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MOVING ELEMENT FREE PETROV-GALERKIN VISCOUS

METHOD

Mehrzad Ghorbany* and Ali Reza Soheili

ABSTRACT

Moving meshless methods are new generation of numerical methods for time
dependent partial differential equations that have shock or high gradient region.  These
methods couple the moving finite element methods (MFE) with meshless methods.
Here, grid coordinates are time dependent, unknown and are found together with an
approximate solution to time dependent PDE.  Weak form system is an stiff ODE
system and here, it will be found with Galerkin and Petrov-Galerkin method.  A pen-
alty is appended to the energy functional for preventing high velocity, colliding and
collapsing of nodes and prevention of concentration of all the nodes in the shock region.
It controls their motion and also causes better conditioning of the mass matrix.  Nu-
merical solution of two examples demonstrates the accuracy of the approximation.
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I. INTRODUCTION

Numerical solution of time dependent partial dif-
ferential equations with shock, boundary layer, high
gradient region and high oscillatory region such as
gas dynamics problems, large deformation process,
explosion and underwater bubble explosion, plasticity,
elasticity, crack propagation phenomenon, wave propa-
gation and penetration are subject of research for many
years.  These problems have some wild small region
in which the solution has not good activity and this
region moves with time.  Approximation of this re-
gion needs special techniques.  Up to this time, there
are two main r-refinement methods for numerical so-
lution of time dependent PDE’s with shock: (a) mov-
ing mesh methods and (b) moving finite element meth-
ods with time dependent or moveable nodes.  In these
methods, the aim is moving of a fixed number of nodes
and finding their adaptive coordinates to handle the
activity of the problem and then finding approximate
solution at them.  In these methods, one gets an

optimal process with minimal work.  There is no ad-
dition or deletion of nodes and there is no need to
raise the computation order. Progressing the meshless
methods, such as Shepard Interpolant (Shepard, 1968),
Smoothed Particle Hydrodynamics (SPH) (Lucy, 1977;
Gingold and Monaghan, 1982; Monaghan, 1988),
Moving Least Square method (MLS) for interpola-
tion and non-interpolation (approximation) (Lancaster
and Salkauskas, 1981), Generalized Finite Difference
(GFD) method (Liszka and Orkisz, 1984), Kansa’s
method based on radial basis functions (Kansa, 1990),
Diffuse Element Method (DEM) and Diffuse Approxi-
mation Method (DAM) (Nayroles et al., 1992),  Ele-
ment Free Galerkin (EFG) method (Belytschko et al.,
1995), Element Free Petrov-Galerkin  method (EFPG)
(Krongauz and Belytschko, 1997), Reproducing Kernel
Method (RKM) and Reproducing Kernel Particle
Method (RKPM) (Sukky et al., 1998; Aluru, 2000),
Partition of Unity Method (PUM) (Babuska and
Melenk, 1997), h-p clouds and h-p meshless method
(Duarte and Oden, 1996), Wavelet Galerkin method
(WGM) (Glowinsky et al., 1990), and the methods
for problems with shocks were explored.  Two main
advantages of the meshless methods are: (a) compu-
tational efficiency by avoiding the mesh generation
and remeshing process which explored high volume
of computational work and (b) flexibility and
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simplicity in raising the smoothing degree of the ap-
proximation and saving some finite element properties,
such as the locality and easy work on problems with
complex region and without definition of type of re-
lation between nodes.  In 1968, Donald Shepard (1968)
gave his famous paper, where he presented a new in-
terpolation of irregularly spaced data points in me-
teorological science.  Shepard interpolation was the
beginning point for moving least square (MLS) in-
terpolation method given by Lancaster and Salkauskas
(1981) and Partition of Unity method given by Babuska
and Melenk (1997).  MLS method is generalization
of Shepard interpolation and tends to meshless inter-
polation and meshless approximation (quasi-interpo-
lation or non-interpolation, i.e without Kronecker Delta
property).  After introducing MLS method,  Nayroles,
in 1992 (Nayroles et al., 1992), employed this method
for numerical solution of some PDE’s using local com-
pactly supported nonsingular weight functions and got
relatively good results in spite of important disadvan-
tages in finding complete derivatives of his base
functions.  His method, named Diffuse Element Method
(DEM), has the following properties: (1) retains lo-
cality of finite element method; (2) raises the smoothing
degree of approximation; (3) avoids the mesh gen-
eration and remeshing time consuming process; (4)
decreases the volume of computational work; (5) the
base functions derivatives are not complete; (6) es-
sential boundary condition can not be satisfied be-
cause of the lack of Kronecker Delta property; (7)
the approximations are based on irregular distribu-
tion of nodes; (8) smoothing degree of approxima-
tion directly related to smoothing degree of weight;
(9) the base functions built by this method satisfy the
consistency conditions but are not integrable (Krongauz
and Belytschko, 1997).  In 1995, Ted Belytschko and
his colleagues (Belytschko et al., 1995) generalized
DEM and presented EFG method.  This method has
high accuracy in solving of PDE’s specially on ac-
tive PDE’s and has more computational tasks than
DEM. In this paper, we linked MFE method by Keith
Miller (Miller and Miller, 1981; Miller, 1981), EFG
and EFPG method by Ted Belytschko (Belytschko et
al., 1995; Krongauz and Belytschko, 1997).  In fact,
instead of usual piecewise linear hat function in MFE
method, we employed the base functions built by MLS
and their EFG derivatives as approximations or trial
functions and piecewise C1 cubic hermite base func-
tions as test or weight functions.  By using penalty
parameters, we selected Moving Element Free Petrov-
Galerkin Viscous Method (MEFP-GVM) as the name
of this method.  The paper is presented as follows:
Section I explains MFE method.  Section II explains
MLS method and Shepard interpolation. DEM is sub-
ject of Section III.  In Section IV, EFG and EFPG
methods are explained.  Some properties of weight

functions are explained in Section V.  The next sec-
tion presents our method, the hybrid of MFE and EFPG.
Heat and Burger equations are solved approximately
by this method in Section VII and concluding remarks
conclude this paper.

II. MOVING FINITE ELEMENTS

In 1981, Keith Miller (Miller and Miller, 1981;
Miller, 1981) gave his famous paper on 1-D Moving
Finite Elements i.e. piecewise linear finite elements
at unknown, unsteady, time dependent and moveable
nodes.  In 1983, Herbst (Herbst et al., 1983) and his
co-worker proved implicitly the existence and type
of equi-distribution in both 1-D moving piecewise lin-
ear finite element method and MFE Petrov-Galerkin
method by piecewise cubic Hermite polynomials. In
1986, Mitchell (Mitchell and Herbst, 1986) explic-
itly employed piecewise C1 cubic Hermite polynomi-
als with compact support instead of the usual approxi-
mation base functions as test functions.  Here, MFE
method is explained based on Keith Miller. Let

ut=Au (1)

be the general form of unsteady  PDE, where opera-
tor A contains only space derivatives.  For 1-D Burger
equation Au=−uux+(1/R)uxx=−(u2/2)x+(1/R)uxx (R>>1)
and for 1-D heat equation Au=uxx where 0<x<1.  Here,
we have the node distribution: 0=x0(t)<x1(t)<...<
xn−1(t)<xn(t)=1.  Assume we have the following ap-
proximation

   u(x, t) = u j(t)φj(x, t)Σ
j = 0

n
(2)

where {(xj(t), uj(t))   } j = 0
n  are unknowns.  In MFE

method, the set {φj(x, t)   } j = 0
n  is an usual set of hat func-

tions at moving nodes and, in MEFP-GVM, instead
of hat functions, we use base functions built by EFG
method (see Section V).  ut, the partial time deriva-
tive of u, is found in the following form:

   ut(x, t) = (u j(t)φj(x, t)Σ
j = 0

n
+ xj(t)ψ j(x, t)) (3)

where dot denotes time derivative and

ψj(x, t)=∂u ∂xj=−u xφj(x, t) (4)

(see Miller and Miller (1981) and Miller (1981)).  Un-
der some conditions, the base functions or nonlinear
manifold {φj(x, t), ψj(x, t)   } j = 0

n , are linearly indepen-
dent (see Miller and Miller, (1981), Miller (1981)).
After substitution of approximation Eq. (2) into PDE
(1), the residual becomes
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R(x, t)≡    (u j(t)Σ
j = 0

n
φj(x, t)+xj(t)ψj(x, t))−Au (x, t)≡0

(5)

By the least square method or minimizing the
following residual functional with penalty terms with
respect to the coordinate velocities (xi(t), u i(t)), i=0,
1, ..., n,

J(t)=    R(. , t)
L2(0, 1)

2
+    (ε j(t)Σ

j = 0

n
h j(t)−η j(t))

2     (6)

where hj(t)=xj+1(t)−xj(t) and εj(t), η j(t), j=0, 1, ..., n
are  functions of hj(t), using the Galerkin method or
the following inner product:

(R(., t), φi(., t))=0

(R(., t), ψi(., t))−    εi – 1
2 (t)xi−1(t)+(    εi – 1

2 (t)

+  εi
2(t))xi(t)−  εi

2(t)xi+1(t)−εi−1(t)η i−1(t)

+εi(t)η i(t)=0,   i=0, 1, ..., n (7)

The penalty parts are appended to the  MFE re-
sidual functional J(t), because of: (1) prevention of
colliding and collapsing of the nodes, (2) prevention
of concentration all the nodes in the shock region,
(3) prevention of high velocity of nodes and (4) pre-
vention of singularity of the mass matrix and making
it to be positive definite, nonsingular with better con-
dition number and prevention of the system to be stiff.
Using the Petrov-Galerkin method and without regu-
larizing terms, we set the following:

(R(., t), Si(., t))=0

(R(., t), Ti(., t))=0,  i=0, 1, ..., n (8)

and the ODE system is found.  The sets of {Sj(x, t)   } j = 0
n

and {Tj(x, t)   } j = 0
n  are piecewise cubic Hermite base func-

tions in the following form:

Si(x, t)=li
2 (x, t)(3−2li(x, t))

Ti(x, t)=li
2 (x, t)(x−xi(t)),  i=0, 1, ..., n (9)

where li(x, t)’s are Lagrange basis functions( here at
three or five nodes with xi(t) as its center).  In apply-
ing Galerkin method, mollification is needed but for
the Petrov-Galerkin,  it is not.  Herbst, in (Herbst et
al., 1983), proved the existence of the following equi-
distribution MFE by Galerkin method:

hi−1(t)uxx(  xi
–, t)=hi(t)uxx(  xi

+ , t)+O(h2)

i=1, 2, ..., n−1 (10)

For Petrov-Galerkin method, the following equi-
distribution principle is satisfied:

  h i – 1
2 (t)u xx(  xi

–, t)=  h i
2 (t)u xx(  xi

+ , t)+O(h3)

i=1, 2, ..., n−1 (11)

The final ODE system with time derivative is
given in the following form:

   A (t) u (t) = b (t) (12)

where   A (t) is a block tridiagonal mass matrix,  u (t)
=[u1(t), x1(t), u2(t), x2(t), ..., un−1(t), xn−1(t)]T.  This
dynamical system can be solved by the method of
lines or other ODE methods. (Lambert, 1991)

III. MOVING LEAST SQUARE METHOD

Let u: Ω×[0, T]→  IR , where Ω⊂  IR d, d=1, 2 or 3
(here d=1) be a continuous function that we don’t know
and try to approximate by having some data point on
it.  Given xj(t)∈ Ω, j=0, 1, ..., n,  a random distribu-
tion of nodes in the domain and uj(t)=u(xj(t), t), j=0,
1, ..., n.  Let PT(x)={1, x, ..., xm−1} be a given m di-
mensional base.  Define local approximation

u y(x, t)=PT(x)a(y, t) (13)

where y∈ Ω is fixed and the coefficient vector a(y, t)
=[a1(y, t), ..., am(y, t)]T must be found.  Select a suit-
able weight wi(x, t), i=0, 1, ..., n.  By minimizing the
weighted discrete square of the local error functional

   J(a(y, t)) = u(. , t) – uy(. , t)
w

2

   = w(y – xj(t))(u j(t) – uy(xj(t), t))2Σ
j = 0

n

    = w(y – xj(t))(u j(t) – PT(xj(t))a(y, t))2Σ
j = 0

n

(14)

with respect to the coefficient vector a(y, t), we will
have the following system:

A(y, t)a(y, t)=F(y, t)U(t) (15)

where

A(y, t)=B(t)W(y, t)B(t)T

F(y, t)=B(t)W(y, t)

B(t)={   xj
i – 1(t)}, i=1, 2, ..., m, j=0, 1, ..., n

W(y, t)=diag(w(y−x0(t)), w(y−x1(t)), ..., w(y−xn(t)))

U(t)=[u(x0(t)), u(x1(t)), ..., u(xn(t))]T

Then the local approximation (13) becomes
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u y(x, t)=   Φy
T(x, t)U(t) (16)

and the global approximation becomes

    u(x, t) = ΦT(x, t)U(t) = Φ j(x, t)u j(t)Σ
j = 0

n
(17)

where the vector base function in the global form is

ΦT(x, t)=PT(x)A−1(x, t)F(x, t) (18)

and φj(x, t), j=0, 1, ..., n are its elements.

IV. DIFFUSE ELEMENT METHOD

We want to solve Eq. (1) by DEM.  To do this,
we substitute u(x, t) in the PDE by u (x, t) of Eq. (17)
built by MLS method.  The nature of this method is
locality or retaining locality view until getting the
derivative of the approximation or the base functions,
so the derivative of the vector base function in this
method is

(ΦT)′ (x, t)=(PT)′ (x)A−1(x, t)F(x, t) (19)

For elliptic PDE’s, the first derivatives are
sufficient. This method is one of the first bridges  from
meshless interpolation to its application for numeri-
cal solution of PDE’s.  DEM has acceptable accu-
racy when the support of the weight is small or the
number of nodes is large, but its derivatives are not
complete (see Section V), i.e not integrable, satisfy
in the consistency condit ions (Krongauz and
Belytschko, 1997), the base functions don’t have the
Kronecker Delta property and have difficulties in
exertion of the boundary conditions.

V. ELEMENT FREE GALERKIN AND
PETROV-GALERKIN METHOD

In this method, the first derivative of vector base
function is found in the following form:

Φ′(x, t)

=(PT)′ (x)A−1(x, t)F(x, t)+PT(x)A−1(x, t)(F′ (x, t)

−A′ (x, t)A−1(x, t)F(x, t)) (20)

(see Belytschko et al. (1995), Duarte and Oden
(1995)). Kronecker Delta property doesn’t hold, so
in this method, usually a penalty with Lagrange mul-
tipliers and Lagrange interpolation is appended on the
boundary as a remedy for this difficulty.  In MEFP-
GVM, we employ the MLS base functions in the
approximation Eq. (18) as trial functions and their
complete or EFG derivatives are found in Eq. (20) in

the the problem and are piecewise C1 cubic Hermite
(Eq. 9) as test functions.

VI. WEIGHT FUNCTIONS

The weight functions give higher value to each
node x0(t), x1(t), ..., xn(t) and lower value to each
neighborhood points. The cardinal number of nodes
in support of weight functions must have lower bound
and upper bound.  Each point in the domain must be
in the intersection of at least m weight functions (m
<n) for non-singularity of matrix A(x, t).  Support of
all of the weight functions must cover the domain.
Selected weight functions must have smoothing de-
gree proportional to the problem.  The weight func-
tions have variable radius of support and this radius
must be selected carefully (usually experimentally,
or maybe analytically by using of PDE or multiplica-
tion of a parameter named dilation parameter by
radius).  The weight functions are positive and are
applied or approximated equivalent to Dirac Delta
Distribution. Some of the singular weight functions
in standard or radial form are

w(x)=1/|x|2k (21)

where k is an integer.

   
w(x) =

(r/x)2cos2(πx/2r) x ≤ r

0 x > r
(22)

  w(x) = r/x2(1 – x /r)+
2 (23)

Some of the  nonsingular weight functions in stan-
dard form are

   

w(x) =
(1 – x/r

2k 1)2k 2 x ≤ r

0 x > r
(24)

where k1 and k2 are integers and r is the radius of
support.

w(x)=exp(−c|x|2k) (25)

where c>0 is a constant, and k is a positive integer.

   

w(x) =

2/3 – 4( x /r)2 + 4( x /r)3 x ≤ r/2

4/3 – 4 x /r + 4( x /r)2 r/2 < x ≤ r

– 4/3( x /r)3

0 x > r

(26)
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This weight is named cubic spline.

   
w(x) =

c exp(r2/(x2 – r2)) x ≤ r

0 x ≥ r
(27)

In MLS, the singular weight function is good
for interpolation, but there are difficulties in compu-
tational work with it.  Nonsingular weight functions
haven’t interpolation property, but can build good
approximation.  However, lack of interpolation prop-
erty by using nonsingular weights  shows itself on
exertion of boundary condition and needs some meth-
ods for handling and correcting it such as Lagrange
multiplier (Belytschko et al., 1995) or penalty meth-
ods (Belytschko et al., 1995).  One of the main sources
of meshless methods’ accuracy is related to selected
weight function.

VII. MOVING ELEMENT FREE
PETROV-GALERKIN VISCOUS METHOD

Combination of the previous two methods, MFE
and EFG, with piecewise C1 cubic Hermite as the test
functions make new powerful and flexible generation
of numerical solutions of time dependent PDE’s.  Let
(17) be the approximation of u in PDE (1).  Then the
L2(0, 1) norm residual functional by EFG base func-
tion with penalty and regularizing term for node
movement will be built such as Eq. (6) in which
{φj(x, t)   } j = 0

n  were built by EFG method and are ele-
ments of (18) and ψj(x, t)≡∂u (x, t)/∂xj without local
support, εj(t) and η j(t) are (open) experimental pa-
rameters that cover some slits that exists in mass
matrix   A (t) to make it well conditioned and positive
definite.  εj(t) are viscosity parameters and η j(t)
take care of the first term of the penalty near it
(see Miller and Miller (1981), Miller (1981), Herbst
et al. (1983)).  Minimizing this functional with re-
spect to xj(t), u j(t), j=0, 1, ..., n,  gives us a system of
ODEs with time derivative similar to (12).  This
method is  MEFGVM and the weighted residual
form of this functional by cubic Hermite weights with

regularizing terms lead us to  MEFP-GVM.

VIII. NUMERICAL EXAMPLES

We want to show the power of the method by
approximating the following two 1-D examples:

Example 1.  Approximation of 1-D Heat Equation

ut=uxx, 0<x<1,

u(0, t)=u(1, t)=0, u(x, 0)=sin(πx)

with its exact solution u(x, t)=sin(πx)exp(−π2t) by
MEFP-GVM shown in Fig. 1.  Here, polynomial base
for MLS interpolation is  PT(x)={1, x,  x2}, selected
weight function is Spline (26), Lagrange polynomial
functions are quadratic, the penalty parameters are
constants εi(t)=0.2, η i(t)=0, for i=0, 1, ..., n, n=5, the
numerical quadrature method is Simpson rule,  ODE
method is implicit, the  time step is ∆t=0.0025 and
the final time is T=0.25 seconds.  The initial distri-
bution of nodes is uniform {0, 1/5, 2/5, 3/5, 4/5, 1}
and the final coordinates of nodes  are {0, 0.178553,
0.396684, 0.603316, 0.8214465, 1}.  One can see a
smooth motion of nodes and a smooth approximation
by a small number of nodes.  The approximation curve
doesn’t pass throgh the nodes, because the base func-
tions do not have Kronecker Delta property.

Example 2. Approximation of 1-D Burger Equation

ut+(u2/2)x=(1/R)uxx, 0<x<1,

with its exact solution u(x, t)=(µ+λ+(µ−λ)exp(λξ /ε)/
(1+exp(λξ /ε)), where ξ=x−µt−β,  and the related pa-
rameters are λ= 0.4, β=0.16, µ=0.5, R=15  shown in
Fig. 2.  In this figure, there are Burger approxima-
tion together with its exact solution, the error (|u (x,
T)−u(x, T)|) and the motion of nodes  respectively.
The polynomial base, weight function, Lagrange poly-
nomial functions, numerical integration, ODE method
and time step are similar to example (1), T=0.51, n=7
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Fig. 1  Approximation, error, and x motion of heat equation
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seconds.  In this example, the approximation is very
smooth and one can not make such an approximation
by fixed piecewise finite elements.  The initial distri-
bution is uniform {0, 1/7, 2/7, 3/7, 4/7, 5/7, 6/7, 1}
and the approximate final distribution is {0, 0.185026,
0.330253, 0.474687, 0.609325, 0.742019, 0.869880,
1}.  The third figure shows smooth node motions with
respect to time.  The nodes try to move into the shock
region and move together with it by proceeding time
step.

IX. CONCLUSIONS

  1. The choice of a finite subset polynomial base in
MLS interpolation, computation of matrix inverse
in Eq. (18) is time consuming with errors, numeri-
cal quadrature, approximate solution of system
in each time level iteration, and use of a finite
difference method for ODE system are some
sources of errors.  One of the best method for es-
timating the error at a point for MEFP-GVM can
be seen in (Gavete et al., 2002).  In this paper, by
minimizing a functional that is weighted error be-
tween two methods GFD and EFG, error for a
point and a neighborhood of it is estimated.

  2. This method can be extended to another meshless
method.

  3. There isn’t mathematical theory such as existence,
uniqueness and convergence theory for this
method.

  4. In this method, equi-distribution principle maybe
holds.

  5. The computational volume is  high, but can be
optimized.

  6. Use of C1 piecewise cubic Hermite needs a
typical mesh of  elements in the domain.  This is
a disadvantage.

  7. The exertion of essential boundary conditions
needs another technique for handling.

  8. This method has satisfactory accuracy with small
number of nodes.

  9. MFE method mass matrix is tridiagonal but full
in MEFPGM.

10. The  in i t ia l  d i s t r ibut ion  can  be  uni form,
Chebyshev, roots of orthogonal polynomials and
can be found by equi-distribution principles (for
example see Coyle et al. (1986)).
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