
can be written as,

   (σ ij, j + b i – ρui)δuidΩ
Ωs

– κ (ui – ui)δuidγ
γu

= 0

(19)

where ui and δui are the trial and test functions,
respectively, κ is a penalty parameter and γu is a part
of the boundary of Ωs, over which the essential
boundary conditions are specified.

Using the integration by parts in Eq. (19) yields,

   (σ ijn j)δuidγ
γ

– (σ ijδui, j – b iδui + ρuiδui)dΩ
Ωs

   – κ (ui – ui)δuidγ
γu

= 0 (20)

It should be noted that Eq. (20) applies, independent
of the size and shape of Ωs.  Then, imposing the natu-
ral boundary conditions, one obtains,

   tiδuidγ
γd

+ t iδuidγ
γt

+ tiδuidγ
γu

   – (σ ijδui, j – b iδui + ρuiδui)dΩ
Ωs

   – κ (ui – ui)δuidγ
γu

= 0 (21)

where γd⊂ γ and γ=γd+γu+γt.  Notably, the boundaries
γu=γ∩Γu and γt=γ∩Γ t, as depicted in Fig. 1.

The test functions δui are deliberately selected
such that they vanish over rd, the circle (for an inter-
nal node) or the circular arc (for a node on the global
boundary), to simplify the above equation.  This sim-
plification can be easily accomplished using the
weight function in the MLS approximation also as a
test function, with the radius ri of the support of the
weight function being replaced by the radius ro of the
local domain Ωs, such that the test function vanishes
on rd.  Using these test functions and rearranging Eq.
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(21) yields, the following local symmetric weak form
(LSWF) in linear elastodynamics,

   (σ ijδui, j + ρuiδui)dΩ
Ωs

+ κ uiδuidγ
γu

– tiδuidγ
γu

   = t iδuidγ
γt

+ κ uiδuidγ
γu

+ b iδuidΩ
Ωs

(22)

Two (for 2-D problems) or three (for 3-D
problems) independent sets of test functions in Eq.
(22) can be applied to give,

   (σ ijδuli, j + ρuiδuli)dΩ
Ωs

+ κ uiδulidγ
γu

   – tiδulidγ
γu

   = t iδulidγ
γt

+ κ uiδulidγ
γu

+ b iδulidΩ
Ωs

   (23)

where δuli denotes the ith component of the test func-
tion in the lth set.  For brevity, Eq. (23) can also be
written in matrix form as,

    δεεT : σσdΩ
Ωs

+ ρδuT : udΩ
Ωs

+ κ δuT ⋅ udγ
γu

    – δuT ⋅ tdγ
γu

     = δuT ⋅ t dγ
γt

+ κ δuT ⋅ u dγ
γu

+ δuT ⋅ bδdΩ
Ωs

(24)

where δεT represents the strain matrix from the test
functions, and σ denotes the stress vector from the
trial functions.

For each i sub-region, substituting f h for uh and

u h in Eq. (11) into Eq. (24) and integrating, yields,

   miju jΣ
j = 1

N
+ k iju jΣ

j = 1

N
= fi ,   i=1, 2, ..., N (25)

where N is the number of nodes.  The matrix form of
Eq. (25) can be expressed in,

  Mu + Ku = F (26)

where mij is defined as,

    mij = ρ ΨΨ i
TΦΦ jdΩ

Ωs

(27)

and,

      
ΨΨ i =

wi 0
0 wi

; ΦΦ j =
φj 0
0 φj

 (28)

The matrix in Eq. (25), kij is defined as,

    k i j = B i
TDBjdΩ

Ωs

+ κ ΨΨ i
TΦΦ jdγ

γu

       – ΨΨ i
TNDBjdγ

γu

(29)

if node i is on the boundary

        k ij = B i
TDBjdΩ

Ωs

(30)

if node i is in the interior

in which,

   
B i =

wi, 1 0
0 wi, 2

wi, 2 wi, 1

; 

    
Bj =

φj, 1 0
0 φj, 2

φj, 2 φj, 1

;

   
N =

n1 0 n2
0 n2 n1

(31)

    
D = E

1 – ν 2

1 ν 0
ν 1 0
0 0 (1 – ν)/2

(32)

and

E=E, ν =ν for the state of plane stress

   E = E
1 – ν 2 ,   ν = ν

1 – ν for the state of plane strain

(33)

Fig. 1 Sub-domain Ωs, boundary of sub-domain (including γd, γu,
and γt), and support region of node j
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The load vector is defined as follows:

       fi = ΨΨ i
T t dγ

γ t

+ κ ΨΨ i
T u dγ

γu

+ ΨΨ i
TbdΩ

Ωs

(34)

if node i is on the boundary

       fi = ΨΨ i
TbdΩ

Ωs

(35)

if node i is in the interior

where

   
b =

b 1
b 2

(36)

Clearly, the system stiffness matrix used in the
present method is banded but asymmetric.  The loca-
tions of the non-zero entries in the system “stiffness”
matrix depend on the nodes located inside the domain
of influence of the node.  However, under some
limitations, the system stiffness matrix used in the
present method can behave as symmetric and banded
(Atluri et al., 1999).

Notably, the prescribed initial displacement and
velocity vectors must be converted into the follow-
ing forms and can match Eq. (26) to solution, such
as,

  u0=Tu0 (37a)

v0=Tv0 (37b)

in which,

    

TN × N =

ΦΦ1 j

ΦΦ2 j

ΦΦNj

– 1

,  j=1, 2, ..., N (38)

The relative errors and convergence efficiency of the
MLPG method are explained in the reference of Atluri
and Zhu, 2000.

IV. TIME-DISCONTINUOUS GALERKIN
FINITE ELEMENT METHOD

Let 0=t1<t2<...<tn<tn+1<...<tN+1=T be a partition
of the time domain I=(0, T) with corresponding time
steps ∆tn=tn+1−tn and In= (tn, tn+1).  Let the time finite
element space be described by:

    Vh = {wh = (Pk(In))
neq∪

n = 1

N
} (39)

where Pk represents the kth-order polynomial, and
each member of Vh is a vector that consists of neq lin-
ear functions on each time step In.  All trial displace-
ments and velocities and their corresponding weight-
ing functions are chosen from the space Vh.  Notably,
the functions in Vh may be discontinuous at the dis-
crete time levels tn.  Therefore, the following nota-
tion is introduced,

    wn
+ = lim

ε → 0+
w(tn + ε) (40a)

    wn
– = lim

ε → 0– w(tn + ε) (40b)

   [wn] = wn
+ – wn

– (40c)

where [wn] represents the jump of wn at tn, and the
inner product on In is denoted by:

    (w, u) In
= w ⋅ u dt

In

(41)

The time-discontinuous Galerkin finite element
method can now be formulated to solve Eq. (26) as
follows.

Find Uh={uh, vh}∈ Vh×Vh such that for all Wh={   w1
h ,

  w2
h}∈ Vh×Vh,

    Rn = w2
h ⋅ (L1Uh – F)dt

In

+ w1
h ⋅ KL2Uhdt + w1

h(tn
+)

In

    ⋅ K[uh(tn
+) – uh(tn

–)] + w2
h(tn

+)

    ⋅ M[vh(tn
+) –vh(tn

–)] = 0   n=1, 2, ..., N (42)

where   w1
h and   w2

h are the weight functions that corre-
spond to the displacement and velocity, respectively,
and

    L1Uh = Mvh + Kuh (43)

   L2U
h = uh – vh (44)

The time-discontinuous Galerkin method  has been
demonstrated to be unconditionally stable and of
third-order accuracy if the P1-P1 two-field element
is used (Hulbert, 1992; 1994; Chien et al., 2000; 2001;
2003).

V. NUMERICAL EXAMPLES

1. Example 1: Axial Transient Analysis of a Rect-
angular Plate

Consider a 2-D rectangular plate of length 10 m
with a width 1 m, as depicted in Fig. 2.  The plate is
assumed to be fixed at one of its extremities and
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subjected to a Heaviside-type tensile load P on the
other end, as shown in Fig. 2.  The material proper-
ties used in this problem are Young’s modulus E=100
t/m2, Poisson’s ratio ν=0, mass density ρ=10 kg/m3,
and P-wave velocity Cp=100 m/sec.  In the case of
plane stress, the space domain is uniformly discretized
by 1111 (11×101) nodes.  Each sub-domain is inte-
grated by 8×8 Gauss quadrature.  The time step cho-
sen for the integration ∆t=0.4/Cp=0.004 sec.  The dis-
placement and stress responses in the time history are

Fig. 2 A rectangular plate subjected to a uniform step transient
load (Example 1)
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Fig. 3 Displacement responses at point B in a rectangular plate
corresponding to different sub-domains (Example 1)

analyzed at point B in this rectangular plate, as
follows.

(i) Effect on the Radii of the Sub-Domains

Figure 3 presents the TDG results for displace-
ment at point B with three different radii, 0.05 m,
0.1 m and 0.2 m, and compares them with the exact
solution.  Note that the TDG solution of the MLPG
method accurately approaches the exact solution for
the displacement responses, particularly when the
t ime-dependen t  r e sponses  change  qu i ck ly .
Apparently, all the sub-domains with radius ri=0.05
m or 0.1 m cannot completely contain the solid in the
actual problem, and they introduce more period elon-
gation than the TDG solution with a radius of ri=0.2
m.  However, the computational time cost in the
analysis by a radius ri=0.2 m is higher than that with
a radius ri=0.05 m or 0.1 m.

(ii) Effect on the MLS Basis and Integration Method

The sub-domain with radius ri=0.2m is em-
ployed in this analysis to make the whole sub-domains
completely cover the solid in the actual problem.
Figs. 4 and 6 present for displacement and stress at

Fig. 4 Displacement responses at point B in a rectangular plate
using TDG method (Example 1)
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point B, respectively, and compare them with the ex-
act solution corresponding to three different MLS
bases (linear, quadratic and cubic).  Meanwhile, Figs.
5 and 7 show results of the Newmark method (β=
0.25, γ=0.5; trapezoidal rule) for displacement and
stress, respectively, and compare them to the exact
solution.  Notably, the TDG solution provides the bet-
ter accuracy of the two methods.  The Newmark
method cannot control the higher modes and intro-
duces greater period elongation than the TDG method.
Additionally, the stress responses obtained using the
Newmark method present excessive oscillations, par-
ticularly at quick changes of the time-dependent
stresses.  The advanced bases, such as quadratic or
cubic, are employed and the more accurate results are
plotted in Figs. 5 and 7, to improve the accuracy of
the solutions.  The cubic basis for the Newmark
method yields the best results among the three bases.
However, the TDG method differs a little with three
different bases in Figs. 4 and 6.  Additionally, the
quadratic or cubic basis is twice or three times higher
than that of the linear basis in the computational time
cost in the analysis by the TDG solution.  Even the
linear basis used by the TDG method provides very
accurate results that the Newmark method cannot
achieve.

2. Example 2: Flexural Transient Analysis of a
Rectangular Plate

Consider a 2-D solid rectangular plate of length
2 m and a width 2m, as depicted in Fig. 8.  The plate
is assumed to be fixed at one of its extremities and
subjected to an end flexural load of p(t) with a trian-
gular time variation at the other end, as shown in Fig.
8.  The numerical values adopted in this problem are
t=0.2 sec and p=10 Pa, and the material properties
are Young’s modulus E=100 t/m2, Poisson’s ratio ν=
0.25, mass density ρ=10 kg/m3, and P-wave velocity
Cp=100 m/sec.  In the case of plane stress, the space
domain is discretized by 105 nodes on linear and qua-
dratic bases. Each sub-domain is also integrated us-
ing 8×8 Gauss quadrature.   The closed-form
elastodynamic solution to such a problem has not been
presented in the literature.  Hence, the finite element
method (FEM) with 105 nodes (of 80 Q4 elements)
or 369 nodes (of 320 Q4 elements) is compared with
the MLPG method (∆t=0.02 sec), with linear and qua-
dratic bases.  Fig. 9 displays the displacement responses
of the time history at point A in this rectangular plate.
Fig. 9 also shows that the results before time t=2 sec
are the same among the four methods. The difference
between results after time t=2 sec obtained using the

Fig. 5 Displacement responses at point B in a rectangular plate
using Newmark method (Example 1)
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Fig. 6 Stress responses at point B in a rectangular plate using
TDG method (Example 1)
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MLPG method with a quadratic basis and those ob-
tained using the FEM with 369 nodes is negligible.
However, a great disparity exists between the MLPG
method with a linear basis and the FEM with 105 nodes.

VI. CONCLUSIONS

The MLPG method for solving problems in 2-D
elastodynamics, based on a local symmetric weak
form and the moving least squares approximation, is
developed and numerically implemented.  This for-
mulation is solved by the time-discontinuous Galerkin
method, in which both the unknown displacements
and unknown velocities are approximated as piece-
wise linear interpolation functions in the time domain.
The MLPG method is substantially more accurate in
determining the displacements and stresses than the
finite element method.  No element connectivity is
needed; and only randomly distributed nodal points
are constructed.  Moreover, the TDG algorithm us-
ing P1-P1 elements achieves third-order accuracy and
exhibits the asymptotic annihilation property.  Nu-
merical results further indicate that the solution tech-
nique based on time-discontinuous finite element pro-
cedure is computationally more stable and more

accurate than the solution procedure based on the
commonly used algorithms.  The proposed method
can be extended to the implementation of 3-D
elastodynamic problems and boundary node method
solution algorithm.
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