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PSEUDO ELASTIC ANALYSIS OF MATERIAL NON-LINEAR

PROBLEMS USING ELEMENT FREE GALERKIN METHOD
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ABSTRACT

Element Free Galerkin Method (EFGM) based on pseudo-elastic analysis is pre-
sented for the determination of inelastic solutions.  In the proposed method a linear
elastic analysis, using moving least square approximating function, is carried out for
the determination of stress field of material non-linear problems using material pa-
rameters as field variables.  Hencky’s total deformation theory is used to define effec-
tive elastic material parameters, which are treated as spatial field variables and con-
sidered to be functions of equilibrium stress state and material properties.  These ef-
fective material parameters are obtained in an iterative manner based on strain con-
trolled projection method and total energy balance Neuber’s rule, using experimental
uniaxial tension test curve.  The effectiveness of the method is illustrated using a
problem of cylindrical vessel subjected to internal pressure and shear loads.  Three
different material models are considered for the problem: elastic-perfectly plastic,
linear strain hardening type and nonlinear behavior obeying Ramberg-Osgood model.
Obtained results for all the cases are compared with standard nonlinear finite element
results and are found to be in good agreement.
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I. INTRODUCTION

Due to the mathematical complexities involved
in solving material non-linear problems, numerical
methods are commonly employed.  Analytical solu-
tions are limited to simple geometry and boundary
tractions.  Extensively Finite Element Method (FEM)
and boundary integral equation methods are used to
solve boundary value problems.  In recent years,
meshless methods have become very promising, at-
tractive and efficient numerical methods for solving
boundary and initial value problems in the field of
continuum mechanics.  Meshless methods are increas-
ingly become suitable for moving boundary value
problems, especially for crack propagation problems,
since nodes can be easily added or removed, which is
other wise very tedious for mesh based methods like
the finite element method.  The discrete form of the

continuum in the meshless method is basically ob-
tained by using moving least square approximating
functions for interpolant.  No smoothing of stress or
displacement field is needed, whereas for methods
like finite element, one needs to perform smoothing
of field variables across the inter element boundary
to recover the best possible smooth results.

One of the earliest meshless methods is the
Smooth Particle Hydrodynamics Method developed
by Lucy (1977), which was used to model astrophysical
phenomena.  Later, Moving Least Square (MLS) ap-
proximations started gaining importance in meshless
approximation procedures.  Moving Least Square
approximants were introduced and studied by Lancaster
and Salkauskas (1981), originally for surface data
fitting. Nayroles et al. (1992) introduced a method
called Diffuse Element method that is essentially based
on moving least square approximations.  They used
only a set of nodes and a boundary description for
the development of the Galerkin equations and made
element based mesh totally unnecessary.

Later, Belytschko et al. (1994) extended the
applicability of EFGM based on MLS approximations
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to elasticity and heat conduction problems and showed
that rate convergence can exceed that of finite ele-
ments significantly.  Meshless methods are suitable
for moving boundary value problems, especially for
crack propagation problems, since nodes can be eas-
ily added or removed.  Belytschko et al. (1995) illus-
trated the application of EFGM for an arbitrary crack
growth problem.  Belytschko et al. (1996) have pre-
sented an excellent overview of meshless methods,
mainly focusing on kernel approximations, moving
least square approximations and partitions of unity.
Moving least square approximants’ values are not
equal to the nodal values since the shape function, in
general, is not unity at that node.  The nodal values
are treated as fictitious nodal values.  Hence, the es-
sential boundary conditions have to be applied by the
use of additional constraints in the form of Lagrange
Multipliers or by using penalty parameters.  Zhu and
Atluri (1998) present a penalty formulation for eas-
ily enforcing the essential boundary conditions in the
EFGM.  Chen et al. (1996), presented the implemen-
tation of the reproducing kernel particle method for
large deformation analysis of nonlinear structures.
Later, Chen et al. (1998) extended the method for
metal forming problems.  Barry and Saigal (1999),
and Xu and Saigal (1999) developed an elasto-plas-
tic formulation, based on incremental theory, for solv-
ing crack growth in elasto-plastic materials using
EFGM.  The formulation is based on the consistent
tangent operator approach.  Recently, Liu (2002) wrote
a book, which provides systematic steps that lead the
reader to understand mesh free methods.  Wang et al.
(2002) solved Biot’s consolidation problem using a
radial point interpolation method.  Rao and Rahman
(2003) exploited the applicability of EFGM for cal-
culating fracture parameters for a stationary crack in
two-dimensional functionally graded materials.

Jahed et al. (1997) developed an analytical
method to solve pressure vessel problems in the
elasto-plastic range.  In their method, the cylindrical
pressure vessel was considered to be an assembly of
a finite number of strips and a closed form elastic
solution was used within each strip.  The material
properties are considered to be varying along the ra-
dial direction, but constant within the strips.  The ap-
plication of this method is restricted to problems for
which the finite strip has closed form solutions. Babu
and Iyer (1998) developed a robust method using the
relaxation method, which is based on the GLOSS
method of analysis.  Here an attempt was made to
satisfy force equilibrium in the plastic range.
Recently, Seshadri and Babu (2000) extended the
GLOSS method for determining inelastic effect in me-
chanical components and obtained conservative
bounds for the determination of inelastic local strains.
Desikan and Sethuraman (2000), proposed a pseudo

elastic finite element method for the determination
of inelastic whole field solutions.  In this method lin-
ear elastic finite element analysis is carried out for
solving elasto-plastic problems using constant strain
triangular element.  A similar approach is extended
in the present paper for the determination of inelastic
solutions using element free Galerkin method.

The objective of the present paper is to develop
an Element Free Galerkin Method (EFGM) for solv-
ing inelastic problems based on a pseudo elastic
solution.  EFGM analysis coupled with pseudo elas-
tic solutions will be carried out for solving elasto-
plastic problems using material parameters as field
variables.  The method is based on Hencky’s total
deformation theory and will be restricted to propor-
tional loading.  Two algorithms, namely the projec-
tion method, and the Neuber rule, will be used to cal-
culate the material parameters.  The effectiveness of
the method will be demonstrated using a pressure
vessel subjected to internal pressure and shear loads
for general hardening material behaviour.

II. METHODOLOGY

In this section, first the pseudo elastic analysis
is briefly explained, followed by the element free
G a l e r k i n  m e t h o d  ( E F G M )  a n d  n u m e r i c a l
implementation.  In the analysis of static elasto-plas-
tic problems, the weak form of the equilibrium equa-
tion is given as

   σ i jδεijdΩ
Ω

– b mδumdΩ
Ω

– tkδukdΓ
Γ 1

   + λ(uk– uk)δukdΓ
Γ 2

= 0 (1)

The essential conditions on Γ2 are introduced in the
above weak form of equilibrium equation using pen-
alty parameter λ .

1. Stress-Strain Relationship in Terms of Effective
Material Parameters

The strain-stress relationship for materials obey-
ing total deformation theory of plasticity can be taken
in the form

   εij = (1 + υ
E + Φ)σ ij – (υ

E + 1
3Φ)σ kkδij (2)

where Φ is a scalar valued function used in Hencky’s
deformation theory and is given by

   Φ = 3
2

εeq
p

σ eq
(3)
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The equivalent plastic strain and the equivalent stress
are defined as,

   εeq
p = 2

3εi j
pεij

p   and     σ eq = 3
2SijSij (4)

The deviatoric stress tensor is defined as

   Sij = σ ij – 1
3σ kkδij  (5)

All the variables inside the parentheses of Eq. (2) are
involved with the material properties, the final equiva-
lent total plastic strain and the equivalent stress cor-
responding to equilibrium state.  Eq. (2) can be writ-
ten as

   εi j = (
1 + υeff

Eeff
)σ ij – (

υeff

Eeff
)σ kkδij (6)

where, υeff and Eeff are the effective Poisson’s ratio
and effective Young’s modulus respectively, which
are functions of Young’s modulus and Φ, and they
are treated as material parameters.  The effective
material parameters are given as

   1
Eeff

= 1
E + 2

3Φ (7)

   υeff = Eeff(
υ
E +

Φ
3 ) (8)

Using Eqs. (3) and (7) for elastic-perfectly plastic
material Eeff is obtained as

   1
Eeff

= 1
E + ε p

σ0
(9)

Similarly, for linearly work hardening material hav-
ing tangent modulus ET, the Eeff is obtained as

   1
Eeff

=
σ0
Eσ +

σ – σ0
σET

(10)

Substituting Eqs. (9) and (10) in Eq. (8) the effective
Poisson’s ratios for elastic-perfectly plastic and lin-
early hardening materials are obtained.
For the Ramberg-Osgood model,

   ε
ε0

= σ
σ0

+ α[ σ
σ0

]n (11)

the effective Young’s modulus and the effective
Poisson’s ratio are obtained as

   1
Eeff

= 1
E + αε 0[ σ

σ0
]n – 1 1

σ0
(12)

   υeff = Eeff[
υ
E + 1

2α ε0
σ0

[ σ
σ0

]n – 1] (13)

The effective material parameters are functions
of the final state of stress fields.  Hence, Eeff and υeff

can be thought of as field variables describing the

material properties at each point, since the final state
of stress at every point is unique.  Clearly, for con-
stant values of Eeff and υeff Eq. (6) describes the elas-
tic behaviour of the body.  It is known that every state
of stress at a point in the continuum, in equivalent
sense, follows an experimental uniaxial stress-strain
curve.  From that point of view and from Eqs. (9),
(10) and (12) the reciprocal of Eeff is nothing but a
secant modulus defined on the experimental uniaxial
curve.  Hence the effective modulus can be obtained
from the experimental material curve.

2. Moving Least Square Interpolant

In solving the equilibrium Eq. (1), the required
displacement function u(x) is approximated by the
moving least square approximating function uh(x) in
a sub-domain and is given as

   uh(x) = Pi(x)ai(x)Σ
i = 1

m
(14)

where Pi(x) is a vector of complete basis functions
(monomial basis) of order m and ai(x) are unknown
coefficient functions.  The coefficient vector func-
tion ai(x) is determined by minimizing a weighted dis-
crete L2 norm, which is defined as

   J(x) = w(x – xj)[ Pi(xj)ai(x) – u jΣ
i

m
]2Σ

j = 1

n
(15)

where ui  are the fictitious nodal values and wi  is the
weight function associated with the node i.  After
minimizing J(x) with respect to coefficient functions
ai(x) and appropriately rearranging the terms, the dis-
placement function is obtained as

   uh(x) = ϕ j(x)u jΣ
j = 1

n
(16)

ϕ i can then be described as the shape function asso-
ciated with the nodes and is given as

ϕ i(x)=pT(x)A−1(x)B(xi) (17)

where,

    A(x) = w(x – xi)p(xi)pT(xi)Σ
i = 1

n
(18)

B(x)=[w(x−x1)p(x1), w(x−x2)p(x2), ...,

w(x−xn)p(xn)] (19)

3. Weight Function

The weight function that has been used in the
present study is quatric spline, which is expressed as
a function of normalized radius r.
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w(x−xi)= 1−6r2+8r3−3r4 for r≤1

=0 for r>1 (20)

where, r=di/dmi, in this di=||x−xi|| is the distance from
a sampling point x to a node xi, and dmi is the domain
of influence of the node ‘i’.  The size of the domain
of influence is computed by

dmi=dmaxµ (21)

where µ is the scaling parameter, which is varied be-
tween 1.0 - 2.0.  The distance dmax is determined by
searching for enough neighborhood nodes so as to sat-
isfy the regularity condition of A(x) (Eq.18) while de-
termining shape functions.  In the current study, for
convenience, the elements that are generated by a fi-
nite element preprocessor using structured mesh are
used as the background cells.  Later, these cells are
used for numerical integration of stiffness matrix.   The
vertices of the cells are made to coincide with the nodes.
In order to find out the distance dmax for a particular
node the following procedure is adopted; first the neigh-
borhood cells attached to that node are identified.  Then,
nodes corresponding to those selected cells are noted,
and the distance between these nodes and the consid-
ered node ‘i’ are calculated.  The maximum distance
of these is taken as dmax associated with the node ‘i’.

4. Discrete Form of Equilibrium Equation

The discrete form of equations, using EFGM,
can be obtained as in the standard Finite Element
Method (FEM) using the weak form of equilibrium
equations.  Unlike in FEM, the direct imposition of
the exact value of essential boundary conditions for
the EFGM is always difficult because the shape func-
tions derived from the Moving Least Square (MLS)
approximation do not have the delta function prop-
erty and nodal values are fictitious nodal values.
Depending on the method that is used in enforcing
the essential boundary conditions, the form of the dis-
crete equations will change.  In the present study, the
essential boundary conditions are enforced by using
a penalty approach (Zhu and Atluri, 1998).

The discrete equations that are obtained by us-
ing the penalty approach are presented here.  At first,
the MLS approximation uh(x) of the function u(x) is
rewritten in the global form for a two dimensional
problem, as

   u1
u2

= [H]{u} (22)

where, ui is the displacement in Xi direction and

[H]=[H1  H2  H3  ...  HN] (23)

    
Hi =

ϕ i(x) 0
0 ϕ i(x) (24)

   {u}T = [u1 u2 u3 uN} (25)

   ui = [ui
1ui

2] (26)

where  ui
1  and  ui

2  are fictitious nodal displacements in
X1 and X2 directions respectively for node i, and N is
the total number of nodes in the whole domain.

Substituting the trial function, Eq. (22), in the
weak form of the equilibrium equation, Eq. (1), we
get the following discrete equations

  [K]{u} = {F} (27)

where,

    K = BTDBdΩ
Ω

+ λ HTSHdΓ
Γ 2

(28)

    F = HTbdΩ
Ω

+ HTtdΓ
Γ 1

+ λ HTS u dΓ
Γ 2

(29)

where,

B=[B1  B2  B3  ...  BN] (30)

    
Bi =

ϕ i, 1 0
0 ϕ i, 2

ϕ i, 2 ϕ i, 1

(31)

   S =
S1 0
0 S2

(32)

where Si =1 if ui is prescribed
=0 if ui is not prescribed.

D is a matrix that corresponds to the constitutive
equation.  For plane stress, it is given by

   
D = E

1 – v2

1 v 0
v 1 0
0 0 1 – v

2

(33)

For plane strain problems, in the above relation
E is replaced by E/(1−ν2), and ν by ν/(1−ν).

In evaluating the [K] the effective Poisson’s ra-
tio and effective Young’s modulus should be intro-
duced appropriately, depending upon whether the
material point is in the elastic state or the elasto-plas-
tic state.  In Eq. (28) for the stiffness matrix, the con-
stitutive relation is changed from D matrix to Deff

matrix, which is obtained from Eq. (6) using the ma-
terial parameters Eeff and υeff .  The stiffness matrix
can be written as
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    K = BTDeff BdΩ
Ω

+ λ HTSHdΓ
Γ 2

(34)

5. Determination of Effective Parameters

In the present section two methods (Desikan and
Sethuraman, 2000), Projection method and Neuber’s
method, used for the determination of effective ma-
terial parameters, Eeff and υeff, needed to calculate Deff,
are explained briefly.

In the projection method, initially, a linear elastic
EFGM analysis is carried out.  Consider a particular
material point, and evaluate the equivalent stress from
linear elastic analysis.  The state is shown as a point
‘A’ in Fig. 1.  This point has crossed the yield stress.
Keeping the strain values the same, i.e. strain controlled,
and projecting the point ‘A’ on the experimental uniaxial
curve (point ‘B’), the effective value of Young’s
modulus for the next iteration is obtained.  Substitut-
ing this effective value in Eq. (8) the effective Poisson’s
ratio is obtained.  These effective values are obtained
for all the nodal and Gauss points, which have been
yielded.  With this new set of effective material pa-
rameters the next linear elastic EFGM analysis is
performed.  This iterative procedure is repeated and
elastic analysis with currently evaluated Eeff and υeff

is performed until all the effective material param-
eters converge and equivalent stress falls on the ex-
perimental uniaxial stress-strain curve.

The Neuber method is based on total energy bal-
ance (strain energy and complementary energy).  This
method assumes that the total energy density evalu-
ated using hypothetical elastic analysis is equal to the
total energy density evaluated using the actual elas-
tic-plastic stress state.  Consider that the yielded point
‘A’, which is obtained initially from linear elastic
analysis, as shown in Fig. 2, is projected on to the
uniaxial curve at the point ‘B’.  While projecting, the
total strain energy is assumed to be conserved i.e.,
the area ODAEO (hypothetical elastic energy) is the

same as area OCBFO (updated elasto-plastic energy).
Thus a corresponding point on the uniaxial material
curve, which is having the same strain energy, is
found out.  The equivalent area for the Ramberg-
Osgood model has been obtained using the Newton-
Raphson technique.  With the point on the uniaxial
curve, the effective Young’s modulus is obtained and
is substituted in Eq. (8) to get the effective Poisson’s
ratio for the next iteration.

III. RESULTS AND DISCUSSION

The effectiveness of the pseudo-elastic analysis
based EFGM is illustrated with a problem of a cylin-
drical vessel under plane strain and plane stress con-
ditions subjected to internal pressure and shear loads.
Three different material models are considered for the
problem viz: elastic-perfectly plastic, linear strain
hardening type and nonlinear behavior obeying
Ramberg -Osgood model.

The geometry and the boundary loading
conditions are shown in Fig. 3a.  The ratio of outer
radius to inner radius is 5.  The material having Young’s
modulus 2.0×105 MPa, Poisson’s ratio 0.3, and yield
stress, σ0, and 200MPa is considered for the analysis.
For the elastic linear hardening case, the tangent modulus
is taken as one fourth of the Young’s modulus.  For
material obeying the Ramberg-Osgood model, yield off-
set α=3/7 and hardening exponent n=5 are considered.
The penalty parameter, λ , has been chosen from the
literature (Zhu and Atluri, 1998).  In all the cases the
linear basis function has been used in constructing mov-
ing least square approximating functions.  The results
are presented by considering the problem for three load-
ing conditions and are given in the following sections.

1. Cylinder Subjected to Internal Pressure Alone

Initially, a cylinder subjected to internal

Fig. 1  Projection method

Fig. 2  Neuber’s method



510 Journal of the Chinese Institute of Engineers, Vol. 27, No. 4 (2004)

pressure under plane stress alone is considered.  Due
to symmetry, only one-quarter of the problem is
analysed.  The domain is divided into 20 by 10 cells
with the nodes coincident with the cell corners.  The
nodes are equally spaced in the tangential direction
while in the radial direction the spacing between two
successive nodes is uniformly increased from the in-
terior boundary to the external boundary (Fig. 3b).

At first the results are presented for the elastic-
perfectly plastic material model.  The radial and hoop
stress variations along the thickness direction of the
cylinder for pressure ratio 1.0 are shown in Fig. 4.
The results are compared with the ANSYS nonlinear
finite element results.  In all the cases considered for
finite element analysis, the number of FEM nodes and
elements are same as the EFG nodes and cells
respectively.  It is observed that the stresses are in
good agreement.  Fig.  5 shows how a pseudo elastic
material point converges and finally falls on the

experimental uniaxial curve.  Here, convergence is
assumed to be achieved when the difference between
the material parameters evaluated during consecutive
iterations is less than 1% for all the points.

Figure 6 shows the state of stress for all the
material points after convergence.  It can be seen that
in the present method, all the material points fall very
close to the uniaxial material curve.  Fig. 7 gives the
stress variations for different internal pressure ratios.

 Figures 8 to 11 gives the results for linear strain
hardening material model.  Here also note that the
results obtained from pseudo elastic analysis based
EFGM is in close agreement with finite element
results.  The convergence based on the projection
method and on Neuber’s is observed to be very fast
in comparison with the elastic-perfectly plastic ma-
terial case.

 For material following the Ramberg-Osgood

Fig. 3 (a) Cylindrical pressure vessel subjected to internal sur-
face loading; (b) one quarter model of cylinder with nodal
distribution

Fig. 4  Normalised stress variation along the radial direction

Fig. 5  Convergence path for a particular pseudo elastic point
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nonlinear behavior the results are shown in Figs. 12-
15.  When compared with ANSYS, it can be observed
that the stresses are in good agreement.

In Table 1 the number of iterations needed for
convergence, with a material point to fall on to the
uniaxial material curve is shown.  It has been observed
that, for all the three material types, Neuber’s method

Fig. 6  State of stress for all material points after convergence

Fig. 7  Normalised stress distribution for different pressure ratios

Fig. 8  Normalised stress variation along the radial direction

Fig. 9  Convergence path for a particular pseudo elastic point

Fig. 10  State of stress for all material points after convergence

Fig.11  Normalised stress distribution for different pressure ratios
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converges very fast.  The fast convergence of
Neuber’s method is very noticeable for elastic-per-
fectly plastic material.

2. Cylinder Subjected to Internal Shear Traction
Alone

Next a problem of a cylindrical pressure vessel
subjected to internal shear traction, τ, under plane stress

Fig. 12  Normalised stress variation along the radial direction

Fig. 13  Convergence path for a particular pseudo elastic point

is considered.  The nodal load statically equivalent
to shear traction is evaluated with consistent
formulation.  The material is of von-Mises type and
assumed to be characterized by nonlinear behavior
obeying the Ramberg-Osgood model with yield offset,
α  =3/7 and hardening coefficient, n=5.  Shear trac-
tion of magnitude equal to 200MN/m per unit thick-
ness is applied on the inner surface of the cylinder
and all the degrees of freedom at the outer surface

Fig. 14  State of stress for all material points after convergence

Fig. 15 Normalised stress distribution for different pressure ratios

Table 1  Number of iterations for convergence

Elastic-perfectly Linear strain Ramberg-Osgood
plastic hardening model

Pressure ratio 0.875 1.0 1.125 1.0 1.5 2.0 1.0 1.5 2.0
No. of iterations in

9 13 27 5 6 6 6 9 12
projection method

No. of iterations in
6 9 20 4 5 5 4 6 8

Neuber’s method
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are completely fixed.
In Fig. 16, the distribution of the normalized

shear stress, σrθ/σ0, along the radial direction is com-
pared with the elasto-plastic finite element results.
It is observed that the shear stress distribution ob-
tained from pseudo-elastic analysis based EFGM is
in good agreement with the FEM results.  In Fig. 17,
shear strain, which is normalised, is compared with
FEM results and is found to be in very close
agreement.  The convergence path for a particular
material point is shown in Fig. 18.  It is interesting to
observe that the convergence path for a particular
point is a straight line as normal stresses in the radial
and tangential directions are always zero i.e. a state
of pure shear.  For this load case, the number of it-
erations needed for convergence is 13 for the projec-
tion method and 9 for Neuber’s method. Again

Neuber’s method is performing well for the shear trac-
tion load case.  Fig. 19 shows the state of stress for
all the material points after convergence has taken
place and also shows that all the material points fall
on the uniaxial material curve.

3. Cylinder Subjected to Internal Pressure and
Shear Loadings

Finally, a problem of a cylinder subjected to both
internal pressure and shear loadings is considered.
The full domain is divided into 840 nodes with
40 nodes in the circumferential direction and 21
nodes in the radial direction.  These nodes are equally
spaced in the tangential direction, while in the radial
direction the spacing is uniformly increased.  The ge-
ometry and loading are shown in Fig. 3a.  For the
essential boundary conditions, all the degrees of free-
dom at the outer surface are completely fixed.  An

Fig. 16 Normalised shear stress variation along the radial direc-
tion

Fig. 17 Normalised shear strain variation along the radial direc-
tion

Fig. 18  Convergence path for a particular pseudo elastic point

Fig. 19  State of stress for all material points after convergence
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internal pressure, P, and shear traction, τ , equal to
material yield stress, σ0, is considered for both the
considered plane stress and plane strain cases.  The
results are presented in figures from 20 to 23 for plane
stress case and figures from 24 to 27 for plane strain
case.  It can be observed from Fig. 20 that σrθ  and σr

is in good agreement with FEM results.  The EFGM
is estimating higher values for σθ in the elasto-plas-
tic region and has good agreement in the elastic
region.  All the strain components are in good agree-
ment with FEM results.

Only for the combined pressure and shear
loadings, it has been observed that, for both plane
stress and plane strain cases, the nearer the inner sur-
face the hoop stress component is, the more it devi-
ates from FEM results.  We also noticed from the
study that there is a substantial improvement in the
hoop stress estimation at the inner surface when we
have used more nodes at the inner boundary while
lumping the traction in a consistent way.  But, in the
paper results are given for the considered nodal
arrangement.

Fig. 20  Normalised stress variation along the radial direction

Fig. 21  Normalised strain variation along the radial direction

Fig. 22  Convergence path for a particular pseudo elastic point

Fig. 23  State of stress for all material points after convergence

Fig. 24  Normalised stress variation along the radial direction
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IV. CONCLUSIONS

Element free Galerkin method based on pseudo
elastic analysis is presented for the evaluation of in-
elastic stress and strain states.  The proposed method
can be easily adapted to the existing linear elastic
EFGM code with suitable updating of elastic mate-
rial properties with effective material parameters,
which are readily obtained in an iterative manner from
one-dimensional uniaxial material curve of a given
material.  Von-Mises material characterized by elas-
tic perfectly plastic, linear work hardening and gen-
eral hardening obeying Ramberg-Osgood behavior are
considered for the problem of a pressure vessel sub-
jected to internal pressure and shear loads.  Stress
and strain fields obtained for most of the cases are
found to be in good agreement with the available non-
linear finite element results.

NOMENCLATURE

bi body force vector component

[B] strain displacement matrix
[D] constitutive matrix
e elastic
eff effective
eq equivalent
E Young’s modulus
ET tangent modulus
Eeff effective Young’s modulus
EFGM Element Free Galerkin Method
{F} force vector
FEM Finite Element Method
i,j,k,m free and dummy indices used for tensor

components
[K] stiffness matrix
MLS Moving Least Square
n hardening exponent
p plastic
P internal pressure
Ri inner radius of the pressure vessel
R0 outer radius of the pressure vessel
Sij deviatoric stress tensor
ti surface traction vector component
ui displacement vector component

  { u } prescribed boundary displacement
  {u} nodal displacement vector

wi weight function associated with node i
α yield offset in Ramberg-Osgood model
δij Kronecker delta
ε experimental uniaxial total strain
εp experimental plastic strain

  εeq
p equivalent plastic strain

εr radial strain
εθ hoop strain or tangential strain
εrθ shear strain in cylindrical coordinate sys-

tem
εij strain tensor
Φ scalar-valued function

Fig. 25  Normalised strain variation along the radial direction

Fig. 26  Convergence path for a particular pseudo elastic point

Fig. 27  State of stress for all material points after convergence
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ϕ shape functions
λ penalty parameter
ν Poisson’s ratio
νeff effective Poisson’s ratio
µ scaling parameter
σ experimental uniaxial stress
σ0 yield stress
σr radial stress
σθ hoop stress or tangential stress
σrθ shear stress in cylindrical coordinate sys-

tem
σij stress tensor
σeq equivalent stress
τ shear traction
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