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A MESHLESS SINGULAR HYBRID BOUNDARY NODE METHOD

FOR 2-D ELASTOSTATICS

Hong-Tao Wang, Zhen-Han Yao*, and Song Cen

ABSTRACT

As a boundary-type meshless method, the HBNM presented by authors’ group is
based on a modified variational principle and MLS approximation, so it possesses the
advantages of both BEM and meshless methods.  This method does not require any
mesh for variable interpolations or for boundary integration. In order to avoid the
singular integrals which exist in HBNM, the RHBNM was proposed, in which the
source points of the fundamental solutions are moved outside the domain.  However,
such treatment is not convenient for problems with irregular geometries and may lead
to insufficient numerical stability.  In this paper, the singular integral and the “bound-
ary layer effect” in HBNM are properly treated.  Thus, the dependence of the numeri-
cal results on scale factor in RHBNM can be successfully avoided.  Numerical ex-
amples show high accuracy and high convergence rates for the presented scheme.
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I. INTRODUCTION

The two most important and effective numeri-
cal methods in engineering analysis are the Finite
Element Method and the Boundary Element Method.
However, the reliance on meshes in these two mesh-
based methods leads to some unavoidable drawbacks.
On one hand, mesh generation is an arduous, burden-
some and time-consuming task in 3-D problems with
complicated irregular shapes.  On the other hand,
much difficulty emerges, while solving problems as-
sociated with extremely large deformations or prob-
lems involving frequent re-meshing, such as crack
propagation.  In recent years, several meshless meth-
ods have been proposed to avoid the pitfalls men-
tioned above.  These novel methods include Smooth
Particle Hydrodynamics (Lucy, 1977), Diffuse Ele-
ment method (Nayroles et al., 1992), Element Free
Galerkin (EFG) method (Belytschko et al., 1994;
1996), Reproducing Kernel Particle Method (Liu et
al., 1995), Meshless Local Petrov-Galerkin (MLPG)

method (Atluri and Zhu, 1998; 2000; Atluri et al.,
1999), Local Boundary Integral Equation (LBIE)
method (Zhu et al., 1998; Atluri et al., 2000), Bound-
ary Node Method (BNM) (Mukherjee and Mukherjee,
1997; Kothnur et al., 1999) and so on.  In authors’
group, a meshless method, called Hybrid Boundary
Node Method (HBNM) has been presented (Zhang et
al., 2002).

EFG is based on a global symmetric weak form
like conventional FEM, and using the Moving Least
Squares (MLS) approximation to construct the shape
functions.  Though the use of MLS leads to the fact
that no mesh is required in this method for the inter-
polation of the variables, the background cells are still
inevitable for the weak form integration.

The concept of local symmetric and unsym-
metric weak forms over a local sub-domain was pro-
posed in LBIE and MLPG.  Since sub-domains are
used for the integration of the local weak forms, no
mesh or cell is needed anymore.  In further studies,
Atluri and his co-workers explored several kinds of
trial and test functions in the MLPG method and six
types of MLPG method were obtained (Atluri and
Shen, 2002).

In BNM, the MLS approximation is introduced
into Boundary Integral Equations (BIE).  Though only
a nodal data structure on the bounding surface of a
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body is needed in this method, an underlying cell
structure on the boundary is still inevitable for nu-
merical integration.

The HBNM is a boundary-type meshless method
presented by coupling a modified variational principle
and the MLS approximation.  This method possesses
the attractive meshless character of MLS as well as
the dimension-reduction advantage of BEM, i.e., only
some scattered nodes distributed on the boundary of
the solution domain are needed for the discretization
of the whole structure.  Similar to the MLPG and
LBIE, this method does not require any mesh or cell
for  var iable  in terpola t ions  or  for  numerical
integration.

In order to avoid the singular integrals in
HBNM, a Regular Hybrid Boundary Node Method
(RHBNM) is proposed (Zhang and Yao, 2001a;
2001b), in which the source points of the fundamen-
tal solutions are moved outside the domain.  This
method has been successfully used in solving 2-D and
3-D potential problems, 2-D and 3-D linear elasticity
(Zhang et al., 2003; Zhang and Yao, 2004), includ-
ing 2-D thin structures (Zhang and Yao, 2002).
However, such regularization treatment may lead to
some problems: the results are dependent on the
choice of the scale factor or the assignment of the
source points; it is not convenient to solve the prob-
lems with a concave boundary or a crack; the numeri-
cal stability is insufficient sometimes.

To avoid these problems, a new singular scheme
for the HBNM is proposed in this paper, where the
singular integrals are appropriately approached by
using an approach similar to that of BEM.  Numeri-
cal examples show that the new SHBNM is more ro-
bust than the RHBNM.

The BIE in SHBNM is derived from the modi-
fied variational functional in Section II.  The vari-
able interpolation using MLS approximation and fun-
damental solutions are described in Sections III and
IV, respectively.  A system of algebraic equations is
given in Section V.  The approach to singular inte-
grals is discussed in Section VI.  Finally, several nu-
merical examples are presented in Section VII.

II. BOUNDARY INTEGRAL EQUATION

The governing equation and the corresponding
boundary conditions of the two-dimensional linear
elasticity problem without body forces can be writ-
ten as follows:

σij(u), j=0 in Ω

ui=  u i on Γu

ti≡σij(u)nj=  t i on Γ t (1)

where Ω is the global domain enclosed by the bound-
ary Γ=Γu+Γ t, σij(u) denote the stresses correspond-
ing to the displacement field u with components ui,

 u i , the prescribed displacements on the displacement
boundary Γu,  t i , the prescribed tractions on the trac-
tion boundary Γ t, and ni, the unit outward normal vec-
tor to the boundary Γ .

The corresponding weak form of integral equa-
tions governing in a sub-domain can be written as
(Zhang et al., 2003):

    (ti – t i)v
JdΓ

Γ J + LJ
– σ ij(u)

Ω J
, vJ
j dΩ = 0 (2)

   (ui – ui)v
JdΓ

Γ J + LJ
= 0 (3)

where ΩJ is a sub-domain, which is deliberately cho-
sen as the intersection of the global domain Ω and a
circle centered at a node sJ on the boundary Γ  (Fig.
1), ΓJ and LJ are its boundaries; vJ is the test function,
ui, the displacement field inside the domain, ui , the
boundary displacements, t i , boundary tractions.  ui,
ui  and t i  are taken as three independent variables.
And ui  sa t i s f ies  the  d isplacement  boundary
conditions, i.e., ui=  u i  on Γu.

In order to get rid of the boundary integrals over
LJ, the test function vJ is chosen appropriately, such
as the Gaussian weight function or 4th-order spline
weight function in the MLS approximation, or the
compactly supported positive definite radial basis
functions (Atluri and Shen, 2002; Wu, 1995).

Thus, Eqs. (2) and (3) can be rewritten as:

    (ti – t i)v
JdΓ

Γ J
– σ ij(u)

Ω J
, vJ
j dΩ = 0 (4)

   (ui – ui)v
JdΓ

Γ J
= 0 (5)

Fig. 1 The local sub-domain centered at a field point sJ and the
source point sI
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III. MLS APPROXIMATION

The MLS approximation in HBNM is indepen-
dently constructed on the piecewise smooth segments
Γ k, k=1, 2, ..., M, using curvilinear coordinates.  This
approximation scheme for the boundary displacement
ui  and boundary traction t i  are independently defined
as

   ui(s) = Φ I(s)ui
IΣ

I = 1

N
(6)

   t i(s) = Φ I(s)t i
IΣ

I = 1

N
(7)

where

    Φ I(s) = p j(s)[A– 1(s)B(s)] jIΣ
j = 1

m
(8)

    A(s) = wI(s)p(sI)pT(sI)Σ
I = 1

N
(9)

B(s)=[w1(s)p(s1), w2(s)p(s2), ..., wN(s)p(sN)]  (10)

In the above equations, p is a complete mono-
mial basis vector, and the weight function wI(s) is cho-
sen as the Gaussian weight function:

wI(s)=

   
exp[ – (d I/cI)2] – exp[ – (d I/cI)2]

1 – exp[ – (d I/cI)2]

0 ≤ d I ≤ d I

0 d I ≥ d I

(11)

where dI=|s−sI|, the distance from a point s to the
boundary node sI, measured along Γ k;  d I  is the sup-
port size of the weight function; cI is a parameter con-
trolling the shape of the weight function.

Since the MLS approximation does not possess
the Kronecker Delta property,  ui

I  and t i
I should be ob-

tained first, while the boundary conditions are
imposed.  For a well-posed problem, the value of ei-
ther ui or ti is known on the boundary.  Thus,  ui

I  on Γu

and t i
I on Γ t can be obtained as

   ui
I = RIJ u i

JΣ
J = 1

N
(12)

   t i
I = RIJ t i

JΣ
J = 1

N
(13)

where N is the number of boundary nodes on an edge;
RIJ=[ΦJ(sI)]−1.  More detail can be seen in (Zhang et
al., 2003).

IV. FIELD VARIABLES INTERPOLATION

Like the hybrid BEM model in (DeFigueredo
and Brebbia, 1989), the displacement field ui inside
the global domain and on the boundary Γ  can be de-
fined as

   
ui = uij

I xj
IΣ

I = 1

Nb

(14)

The corresponding ti and σij can be defined as

   
ti = tij

I x j
IΣ

I = 1

Nb

(15)

   σ ij = Uijk
I xk

IΣ
I = 1

Nb

(16)

where xj
I are unknown parameters; Nb is the total num-

ber of boundary nodes;  uij
I , tij

I  and  Uijk
I  are the funda-

mental solutions for 2-D elasticity problem.

V. SYSTEM OF ALGEBRAIC EQUATION

Because the singular fundamental solutions are
used in Eqs. (14-16), the integrals in Eqs. (4) and (5)
will be singular, as long as the source point sI is lo-
cated on the boundary Γ J of the sub-domain Ω J cen-
tered at the field point sJ (Fig. 2 and Fig. 3).  There-
fore the singularities may occur, whether sJ and sI are
coincident or not.

It should been pointed out that the integrand of
the second integral in Eq. (4) equals zero at any point
inside the sub-domain ΩJ or on the boundary Γ J

Fig. 2 Modified sub-domain centered at the field point sJ and
source point sI (sJ and sI are coincident)

Fig. 3 Modified sub-domain centered at the field point sJ and
source point sI (sJ and sI are not coincident)
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except at the source point sI.  In order to evaluate this
integral, a circle of radius ε centered at sI is subtracted
from ΩJ.  The modified sub-domain with the bound-
ary Γ ′ J=   Γ c

J ∪   Γ ε
J  is denoted as Ω′ J.  Thus, in the limit

as ε→0, Ω′ J→ΩJ.  Eq. (4) holds in Ω′ J:

   lim
ε → 0

tiv
JdΓ

Γ ε
J

+ lim
ε → 0

tiv
JdΓ

Γ c
J

– lim
ε → 0

t iv
JdΓ

Γ ε
J

   – lim
ε → 0

t iv
JdΓ

Γ c
J

– lim
ε → 0

σ ij, jv
JdΩ

Ω′ J
= 0 (17)

Since the source point sI is outside the sub-do-
main Ω′ J, the domain integral in the above equation
is vanished.  The third part also equals zero.  Thus,
Eq. (17) can be rewritten as:

   lim
ε → 0

tiv
JdΓ

Γ ε
J

+ lim
ε → 0

tiv
JdΓ

Γ c
J

   = t iv
JdΓ

Γ J
(18)

By substituting Eqs. (7) and (15) into the above
equation, one can obtain

   
( lim
ε → 0

tik
I vJdΓ

Γ ε
J

+ lim
ε → 0

tik
I vJdΓ

Γ c
J

)Σ
I = 1

Nb

xk
I

   = ( Φ I(s)vJdΓ
Γ J

)Σ
I = 1

N
ti

I (19)

When sI is located outside Ω J, the first limit in
Eq. (19) vanishes, and the second integral becomes
regular.  Otherwise, when sI is located inside Ω J, the
second integral should be regarded as its Cauchy prin-
cipal value, and the first limit is similar to the free
terms in BEM, i.e.

 cik
JI=

   
lim
ε → 0

tik
I vJdΓ

Γ ε
J

s I ∈ Γ J

0 sI ∉ Γ J
(20)

where  cik
JI  are coefficients depending upon the test

function vJ and the geometrical shape of the bound-
ary Γ J.  Therefore, Eq. (19) can be rewritten as:

   
(cik

JI + tik
I vJdΓ

Γ J
)xk

IΣ
I = 1

Nb

= ( Φ I(s)vJdΓ
Γ J

)Σ
I = 1

N
ti

I

(21)

The singularity in Eq. (5) is weak and this kind
of singular integral can be evaluated by log-weighted
Gaussian quadrature.  By substituting Eqs. (6) and

(14) into Eq. (5), one can obtain

   
( uik

I vJdΓ
Γ J

)xk
IΣ

I = 1

Nb

= ( Φ I(s)vJdΓ
Γ J

)Σ
I = 1

N
ui

I     (22)

By using Eqs. (21) and (22) for all boundary
nodes, the system of linear algebraic equations can
be written in matrix form

  Ux = Hu (23)

  Tx = Ht (24)

where

   Uij
JI = uij

IvJdΓ
Γ J

(25)

   Tij
JI = cij

JI + tij
I vJdΓ

Γ J
(26)

 Hij
JI =

   
Φ I(s)vJdΓ

Γ J
, i = j

0 , i ≠ j

(27)

   xT = [x1
1, x2

1, , x1
Nb, x2

Nb] (28)

   uT = [u1
1, u2

1, , u1
Nb, u2

Nb] (29)

   t T = [t1
1, t2

1, , t1
Nb, t2

Nb] (30)

For a well-posed problem, the value of either ui

or ti is known on the boundary.  Before the solution
of the problem, the linear equations in (23) and (24)
should be rearranged by appropriate switching of rows
to make Eq. (23) contain the prescribed boundary
conditions and Eq. (24) contain the unknown ones.
During the rearrangement, those rows of T and t  in
Eq. (24) related to the prescribed traction boundary
conditions are interchanged with the corresponding
rows of U and u  in Eq. (23) related to the unknown
displacement boundary conditions, while the other
rows do not need such treatment.

After solving the rearranged equations, we can
obtain the unknown vector x and the unknowns of t
and u .  Then, displacements ui and tractions ti on the
boundary Γ  can be evaluated by using the MLS ap-
proximation in Eqs. (6) and (7), while displacements
ui and stresses σij in the domain Ω can be evaluated
by Eqs. (14) and (16), respectively, without further
integrations.

VI. TREATMENT OF SINGULAR INTEGRALS

In order to avoid the singular integrals in
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HBNM, the RHBNM puts the source points of the
fundamental solutions outside the domain.  However,
such treatment may increase complication in solving
problems associated with irregular geometries and
destroy the numerical stability some times.

In this section, HBNM will be improved by ac-
curate and appropriate evaluations of the singular in-
tegrals referred to BEM (Brebbia et al. ,  1984;
Guiggiani, 1991).  In order to be compared with the
original RHBNM, this new improved HBNM is named
as  Singular  Hybr id  Boundary  Node Method
(SHBNM).

It has been mentioned above that the singular
integral in Eq. (25) is a weak one, and such kind of
singular integral can be evaluated by log-weighted
Gaussian quadrature as follows:

   
I1 = ln r(ξ I, ξ)g(ξ)dξ

ξ s

ξ I

(31)

   
I2 = ln r(ξ I, ξ)g(ξ)dξ

ξ I

ξ e

(32)

where ξ s and ξe stand for the parameter coordinates
of the starting point and ending point of local bound-
ary Γ J; ξ I is the parameter coordinate of the source
point sI (Fig. 2 and Fig. 3).  After transformation, Eq.
(31) can be rewritten as:

   
I1 = ln 1

η f (η)dη
0

1
= wi f (η i)Σ

i = 1

n
(33)

where

   
f (η) =

ln r(ξ I, ξ(η))

ln 1
η

g(ξ(η))(ξ I – ξ s)

ξ(η)=(ξs−ξ I)η+ξ I (34)

wi and η i are the weights and positions of log-
weighted Gaussian quadrature.  The Eq. (32) can be
evaluated in the same way.

The Cauchy principal value of the singular in-
tegrals in Eq. (26) and the corresponding coefficients

 cik
JI can be evaluated using the rigid-body motion ap-

proach indirectly.  This approach requires only one
source point located inside each sub-domain (i.e., the
radius rJ should be less than the minimum value of
the distances to the adjacent nodes).  Fortunately, this
restriction affects the accuracy and convergence only
a little in the present method.  Numerical experiments
in the next section will show good numerical results,
as long as an appropriate radius rJ is chosen.

Two particular solutions of rigid-body displace-
ments are chosen as:

u1≡1, u2≡0, t1=t2≡0

u1≡0, u2≡1, t1=t2≡0 (35)

Thus,  ui
I  and t i

I can be obtained by using Eqs. (12)
and (13):

  u1
T =[1,  0,  1,  0,  ...,  1,  0]

  u2
T =[0,  1,  0,  1,  ...,  0,  1] (36)

  t1 = 0 , t2 = 0 (37)

By substituting Eq. (36) into Eq. (23), we can obtain
two unknown vectors a and b as follows:

  a = U– 1Hu1

  b = U– 1Hu2 (38)

Substituting Eqs. (37) and (38) into Eq. (24)
leads to the evaluation of diagonal components in the
matrix T:

   

Ti1
JJ

Ti2
JJ

=
a1

J a2
J

b 1
J b 2

J

– 1 – Tik
JIak

IΣ
I = 1
I ≠ J

Nb

– Tik
JIb k

IΣ
I = 1
I ≠ J

Nb
(39)

Similar to the Hybrid BEM, the “boundary layer
effect” in HBNM can also be observed, i.e., numeri-
cal results evaluated by Eqs. (14-16), on the points
close to the boundary depart from the exact solutions.
Nevertheless, an alternative approach to evaluate re-
sults inside the domain can be proposed referred to
BEM:

   ui(P) = uij(P; q) t j(q)dΓ
Γ

– tij(P; q)u j(q)dΓ
Γ

   σ ij(P) = Uijk(P; q) t k(q)dΓ
Γ

– Tijk(P; q)uk(q)dΓ
Γ

(40)

where P denotes the point inside the domain for evalu-
ating variables, and also the source point of the fun-
damental solution; uij, tij, Uijk and Tijk are the funda-
mental solution for plane strain problem.

The difference of using Eq. (40) for BEM and
in the present approach is that the boundary integrals
in BEM are evaluated on boundary elements, while
these in the present approach are evaluated on the
piecewise smooth segments.  When the points are
close to the boundary, nearly-singular integrals will
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occur.  To appropriately evaluate such integrals, more
integration points or special treatments, such as that
presented in (Mukherjee et al., 2000) and (Luo, et
al., 1998), are required.

VII. NUMERICAL EXAMPLES

For the error estimation and convergence
investigation, a L2 norm error is defined as follows:

   e = 1
u max

1
N (ui

(e) – ui
(n))2Σ

i = 1

N
(41)

where |u|max is the maximum value of u=  uiui  in the
selected N sample points; the exact and numerical so-
lutions are referred by the superscripts (e) and (n)
respectively.

In all examples below, the parameters mentioned
in Section II and III are chosen as  d I=3.5h,  d I /cI=4.0,
rJ=0.9996d, rJ/cJ=0.3, in which h is mesh size, and d
is minimum value of the distances from the current
node to the adjacent nodes.

1. Patch Test

The first illustrative example is a Dirichlet prob-
lem on a square, which is bounded by the lines x=0,
y=0, x=1 and y=1, and the exact displacement field is
considered as follows:

u1=2x+3y  u2=3x+2y

where the displacement boundary condition is pre-
scribed on all the boundary lines according to these
equations.

In order to investigate how the radius rJ of the
sub-domain affects the accuracy and convergence of
the present method, three schemes of regular node
arrangements, namely 5, 10 and 20 nodes respectively
on each edge, are considered.  Since the satisfaction
of the patch test requires the displacement inside the
domain to be given the same function in the exact
displacement field, 15 uniformly spaced sample
points on the diagonal from (0.15, 0.85) to (0.85,
0.15) and 19 uniformly spaced sample points on the
diagonal from (0.0, 1.0) to (1.0, 0.0) inside the do-
main are selected.  The relative errors of the displace-
ment ux, stresses σx and τxy on these sample points
are shown in Figs. 4(a-b), and the convergence rates
of the displacement ux on these sample points are
shown in Fig. 4(c).  The comparisons show that the
restriction of r J<1.0 affects the numerical results only
a little and high accuracy and high convergence
rate can be obtained, as long as rJ is chosen appro-
priately.

2. Cylindrical Tube Subjected to Uniform Inter-
nal Pressure

This problem is the well-known Lamé problem,
in which a cylindrical tube with a and b as its inner
and outer radii subjected to uniform internal pressure
is considered.  The plane strain case is considered,
and the parameters are chosen as Young’s modulus
E=25 MPa, Poisson’s ratio v=0.3, internal pressure
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Fig. 4 (a) Relative errors of ux, σx and τxy inside the domain (15
sample points); (b) relative errors of ux, σx and τxy inside
the domain (19 sample points); (c) convergence rates of
ux inside the domain (19 sample points)
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pi=1 MPa.  Fig. 5 shows its geometry with dimension
a=100 mm and b=200 mm, and the corresponding
boundary conditions are prescribed as follows:

σr=−pi τ rθ=0 on  r=a

σr=0 τ rθ=0 on  r=b

The exact stress fields in polar coordinates are:

   σ r =
a2 pi

b2 – a2
(1 – b2

r2 ) σθ =
a2 pi

b2 – a2
(1 + b2

r2 )

Due to its symmetry, only the upper left quarter re-
quires to be modeled.  Three schemes of uniform node
arrangement are selected, as listed in Table 1.

The tractions in y direction on the edge AB and
the corresponding exact solutions are shown in Fig.
6.

3. An Infinite Sheet with a Hole

In this example, only a portion of an infinite
sheet with a central circular hole subjected to a uni-
directional tensile load S  in the x direction is
considered.  The analytical solutions of stresses are

   σ r = S
2(1 – a2

r2 ) + S
2(1 + 3a4

r4 – 4a2

r2 )cos(2θ)

   σθ = S
2(1 + a2

r2 ) – S
2(1 + 3a4

r4 )cos(2θ)

   τ rθ = – S
2(1 – 3a4

r4 + 2a2

r2 )sin(2θ)

The plane stress case is considered, and the pa-
rameters here are S=1 MPa, E=25 MPa, v=0.3 (Fig.
7).  The length of the sheet L=60 mm is much greater
than the radius of the hole a=1 mm,  to approximate
the infinite sheet.  To compare with the original
RHBNM, two schemes of  non-uniform node
arrangements, as listed in Table 2, are adopted.

In RHBNM, all the parameters are chosen the
same as the ones in SHBNM, except rJ=3.0h, and the
scale factor is taken as ξ=7.  The stresses σx on the
edge CD and the corresponding analytical solutions
are shown in Fig. 8. The numerical results of the two
approaches both agree excellently with the analyti-
cal solution, when 74 nodes are used.  It can be ob-
served that, when the number of nodes on edge BC

Table 1  Three schemes of node arrangement

Total number AB BC CD DA

33   6   7   6 14
66 12 14 12 28
99 18 21 18 42

Fig. 5 Model for cylindrical tube subjected to uniform internal
pressure

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0 20 40 60

Arc length (mm)

T
ra

ct
io

n 
(M

Pa
)

80 100

Fig. 6  Traction ty distribution along edge AB

Table 2  Two schemes of node arrangement

Total number AB BC CD DE EA

74 10 24 20 10 10
58 10   8 20 10 10

Fig. 7 A quarter of an infinite sheet with a central circular hole
subjected to a unidirectional tensile load
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changes from 24 to 8, the numerical results of stresses
σx on edge CD in RHBNM change significantly; on
the contrary, only a little change happens in SHBNM.
Therefore, in comparison with the numerical results
of the original RHBNM, the SHBNM solution has
shown better stability and accuracy.

4. Cantilever Beam

In the final example, a cantilever beam is con-
sidered (Fig. 9).  The analytical solutions for displace-
ments and stresses are

  ux = – P
6EI (y – h

2)[3x(2L – x) + (2 + v)(y2 – hy)]

  uy = P
6EI [3v(L – x)(y2 – hy + 1

4h2) + 4 + 5v
4 h2x

  + 3x2(L – 1
3x)]

   σ x = – P
I (L – x)(y – 1

2h)

σy=0

   τ xy = – P
2I y(y – h)

where I=h3/12.
The parameters are E=30 MPa, v=0.3, P=1 N.

The geometry of the beam with dimension L=4 m and
h=1 m is shown in Fig. 9.  A uniform arrangement of
120 nodes (10 nodes on AD and BC each, 50 nodes
on AB and CD each) is chosen.  In order to compare
with the original RHBNM, two types of boundary
conditions are considered:

  BC1:
ux = 0
uy = 0

  

BC2:
ux = – P(2 + v )

6 E I
(y – h

2)(y2 – hy)

uy = P v L
2 E I

(y2 – hy + 1
4h2)

In RHBNM, the scale factor is taken as ξ=7, and
all other parameters are chosen the same as those in
SHBNM.  The comparisons of the shear stress τxy for
19 uniformly spaced sample points from (2.0, 0.15)
to (2.0, 0.85), and displacements uy for 21 uniformly
spaced sample points from (2.0, 0.0) to (2.0, 1.0),
together with the exact solution of BC1, are shown
in Fig. 10.

It can be observed that, when the boundary
conditions change a little, the numerical results
change much in RHBNM, while almost no change
happens in the numerical results of SHBNM.  Thus,

Fig. 8  Stress σx distribution along edge CD

Fig. 9  Cantilever beam

Fig. 10 (a) Displacement uy distribution at x=L/2; (b) stress τxy

distribution at x=L/2
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the numerical stability of RHBNM is not as good as
that of SHBNM.

Since more attention should be paid to the
“boundary layer effect”, the SHBNM solutions with
BC1 of stress σx evaluated by Eqs. (16) and (40) are
both shown in Fig. 11.  From the comparison, we can
see that the “boundary layer effect” can be properly
treated by appropriate evaluations of the integrals in
Eq. (40).  Therefore, values close to the boundary can
be evaluated by the Boundary Integral Eq. (40), and
others can be evaluated easily by original treatment,
i.e., Eqs. (14-16).

VIII. CONCLUDING REMARKS

In this paper, a new singular scheme of meshless
HBNM for 2-D elastostatics is presented.  By appro-
priate evaluation of singular integrals, SHBNM pos-
sesses better numerical stability and more conve-
nience to solve complicated problems, especially in-
volving irregular geometry,  than the original
RHBNM, while the guarantee of the numerical pre-
cision is a prerequisite.  Since it has the advantages
of both BEM and truly meshless methods, SHBNM
is appropriate for solving problems associated with
moving contact boundaries or crack propagation.
Similar to other meshless methods, some problems,
such as the drawback of serious “boundary layer
effect”, in SHBNM still require further investigation.
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