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A MESHLESS LOCAL BOUNDARY INTEGRAL EQUATION

METHOD FOR HEAT CONDUCTION ANALYSIS IN
NONHOMOGENEOUS SOLIDS
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ABSTRACT

A local boundary integral equation method (LBIEM) with meshless approxima-
tion for heat conduction analysis in non-homogeneous solids is presented. A review
of recent developments in advanced meshless LBIEM for 2-d, 3-d axisymmetric prob-
lems and microwave heating analysis is given. Both stationary and transient heat
conduction problems are investigated in the paper. For transient problems both the
Laplace transform technique and the time difference approach are applied to obtain
the integral formulations using stationary or static fundamental solutions. Micro-
wave heating is modelled by the forced heat equation with an exponential decay of the
heat source intensity from an incident boundary. The thermal material properties are
considered to be dependent on spatial coordinates. A pure boundary integral formula-
tion is restricted to non-homogeneous solids with a special material gradation, where
fundamental solutions can be obtained. To remove this restriction, an LBIEM is pro-
posed to analyse the temperature distribution in general non-homogeneous solids. The
moving least square (MLS) method is used for approximating the physical quantities
in the local boundary integral equations (LBIEs). Numerical examples are given to
demonstrate the high accuracy and efficiency of the implemented meshless LBIEM.

Key Words: meshless local boundary integral equation method, 2-d and 3-d

517

axisymmetric heat conduction problems, microwave heating analysis,
Laplace transform, time difference approach, MLS approximation, non-

homogeneous solids.

I.INTRODUCTION

Functionally graded materials (FGMs) are non-
homogeneous materials, and the volume fractions of
their composite constituents are varying continuously
in space. FGMs are preferred and favoured in many
engineering structures and components due to their
excellent thermal and mechanical properties
(Miyamoto et al., 1999; Suresh and Mortensen,
1998). Solution of boundary or initial boundary
value problems for FGMs requires especially accu-
rate and efficient numerical methods due to the high
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mathematical complexity caused by the material non-
homogeneity. The finite element method (FEM), for
the modelling of complex problems in applied me-
chanics and related fields, is well established. Itisa
robust and thoroughly developed technique, but it is
not without its own shortcomings. It iswell-known
that the FEM relies on a mesh discretization, which
leads to complications for certain classes of problems.
Loss of accuracy is observed when the elements in
the mesh become extremely skewed or distorted. The
boundary element method (BEM) or boundary inte-
gral equation method (BIEM) has become an efficient
and popular alternative to the FEM, especially for
stress concentration and crack problems, or for bound-
ary value problems wherein a part of the boundary
extends to infinity. However, the pure BEM formu-
lation can be applied only to cases where fundamen-
tal solutions are available. In many engineering
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applications, the fundamental solutions for the gov-
erning differential equations are either not available
or they are too complex. Boundary value problems
with continuously non-homogeneous material prop-
erties belong to this class. A remedy to overcome
this difficulty is the application of the so-called
boundary-domain integral formulation (Tanaka and
Tanaka, 1980), in which only the fundamental solu-
tion for a homogeneous solid isrequired. In this case,
the system matrix is fully populated including the
nodal unknowns for the gradients of the primary
physical quantities at interior nodes. For special cases
such as exponentially graded materials, fundamental
solutions or Green’s functions have been derived by
Martin et al. (2002), Gray et al. (2003), and Chan et
al. (2003). A Laplace transform Galerkin boundary
element method for transient heat conduction analy-
sis in homogeneous and non-homogeneous materials
has been presented by Sutradhar et al. (2002).
I soparametric graded elements within the framework
of FEM has been developed by Kim and Paulino
(2002).

In spite of the successful developmentsin FEM
and BEM there has been a growing interest in the so-
called meshless or meshfree methods over the past
decade. A number of meshless methods has been pro-
posed so far including the smooth particle hydrody-
namics (SPH) method (Monaghan, 1988; Vignjevic
et al., 2001), the diffuse element method (DEM)
(Nayroles et al., 1992), the element free Galerkin
(EFG) method (Belytschko et al., 1994; Gu and Liu,
2001a), the reproducing kernel particle method
(RKPM) (Liu et al., 1993; Chen et al., 1998), the
moving least-squares reproducing kernel (ML SRK)
method (Li and Liu, 1996; Liu et al., 1997), the par-
tition of unity finite element method (PUFEM)
(Melenk and Babuska, 1996; Babuska and Melenk,
1997), the hp-clouds method (Duarte and Oden,
1996), the finite point method (Onate et al., 1996;
Liu and Gu, 2001), the meshless local Petrov-Galerkin
(MLPG) method (Atluri and Zhu, 1998; Liu and
Atluri, 2000; Gu and Liu, 2001b; Ching and Batra,
2001), boundary node method (BNM) (Mukherjee and
Mukherjee, 1997; Chati and Mukherjee, 2000), the
local boundary integral equation (LBIE) method (Zhu
et al., 1998; Atluri et al., 2000; Sladek et al., 2000a,
2000b; Sladek and Sladek, 2000; Sladek et al., 2001),
and the method of finite spheres, which is a special
case of the MLPG method when the local sub-domains
are chosen to be spheres in three-dimensional cases
(3-d) (De and Bathe, 2000). It will be beyond the
scope of this paper to give a detailed review of the
above mentioned meshless methods. For interested
readers we refer to the review article by Belytschko
et al. (1996), and a recent monograph by Atluri and
Shen (2002).

Meshless methods were originated from the fi-
nite difference method (FDM), FEM and BEM, but
meshless methods can treat an irregular distribution
of nodes and require no costly mesh generation. In
addition, since meshless methods use a functional
basis and allow an arbitrary placement of nodes, the
primary physical quantities and their derivatives may
be found directly where they are needed and with a
generally higher accuracy than in FDM, FEM and
BEM, in which differentiations and interpolations are
required. The term “meshless’ or “meshfree” stems
from the ability of an approximation or interpolation
scheme to be constructed entirely from a set of nodes.
The automatic generation of good quality meshes re-
quired in the conventional domain-type computational
methods may become cumbersome in many engineer-
ing applications. This difficulty is circumvented in
the meshless methods.

Many meshless formulations use the moving
least-square (MLS) approximation for the physical
guantities. One of the problems with the MLS
interpolantsis that they lack in general the deltafunc-
tion property of the usual shape functions applied in
FEM or BEM. This complicates the imposition of
the essential boundary conditions in the EFG method.
Improved formulations of the EFG allowing a direct
imposition of the essential boundary conditions have
been suggested by Kaljevic and Saigal (1997),
Mukherjee and Mukherjee (1997), and Gavete et al.
(2000).

Although considerable efforts have been made
recently in the devel opment of meshless methods, the
currently available meshless methods are still
computationally much less efficient than the well es-
tablished conventional discretization procedures. The
primary reason is that the meshless methods use non-
polynomial shape functions and the required numeri-
cal integration is difficult to perform accurately.
Some progress leading to improved accuracy of the
numerical integration and a unified stability analysis
of meshless methods with Eulerian and Lagrangian
kernels has been reported by Dolbow and Belytschko
(1999) and Belytschko et al. (2000). An enhanced
reliability in meshless methods can be achieved by
means of self-adaptive techniques leading to refine-
ments of cells, node density, and regions of influence
of the nodes (Chung and Belytschko, 1998; Chati et
al., 2001). It is worth mentioning that the cells are
used just for the numerical integration, and pose no
restrictions on the shape or compatibility. This fea-
ture makes meshless methods especially suited for
self-adaptive techniques.

In this paper, a meshless LBIEM is presented
for stationary and transient heat conduction analysis
in non-homogeneous solids. The LBIEM is applied
to two-dimensional (2-d), three-dimensional (3-d)
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axisymmetric problems and microwave heating
analysis. In section Il, the basic idea of the meshless
LBIEM is explained for 2-d heat conduction
problems. The analyzed domain is divided into many
small subdomains with a simple geometry such as
circles. Because of the small size of the subdomains,
one could assume that the material parameters within
each subdomain are constant, and the fundamental
solution corresponding to a homogeneous solid can
be used (Zhu et al., 1998; De and Bathe, 2000; Atluri
and Zhu, 1998). On the boundary of the subdomains,
the LBIEs are applied. To eliminate the time vari-
ablein the differential equation for transient heat con-
duction problems, we use two different methods,
namely, the Laplace transform method and the time-
difference approach. In the Laplace transform for-
mulation (Rizzo and Shippy, 1970), a pure boundary
integral formulation can be obtained for homogeneous
solids, where fundamental solutions for 2-d and 3-d
axisymmetric problems are available and they con-
sist of Bessel functions of the second kind. Since no
fundamental solutions are available for transient heat
conduction problems with variable thermal conduc-
tivity and diffusivity coefficientsin general cases, we
use a parametrix or Levi function (Mikhailov, 2002)
instead of the fundamental solution in Green's
formulae. The parametrix correctly describes the
main part of the fundamental solutions but it is not
required to satisfy the original governing equation.
In particular, we use the fundamental solution corre-
sponding to the Poisson’s equation as a parametrix,
which results in a boundary-domain integral
formulation. If the LBIEs are applied to small
subdomains with a simple circular geometry, domain
integrals do not bring any difficulties in the numeri-
cal implementation. The LBIEs contain unknowns
not only at the boundary but also at internal nodes.
Each node is surrounded by a small circle, which is
the boundary of a subdomain. On the boundary of a
subdomain corresponding to an internal node both the
temperature and the heat flux are unknowns. If the
parametrix is vanishing identically on the boundary
of a subdomain the number of unknowns is reduced,
since the integral containing the product of the heat
flux and the parametrix disappears. Different ways
can be used to obtain a convenient parametrix van-
ishing on the boundary of a circular subdomain. The
method based on a companion solution (Zhu et al.,
1998) is more frequently used than the method with
cut-off functions (Mikhailov, 2002). However, the
second method seems to be more universal for awide
class of boundary value problems. Applying the MLS
approximation to the LBIE, a system of linear alge-
braic equations is obtained. Several quasi-static
boundary value problems have to be solved for vari-
ous discrete values of the Laplace transform

parameter. Then, the time-dependent solutions can
be obtained by the Stehfest inversion method
(Stehfest, 1970). In the time-difference approach, the
time variation of the temperature is approximated by
afinite difference scheme, which converts the linear
parabolic differential equation into alinear elliptic
differential equation (Curran et al., 1980). Likein
the Laplace transform method, a simple fundamental
solution corresponding to the Poisson’s equation is
used to derive the LBIEs. The spatial variation of
the temperature is approximated by the same meshless
scheme applied in the Laplace transform method.
Section Il is devoted to 3-d axisymmetric heat
conduction problems. The axial symmetry of the ge-
ometry and boundary conditions for a 3-d solid re-
duces an initial-boundary value problem to a 2-d
problem. The transient heat conduction problem for
a homogeneous solid was investigated by Brebbia et
al. (1984). The conventional boundary integral for-
mulation in the time-difference approach requires a
complex fundamental solution proportional to the
modified Bessel function of thefirst kind. If the same
fundamental solution is applied to a non-homoge-
neous solid, a boundary-domain integral formulation
is obtained. In this case, the evaluation of domain
integrals with the complex fundamental solution in-
creases the computing time used for the numerical
analysis. Moreover, the integral representation for
the temperature gradients at interior points has to be
added to obtain a unique integral formulation. It
should be noted that the singularity of the kernel in
the integral representation formula for the tempera-
ture gradients is increased to a hypersingularity. In
this paper, we present an alternative way based on
the meshless LBIEM, where the analyzed domain is
divided into small subdomains with a simple circular
geometry. The Laplace transform method is applied
for eliminating the time dependence in the heat con-
duction equation, while the same meshless scheme is
adopted for the spatial approximation of the LBIEs.
In section 1V, a microwave heating analysisis
performed by using the meshless LBIEM. In our
analysis, microwave heating is analyzed as a 2-d dif-
fusion problem with prescribed body heat sources and
material non-homogeneity. The use of microwave
heating has attracted much attention in industrial pro-
cesses due to its high efficiency. A crucial point in
microwave heating is to analyze hot spots, which are
regions where temperatureis quickly rising. This phe-
nomenon is induced by the temperature dependence
of the material properties, namely, the thermal ab-
sorptivity increases with increasing temperature. Hot
spots out of control can damage the samplein an in-
dustrial process. The first attempt to analyze hot spots
in a homogeneous solid was made by Zhu et al.
(1995), who used a dual reciprocity boundary element
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method (DRBEM). In the DRBEM, some interior
nodes have to be supplemented to boundary nodes for
an adequate spatial approximation of physical fields
in transforming domain integrals into boundary
integrals. In this paper, alocal BIEM for microwave
heating analysisin FGMs is presented. Since a pure
boundary integral formulation for the global bound-
ary requires the availability of the fundamental solu-
tions for non-homogeneous solids which are yet not
known, to our knowledge, we apply the meshless
LBIEM by using a simple static fundamental solu-
tion corresponding to the Poisson’s equation. The
Laplace transform method is used for eliminating the
time variable in the heat conduction equation. For
the spatial approximation, the same meshless scheme
as applied for 2-d and 3-d axisymmetric heat conduc-
tion analysis is adopted.

Numerical examples are given in the individual
sections to demonstrate the accuracy and efficiency
of the meshless LBIEM. Some conclusions are given
in section V to summarize the essential features of
the meshless LBIEM for heat conduction analysisin
continuously non-homogeneous solids.

I1. TRANSIENT HEAT CONDUCTION
PROBLEM IN 2-D

1. Laplace Transform Formulation
Let us consider a boundary value problem for

the heat conduction equation in two-dimensional
cases, which is governed by

1)

8,000~ ey 0% + 008,06, =

where 6(x, t) is the temperature field, Q(x, t) is the
density of body heat sources, k and k stand for the
thermal conductivity and diffusivity, respectively.
The material parameters are assumed to be continu-
ously dependent on Cartesian coordinates.

Applying the Laplace transform to the govern-
ing Eq. (1) we obtain (Balas et al., 1989)
Ko P+

T, p) - M09 T . )

~1Fx,p) 2
where
F(x p)=Q(x p)+ 6(x,0)

is the modified body heat source in the Laplace trans-
form domain including the initial boundary condition

for the temperature field, and p is the Laplace trans-
form parameter.

By applying the Gauss divergence theorem to
the weak formulation of Eq. (2), we get an integral
representation for the temperature field in the Laplace
transform domain

a(y., p)

=L %(X: p)0 (x, y)dI — [ O (x, p)aain(x, y)dr

-, K(X)F(x p)8’ (x, y)dQ2
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where yOQ and the fundamental solution & (x, y)=
—Inr is the solution of the Poisson’s equation .

gii(x,y) + x,y) =0 4

In the fundamental solution r denotes the distance of
field and collocation points, r=|x-y|. If the colloca-
tion point y is on the global boundary I (y- ¢0r),
EqQ. (4) becomes

| 18 P8 P16 (x, ar
- fr aa—f(x, p)O (x, Q)dIr
=_J K(X)‘é(x 08’ (x, )dQ

+ [ %007 0 O (x 0de
Q

+ F(x po (x,O)d2 (5)

K(X)

The boundary integral Eg. (5) has to be supplemented
by the integral representation of the temperature gra-
dients at interior points, in order to derive a unique
set of equations. Although the problem of
singularities has been resolved successfully in such a
formulation, the discretization of both the boundary
and the interior domain is required. Consequently,
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two sets of coupled algebraic equations, for bound-
ary and interior unknowns, have to be solved.

Another approach is to use the boundary-domain
formulation on simple circular domains around each
of the (randomly) distributed nodal points within the
analyzed domain. If, instead of the entire domain Q,
we consider a subdomain Qg the following local
boundary integral equation should also hold over the
subdomain

Bo.p=| G pEyar
—f T, Py, Y)Ir
Joog
—J K(X)_H(x PO’ (X, y)dQ
K, .
o[ o0 e e
QS

+J K(X)'I—'(x po’(x, y)dQ (6)

The integral Eq. (6) is considered for small
subdomains QJ1Q. Hence, none of the boundary den-
sities in the Laplace transformed domain are pre-
scribed on the local boundary 0Qg as long as they lie
entirely inside Q. This deficit in boundary condi-
tions inside the domain Q is overcome by the domain
type approximation of field variables. For such an
approximation the boundary-domain formulation (6)
doesn’'t bring any difficulties with the domain inte-
gral evaluation on a simple subdomain (Sladek et al.,
2000b). Namely, making use of domain-type approxi-
mation for @ (x, p), the expression for the approxi-
mation of '8 /dn can be obtained by differentiating
the primary field quantity @ (x, p). The accuracy of
the approximation of temperature gradients or deriva-
tives is lower than the one for primary field , i.e
temperature. Therefore, it is more convenient to re-
duce the number of unknowns on 0Qg in each LBIE
before introducing any approximation. Such areduc-
tion is feasible from the freedom in the choice of the
shape of 0Qs. For acircular subdomain the concept
of a companion solution (Zhu et al., 1998; Atluri et
al., 2000) can be employed. It is seen that

6= rFrO ()

isthe Green’ s function for the Possion’ s equation van-
ishing on the boundary of the circular subdomain of
radius rg.

Thus, 8 can be used as a new test function. This

leads to the following simplifications of the LBIE (6)

G, )——f B PO (x, yyr
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aslong asy1Q. Fory={0 Q, the LBIE (6) takes the
following form

a(y,p)=- F(x p) (x Qdr

—JijnJ G (x, p) (x y)dr
+ [ G, Qar
- L K(X)F(x 08 (x, OdQ

+| 0B P (x Qa0
QS
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where Lgisthe circular part of 0Qs and N=0Q4L, if
the collocation point lies on the global boundary,
i.e,yl@d Q.

The Green’s function & is the parametrix for
the transient heat conduction problem in a continu-
ously nonhomogeneous solid since it satisfies only
the main part of the governing Eg. (1). Now, we can
apply another way to obtain the Green’s function. We
can choose a function (Mikhailov, 2002)

P (1) = X() 5Nt (10)
where x(r) is a cut-off function, such that

/1 rzrg

\O r=rg (11)

x(r) =

The requirements in Eq. (11) are satisfied by the fol-
lowing function
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X(r) = 1—% (12)
ro

The LBIE with the parametrix P*(x, y) has the fol-
lowing form
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+| H 60T PP ()0
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where

R(X, y) = m%z)(l +Inr) (14)

Similarly one can write the LBIE at y={[d Q as

a(y. p)
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The LBIEs (13) and (15) are the alternative LBIE
formulation to the previous one given by Egs. (8) and
(9). Theonly differenceliesinthe used integral kernels.
The method with a cut-off function seems to be more
universal to construct a proper localized parametrix.

The moving least squares (MLS) method
(Belytschko et al., 1994; Belytschko et al., 1996; Atluri
et al., 1999) is considered as the domain-type approxi-
mation for the Laplace transformed field quantities
either in the LBIEs (8) and (9) or in Egs. (13) and

(15). The approximated function can be written as
(x, p) = @) (B(p) = £ F)0%p)  (16)

where 6 is the fictitious nodal value and ¢(x) is the
shape function associated with the node a. The
number of nodes n, used for the approximation of
8 (X, p), is determined by the weight function w?(x).
A Gaussian weight function is considered in the
present analysis. The directional derivatives of @
(x, p) are approximated by the same nodal values as

h
08 % B = 2, 0PI an

Making use of the ML S-approximation (16) for
B (x, p), the LBIEs (8) and (9) yield the following
set of equations:

S F+ | % year 6°p)

Jaog

== 2, [, 8 0 Py 7100 - 0]

[HQ6%(p) + L A Fx P8 (x, )42,

for y’OQ (18)

and

r *

PSR ylirgb' % x y0dr
- Jrg
+ J 9 x. ) dr
LS

- | 08" (x, ¢} 8%(p)
== 2, [, 80 Oy e e - et

oo (p)+J F(x p) 8 (x, "dQ,

(X)
for PO, (19)

where I is a finite part of the global boundary I,
over which the heat flux is prescribed. If the tem-
perature is prescribed on afinite part, I, the system
of Egs. (18) and (19) is supplemented by the approxi-
mation formula
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2 #090°(p) =B p) , for 2°0r

where :E(Zb, p) is the prescribed Laplace transform
of the temperature.

It should be noted here that smaller size
subdomains may induce larger oscillations or inden-
tations in the shape functions derived from the
meshless interpolations (Atluri and Shen, 2002).
These characteristics of the interpolations are directly
related to the difficulties in the numerical integration
in Egs. (18) and (19). To overcome these difficulties
the integration domain is divided into smaller
partitions. On each partition the standard Gaussian
quadrature is applied. The sensitivity of the “final”
solution with respect to the number of integration cells
and the convergence properties in potential and elas-
ticity theory in the so-called boundary node method
have been discussed by Chati et al. (2001).

The time dependent values of the Laplace trans-
formed variables can be obtained by an inverse
Laplace transform. There are many inversion meth-
ods available for Laplace transform. As the inver-
sion of the Laplace transform is an ill-posed problem,
small truncation errors can be greatly magnified in
the inversion process and lead to poor numerical
results. Hence, special attention has to be paid in
performing the inverse Laplace transform
numerically. In the present analysis, Stehfest’sinver-
sion algorithm (Stehfest, 1970) is used. For certain
types of problems like all those studied in this paper
it is a stable and accurate method. However, it may
fail badly for problems when their solution exhibits
highly oscillatory behaviour.

2. Time Difference For mulation

In this approach, we use the linear interpolation
for the time variation of the temperature field and the
partial differential Eq. (1) is then reduced to the fol-
lowing system of equations:

00 =y 009+

(n-1
( )At K(X)Ate )

+8006000 =20, (1=1,2, -, N)  (20)

where the backward difference scheme for the time
derivative of the temperature is applied, and 8™ (x)
denotes the value of the temperature at a point x and
the time instant t,=nAt. For uniform time steps we
have 8"(x)=0(x, nAt). The solution of Eq. (20) can
be expressed in an integral form. Following the pro-
cedure used in the previous section one can derive an
integral representation for the temperature field at the
n-th time step as

(n)
60(y) = J 00 008" (x, y)ar
r
J 9<“’(x> (x y)dr
.
1 n
- % [ o ——6M(x)68"(x, y)dQ
1 ’ n—
3 J K(X)ev( Dx)6"(x, y)dQ

" J *i6080608" (x, y)d2 (21)
Q

where the fundamental solution satisfies the Poisson’s
Eqg. (4), and the body heat source is assumed to be
absent.

If k=const, the third and the fourth integral in
Eg. (21) could be eliminated by using the fundamen-
tal solution

* =1 _
6 (x,Y) = 5 pr Kol KAt x -y ) (22)
where Ky(2) is the modified Bessel function of the
second kind and zeroth order. The fundamental so-
lution (22) corresponds to the governing equation .

8%, ) — 56 (%, ¥) == &x, Y)

The last domain integral in Eq. (21) cannot be elimi-
nated in the case of a general nonhomogeneous solid.
Therefore, we use the integral representation (21) and
the modified fundamental solution (7) instead of (22),
which simplifies the numerical implementation. Simi-
larly to the Laplace transform formulation it is con-
venient to introduce the LBIEs corresponding to the
boundary-domain integral representation (21). Us-
ing the modified fundamental solution 8" (r) given in
Eqg. (7) for a circular subdomain, we obtain a system
of LBIEs for computing the discrete temperature val-
ues 8"(y), (n=1, 2, ---, N)

07 == | 6960 (x yar
—AltJQ o 1 o™08"(x, y)d2

+ Alt o, K00 1 900-D008"(x, y)dQ

[ “1)00(x) 8 (x, y)dQ (23)
Q

S
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at yOQ. For y=¢0OTI the LBIE takes the following
form

07 =~ | 0% (x Qar
—I|mZJ 0(”)(x) (x y)dr

i ag(n) *
+| 22 )0 (x, Odr
I SO

1 n
—AtJ K(X)9< )(x)8" (x, 0)dQ
1 n—
AJ e )9< V(%) (x, O)dQ

[ 10008 (x, O)dQ (24)
Q

S

For the first time step, i.e., n=1, the value 89(x) is
given by the initial condition for the temperature
distribution. Substituting the approximation formula
(16) for the temperature field into Egs. (23) and (24)
one obtains a system of algebralc equations for the
fictitious nodal unknowns 8" at the discrete time
instants

A+ | % ygar o

Jaog

Aa(n— 1)]

8’ (x, Y () 2[6°"- 8

1 n
A L k)

+ 2, |, W00 (e yefega00”
for y'0.Q (25)
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Fig. 1 Boundary conditions and node distribution for a square
plate

For the prescribed temperature on a finite part g, the
system of Eqgs. (25) and (26) is supplemented by the
approximation formula

agl 0% = §(¢°, nat) , for 2°OF,  (27)

Resolving the system of algebraic Egs. §25)—(27) for
the unknown fictitious nodal values 8*" time-step
by time-step, the final physical temperature field at
the discrete time instants can be obtained by Eq. (16).

3. Numerical Examples

In the LBIEM presented in this section, the spa-
tial variation of the material properties of FGMs is
allowed to be arbitrary. For illustration, we assume
an exponential dependence of the material parameters
on the Cartesian coordinates, which is frequently uti-
lized for modelling FGMs (Noda and Jin, 1993; Jin
and Batra, 1996). In this special case the governing
equations for heat conduction problems are substan-
tially simplified in comparison to a general
nonhomogeneous case. In particular, we use a uni-
directional variation for the thermal conductivity and
diffusivity coefficients

k(x)=koe™; K(X)=Kge™
(i) A Homogeneous Square Plate

As our first example, a square plate with homo-
geneous material propertiesis analyzed (see Fig. 1).
On the opposite sides parallel to the x,-axis, differ-
ent temperatures are prescribed. One side is kept to
zero temperature while the other side is subjected to
a Heaviside-type thermal loading 6(x,, t)=T H(t) with
T=1 deg. On the other side of the plate, the heat flux
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Fig. 2 Time variation of the temperature computed at three points
by the Laplace transform LBIEM

is vanishing. The initial temperature is assumed to
be zero throughout the whole body. In our numerical
calculations we have considered a side length a=
0.04m and a thermal diffusivity parameter k=kg=
0.17x10™ m?s™. In the meshless LBIEM, 16 nodes
on the boundary and 16 nodes inside the investigated
domain have been used. A regular node distribution
isfirst applied (see Fig. 1). The radius of a circular
subdomain is selected as r,.=0.39x1072 m. Numeri-
cal results are compared with the analytical solution
given by (Carslaw and Jaeger, 1959)
N7IXy

X & . 2
60, 1) = T3 + 72 T M hsin " exp(— %;ﬂ

(28)

The comparison of analytical and numerical results
is made at three locations lying on the x;-axis with
x1/a=0.25, 0.5 and 0.75. Numerical results provided
by Laplace transform LBIEM are presented in Fig. 2.
For numerical inversion of Laplace transform we have
used 15 different Laplace transform parameters. Fig.
2 shows an excellent agreement between numerical
and analytical results. A little worse agreement is
noted for the numerical results obtained by the time
difference LBIEM. The time step was selected, for
the whole time interval, as At=0.4 sec. The corre-
sponding numerical results obtained by in the time
difference LBIEM are presented in Fig. 3. One way
to increase the accuracy of the numerical scheme is
the use of the following second order backward dif-
ference scheme for the time derivative of the tem-
perature in the governing Eg. (1) (Curran et al., 1980)

)
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Fig. 3 Time variation of the temperature in a square plate ob-
tained by the time difference LBIEM
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13609 _40" + 6
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For the purpose of error estimation and conver-
gence studies, the Sobolev norm is calculated.
Accordingly, the relative error for the temperature is
defined as

|| gnum _ gexact ||

r=
| gexact ||

(29)
where
l6]= (j 6°dQ)"?
Q

The relative error can be computed at various
time instants. To study the convergence of the pro-
posed method we have used three regular node dis-
tributions in the MSL approximation (see Fig. 1) with
21 (12 boundary + 9 interior), 32 (16 boundary + 16
interior) and 45 (20 boundary + 25 interior) nodes,
respectively. For aregular node distribution, the den-
sity of nodes can be characterized by the distance of
two neighbouring nodes s. The relative errors of the
numerically computed temperature at two different
time instants t=10 and 30 sec, with respect to the ex-
act values of the temperature, are shown in Fig. 4. It
can be seen that the present meshless LBIEM has a
high convergence rate at both time instants
considered. The results are sufficiently accurate, with
a relative error of about 0.1% for the finest node
distribution.
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Fig. 4 Relative errors and convergence rates of the temperature
at two different time instants for regular and irregular node
distributions

The influence of the irregular node distribution
on the accuracy is analysed too. In the vicinity of the
corner node 9 in Fig. 1, an additional node, indicated
by the cross sign, is added into the previous regular
node distribution. For simplicity, only one node is
used to destroy the regularity of the node distribution.
The coordinates of the additional node for the coarse,
middle and finest node distributions are (0.0267,
0.0267) , (0.03, 0.03) and (0.032, 0.032), respectively.
Fig. 4 shows very similar relative errors and conver-
gence rates for both regular and irregular node
distributions. Since the size of the subdomainsis con-
sidered to be the same in both cases, the number of
integration partitions for the integration domain is the
same too. It means that the CPU is the same in both
considered regular and irregular node distributions.
However, for a finer node distribution the size of the
subdomains is smaller than that for the coarser one.
Thus, the number of integration partitions is gener-
ally higher and the required CPU is increased.

(if) An FGM Sguare Plate

To illustrate the applicability of the proposed
LBIEM to nonhomogeneous solids, an FGM square
plate with an exponential variation of the thermal
conductivity and diffusivity is analyzed numerically.
Numerical calculations have been carried out for the
following material constants ky=0.17x10"* m?s™,
ko=17 Wmdeg™, and two different exponential pa-
rameters y=0.2 and 0.5 cm™. The problem was
analysed by the Laplace transform LBIEM. The
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Fig. 5 Time variation of the temperature at the point of x;/a=
0.25 of an FGM square plate

geometry and the used node distribution are the same
asin the previously investigated homogeneous case.
The time variation of the temperature at the point
x1/a=0.25 for three y-values is presented in Fig. 5.
Here, y=0 corresponds to the homogeneous case.
With increasing y-value the thermal conductivity is
increasing too, and a higher level of temperature at
the considered point is obtained in the stationary state,
i.e., t=c0. For stationary state one can derive an ana-
Iytical solution as

g1
0x) =Tem_1

Numerical results given in Fig. 5 approach the ana-
Iytical ones at a sufficiently large time value, e.g., t>
60 sec.

[11.3-D AXISYMMETRIC HEAT
CONDUCTION PROBLEMS

For a 3-d axisymmetric problem it is convenient
to use cylindrical coordinates (r, ¢, z). Insuch acase
the governing Eq. (1) can be rewritten into the form

9%6 9%6 26
G RS G AR 1 5.2

20 Ka
_ﬁ Stz +7 290,020

= —ﬁQ(r, 1) (30)

where the summation convention for repeated
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indices a, representing the coordinates r and z, is
used.

Applying the Laplace transform to Eq. (30) we
get

029

2o p)+"az(r 2n++22 ¢z

~XT, Z)TGV(r z p)+ T« =4, 2)9 Az p

= —ﬁf(r, Z p) (31)

where

F(r,zp)=Q(r,z p) +0(,z0)

isthe redefined body heat source in the Laplace trans-
formed domain with the initial boundary condition
for the temperature field 6(r, z, 0).

The solution of the governing Eqg. (31) can be
found in aweak form with a fundamental solution

6'(s,6) = 5In% (32)
corresponding to the Poisson’s equation

0’6" 9%6" _

az e TR0
where p is the distance of the field and the source
points, i.e., p=|s—q].

By the application of the Gauss divergence theo-
rem to the weak form of Eq. (31) we obtain an inte-
gral representation for the temperature field in the
Laplace transform domain

0. p)= [r aa—f(s, e (s gydr
-| B %o
+| $9%( p6'(s ade
~ | by O(s PO (s
+| @ P (s gae

| dFeposge @3

where I" is the boundary of the analysed domain Q
and r denotes the radial coordinate of the field point,
i.e., s=(r, 2).

Since the boundary-domain integral representa-
tion (33) for the Laplace transform of the temperature

contains the temperature gradients, the integral repre-
sentation for the temperature gradients at interior points
has to be added to obtain a unique integral formulation.

Like in the previous 2-d problems it is more con-
venient to use the LBIE

DR [ 99 (s W' (s qr
Jaog
-] B m9s cpar
90
1995 po'(s Qa2

4@ 0(s Po'(s e

La(98 o(s PO'(s a2

|
Jog
1.,
‘..
+j % (s P& (sgde  (34)

The integral Eq. (34) is considered for small
subdomains Q1Q. Hence, none of the boundary den-
sities in the Laplace transformed domain are pre-
scribed on the local boundary 0Qg as long as they lie
entirely inside Q. To reduce the number of the un-
knowns on 0 Qg the concept of a companion solution
isutilized (Zhu et al., 1998). The modified test func-
tion

8'(¢y)= g n P (35)

is the Green’ s function vanishing on the boundary of
the circular subdomain of radius po. Since the inte-
gral Eq. (34) isalso valid for the modified fundamen-
tal solution @ (s, g), we obtain

~ ~%

— 00
8(s P) 5y (s )T
00,

(g, p=-

: L 1995 p8 (s Qa2
95 P (s de

s K(9)

+

o 6
" JQ “a(99 (s p)B (s 2
J

kg FEPE(sagde  (3)

S
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Fig. 6 Boundary conditions and node distribution in the analyzed
domain for afinite cylinder

for the interior source point qdQ, and

~%

¢, p)=—[ 9(s ) s Odr

Jig

= a6
—qlljnz' 8(s P) 5 (5 Q)T

Ir,
+], G2 p(s 0ar
+[, F % s 8 s 0de
|, K96 985 o0

+

o9 ofs PE (s 02

+ L 1F(s pé'(s Ode (37)

for the source point located on the global boundary
ZOrar. Note here that 0Q=L,07, where Lgisthe
circular part of 0Qg (Zhu et al., 1998). The integral
Eq. (37) iswritten in the limit form. Such an expres-
sion is appropriate (Sladek et al., 2000) if the physi-
cal fields such as the temperature are given in a non-
polynomial approximation form.

Again the MLS approximation is used for the
numerical solution of the LBIEs. The approximation

formulae for the Laplace transform of the tempera-
ture and its normal derivative are given by Egs. (16)
and (17). Substituting the approximation formulae
(16) and (17) into the LBIEs (36) and (37) we obtain
a set of linear algebraic equations

2 (0@ | s aoar+ [ ')

1009 - 19— 4999100} TB(p)

- JQ rF (s pd(sqnde, for0Q  (38)

S

and

2P+ lim, rs"a‘?](s, Q@ (edr

. JL S 9 (s ¢ g(9dr + ‘[QS 8'(s RO

~ 149~ 52909100} B(p)

f 99 (s, p)8'(s, Zb)df+f +F (s pb (s Mde,

for °Orsn Ty (39)

where Iy is a part of the global boundary I, over
which the heat flux is prescribed. If the temperature
is prescribed on a part g we propose to collocate the
approximation formula (16) by using

2 J(@E(R) =T (), for’Ory  (40)

where @ ({® p) is the Laplace transform of the pre-
scribed temperature.

The time-dependent values of the transformed
guantities in the previous consideration can be ob-
tained by an inverse Laplace transform. Asin the 2-
d analysis, the sophisticated Stehfest’s algorithm
(Stehfest, 1970) for the numerical inversion is used.

1. Numerical Examples
(i) Full Cylinder

An infinitely long full cylinder with a radius
a=1 m loaded by athermal shock 6(a, t)=TH(t-0) with

T=100 deg as shown in Fig. 6 is first considered. In
the first example, homogeneous material properties
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Fig. 7 Time variation of the temperature on the axis of a homo-
geneous cylinder

are assumed in the numerical analysis to check the
accuracy of the LBIEM. The diffusivity coefficient
is chosen as k=1 m?s™. Since the boundary condi-
tions along the cylinder are uniform we can consider
afinite part of the cylinder in the numerical analysis
with prescribed vanishing heat fluxes on both artifi-
cial cross sections of the cylinder (Fig.6). The cylin-
drical surface can be created by the rotation of arect-
angular plate of the size (axL), where a is the radius
and 2L is the length of the cylinder. Here, L=1m is
chosen. The temperature field on the finite square
region is modelled by 20 boundary and 15 interior
nodes (see Fig. 6). Numerical results are compared
with the following analytical solution (Carslaw and
Jaeger, 1959)

6,9 =T-3 5 T80 e~ kaZ) (4)

where Jo(aa,) is the Bessel function of the first kind
and zeroth order, and a,, are the roots of the follow-
ing transcendental equation

Jo(aan)=0

The time variation of the temperature on the axis of
the cylinder is presented in Fig. 7, where an excel-
lent agreement between numerical and analytical re-
sults is obtained.

Next we proceed to consider a functionally
graded full cylinder. To protect the cylinder against
a drastic thermal shock the thermal conductivity and
diffusivity should be decreasing in the radial

100
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[eo)
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<
3
(=9
g
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Fig. 8 Comparison of the time variations of the temperature in
an infinite homogeneous (y=0) and an FGM cylinder

direction. In our numerical calculations, an exponen-
tial spatial variation for both parameters

k(x)=ko€"
K(X)=Koe" (42)

has been assumed with k¢=0.17x107* m?s™
Wwm™ deg™?and y=-1 m™.

Numerical results provided by the LBIEM are
compared with those obtained by the FEM-code M SC/
NASTRAN. A very fine mesh discretization with 16
linear solid elements in the radial direction was used
inthe FEM. The total number of elements for a quar-
ter of the cylinder is 320. The time variation of the
temperature at the center of the cylinder is presented
in Fig. 8 for both methods. One can see a good agree-
ment of both numerical results. Fig. 8 shows that the
temperature evolution for a homogeneous cylinder
with y=0 is steeper than that for the functionally
graded cylinder with decreasing thermal parameters
in the radial direction.

y k0:17

(ii) Hollow Cylinder

In the next example, an infinitely long function-
ally graded thick-walled hollow cylinder with the ra-
dii R;=8x10"2m and R,=10x107? m as depicted in Fig.
9isinvestigated. As boundary condition on the ex-
ternal surface of the hollow cylinder the Heaviside
time variation for the time-dependent thermal 1oad-
ing is assumed as a thermal shock. Theinner surface
is kept at zero temperature. The corresponding
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Fig. 9 Boundary conditions and node distribution for an infinite
hollow cylinder

boundary value problem can be analysed as a 2-d
problem for a cross-section of the cylinder, which is
referred to as the classical 2-d LBIEM in the
following. Due to the symmetry in geometry and
boundary conditionsit is sufficient to analyze only a
quarter of the cross-section of the hollow cylinder as
shown in Fig. 9. The total number of nodes used for
the MLS approximation is 84 with 42 nodes lying
on the global boundary as depicted in Fig. 9. For
comparison purpose, a homogeneous hollow cylin-
der is first considered. The values of the thermal
diffusivity kg=0.17x10* m?s™ and conductivity ky=17
Wmdeg™ are used in the numerical analysis.
Alternatively, the considered boundary value prob-
lem can be analysed as a 3-d axisymmetric problem
too. A finite part of the hollow cylinder can be ob-
tained by the rotation of the rectangular region around
the z-axis. Inthe LBIEM the rectangular region with
the coordinates (r, z) is modelled by 40 nodes. The
time variation of the temperature at the radius r=
9 cm is presented in Fig. 10. Numerical results are
compared with the analytical solution (Carslaw and
Jaeger, 1959)

In(/R) ¢ + J(Ria)Uo(ra,)
INR/Ry) =1 J(Rya) — Jh(Ro0x,)

or,t)=T
Cexp( — ka2t) (43)
where
Uo(r an)=Jo(r an) Yo(anR2)~Jo(anRz2) Yo(r an)

and a, are the roots of the following transcendental
equation
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Fig.10 Time variations of the temperature at r=9.0 cm in a homo-
geneous hollow cylinder

Jo(r) Yo(rRa/R1)=Jo(rRa/R1) Yo(r)=0

with Yg(X) being the Bessel function of second kind
and zeroth order. Fig. 10 implies that a better accu-
racy is obtained by the 3-d axisymmetric LBIEM. The
discrepancies between the numerical results obtained
by the classical 2-d LBIEM and the 3-d axisymmetric
LBIEM are observed at small time instants. The
number of nodes in our numerical calculations in
the 3-d axisymmetric LBIEM is approximately one
half of that used in the classical 2-d LBIEM. This
means that the 3-d axisymmetric LBIEM is com-
putationally more efficient than the classical 2-d
LBIEM.

Now, let us consider a functionally graded hol-
low cylinder with the thermal diffusivity and conduc-
tivity being graded in the radial direction r as de-
scribed by Eq. (42). The applied parameters ky and
ko in Eg. (42) are the same as in the homogeneous
case. For three values of the gradient parameter vy,
numerical results for the time variation of the tem-
perature at r=9 cm are shown in Fig. 11. The tem-
perature level at interior points in the steady state
(i.e., t=) increases with increasing y-value. Com-
pared to the temperature for a homogeneous hollow
cylinder (i.e., y=0), the temperature in a functionally
graded hollow cylinder is higher.

V. MICROWAVE HEATING ANALYSIS
Microwave heating of a continuously non-ho-

mogeneous body can be modelled by the non-station-
ary forced heat conduction equation, which is a



J. Sladek et al.: Heat Conduction in Nonhomogeneous Solids 531

0.7

Temperature 6

Time ¢ [sec]

Fig.11 Time variations of the temperature at r=9.0 cm in an FGM
hollow cylinder

generalized form of the homogeneous case (Zhu et
al., 1995)

k.
0,00~ iy 50D+ 00,0

= kb POIES (44)

where 6(x, t) is the temperature field, k and « repre-
sent the thermal conductivity and diffusivity
coefficients, B(6) is the thermal absorptivity coeffi-
cient and |E| is the amplitude of the electric field,
respectively. In the following analysis, the amplitude
of the electric field is assumed to be exponentially
dependent on the spatial variable z (Zhu et al., 1995),
i.e.,

|E[=exp(-yz/2) (45)

for decay from an incident boundary at z=0, where y
is adecay constant. The simplified model for micro-
wave heating is then determined by

K.
0,06, — gy 6,0+ 008,05,
= ki PO~ ) (46)

The microwave heating problem is described by a
nonlinear parabolic partial differential Eq. (46). Ana-
Iytical solutions exist only for simple geometrical and
loading conditions, with uniform material properties

and y=0. For general cases, Eq. (46) has to be solved
numerically. A dual reciprocity BEM (DRBEM)
has been presented by Zhu et al. (1995), where nu-
merical results are given for uniform material
properties.

If the thermal absorptivity is a nonlinear func-
tion of temperature, a linearization scheme has to be
applied to Eq. (46). This can be done by using the
following first-order Taylor-series expansion
(Ramachandran, 1990)

B

BO)=B6) +(6-0) 5, (47)

6=0

where 8 is the previously iterated solution at a par-
ticular time.

To eliminate the time variable in the differen-
tial Eq. (46), the Laplace transform technique is used.
Applying the Laplace transform to the linearized gov-
erning Eq. (46) we obtain

Ty - T P+ 00T (x p)

+ fl(Xv Z, Q)P-(X, p) :_-F-(Xv p) (48)
where
6002 8) = Fyen(- 1) 35| (49)
Fixz0)= LA0-035| len(-1)
+ ﬁ@(x, 0) (50)

The integral representation for the temperature field
in the Laplace transformed domain is given by

a(y., p)

- | S ey | B m e r
r
- | iy ~ fx 2. 01T, B (x, )2

+| 08,006 yde

+ J T 2 8)6(x, y)dQ (51)
Q
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where I" is the boundary of the analyzed domain Q
and th(__equndamentaI solution is defined by 6*(x, y)
Inr

If we consider a subdomain Qg instead of the
entire domain Q, the following LBIE should also be
valid over the subdomain

o

a(y, p)

=[S petxoar
[, 7o G
- L Lo ~ 1062 O (x PE'(x, Y)d2

K; "
+ [ w0 (x, PO (x, y)dQ

Jaog

+ f T 2 86 (x, y)dQ (52)
Qs

The integral Eq. (52) is applied to small subdomains
Q,0Q. Thus, none of the boundary densities in the
Laplace transformed domain are prescribed on the lo-
cal boundaries Qg as long as they lie entirely inside
Q. Here again, to reduce the number of unknowns
on 0Qg the concept of a companion solution is uti-
lized (Zhu et al., 1998). The modified test function
(7) is vanishing on the boundary of the circular
subdomain of radiusrgy. Since the integral Eq. (52) is
also valid for the modified fundamental solution
" (x, y), we obtain

a(y, p)

r *

=—] 0 p)aain(x. y)dr

Jaog

p
ol ) K(X)

S

—f,(x, 2 9)] G (x, p)O (X, y)dQ

K, .
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+ f T 2 86 (x, y)dQ (53)
Qs

for interior source points y(JQ, and
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LT (x, PO (x, Hde

|
J tkt)
‘L
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F(x,z 0)8 (x, )d (54)

for source points located on the global boundary
Z0radr. Inthe latter case 0Q=L 007, where Lgis
the circular part of 0Qs. The strongly singular inte-
gral intheintegral Eq. (54) iswritten in the limit form.

The steady-state or stationary heat conduction
equation can be obtained from the governing Eq. (46)
by omitting the time-dependent term as

0100+ 108,00 =——L BB~y  (55)

K(X)
The steady-state heat conduction Eq. (55) is an ellip-
tic partial differential equation and it is suitable for
describing hot spot problems. Hot spots are local-
ized high temperature areas caused by the tempera-
ture dependence of the thermal absorptivity. For
simplicity, we assume that the thermal absorptivity
is described by a power law of the form

B(6)=Bo,6" (56)

According to Eq. (56), a thermal runway is possible
only if n=1 (Zhu et al., 1995). Substitution of Eq.
(56) into Eq. (55) leads to an eigen-value problem
for the determination of the critical value of the ab-
sorptivity coefficient 8y, which can be stated as

8;i(x) + k(X)l9 i(X) + =Bl O(x)] "exp(— y2) =0

(57)

()

By using the first-order Taylor-series Eq. (47), Eq.
(57) can be written in alinearized form as

K. - -

0,i(%) + - (x)8,(x) + fy(x, z, )6(x) =~ F(x, Z 6)

(58)
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where

fix. z 9)‘ﬁexp( VZ)

-1

K(X) —exp( - y2) 6"

F(x 2 6)= L [56) -6 1exp( V2)

K(X) 00|,

= Gy (- DBL -8
in which 8 isthe previously iterated solution for anon-
linear temperature variation of the thermal absorptivity.
Note here that no iteration is needed if the coefficient
n=0 and 1, i.e., when the thermal absorptivity isinde-
pendent or linearly dependent on the temperature.

The solution of the eigen-value problem (58) can
be given in an integral form through the LBIEs. The
procedure to obtain the LBIEs is the same as in the
non-stationary case. By omitting integrals represent-
ing the time-dependent term in the LBIEs (53) and
(54), a system of LBIEs at interior and boundary
nodes can be obtained as

) =—J 80000 (x, )ar

0

N J f,(x, 2 8)8(x)8 (x, y)dQ
Qg

+ J;?Skk'i(x) 6,8 (x, y)dQ

. j F(x, 2 6)8 (x, y)dQ (59)
'OS

and

6(Q) = —J G(X)aain(x, Qdr
LS

~%

_V“*m{',- Q(X)%in(x, ydr
’ 996" (x, )dr
¥ JQ f,(x, 2 8)8() 8’ (x, O)dQ

" J;Qsi'i(x)evi(x)é*(x, Ddo

+ j F(x, 2 6)8 (x, )dQ (60)
QS

The MLS approximation is used for the numerical
solution of the LBIEs. Substituting the approxima-
tion formulae (16) and (17) into the LBIEs (53) and
(54) a set of linear algebraic equations is obtained
as

S G - 5
2000+ | Froewoan e

== 2, |, 8t Pl 900 - x. 2. 0919

K ; ~i
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where g is a part of the global boundary I” over
which the heat flux is prescribed. If the temperature
is prescribed on a part gy we collocate the approxi-
mation formula (16) by using

2, 0000(M=T(E ), for P0re  (63)

where ?(Zb, p) is the Laplace transform of the pre-
scribed temperature.

By following essentially the same procedure, the
LBIEM can be applied to steady-state or stationary
microwave heating problemsin FGMs. In this case,
the LBIEs (59) and (60) result in a system of linear
algebraic equations for the nodal values of the tem-
perature as
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Table 1 Critical By-values for linear thermal absorptivity in a square homogeneous plate

. Numerical
Decay constant Analytical Zhu et al.. 1995 Present results
y=0 19.7 19.6 19.87
y=2 46.4 46.0 46.7
y=4 86.1 88.0 86.7
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for ("0l . Also here, for prescribed temperature on
Isg the following collocation formulais applied

2 9000 = 8(¢") , for {*0reg (66)
where 8({) is the prescribed temperature on {°0/ .

1. Numerical Examples

(i) A Sguare Plate under Stationary Microwave Heat-
ing

As the first example, a square plate under a

Fig. 12 Boundary conditions and node distribution for a square
plate

stationary microwave heating as shown in Fig. 12 is
considered. On all boundaries of the square plate a
uniform temperature 6=1 deg is prescribed to ana-
lyze hot spotsin the plate. In our numerical calculations,
a side-length a=1.0 m of the plate and a regular node
distribution with 24 boundary and 23 interior nodes
is used for the MLS approximation (see Fig. 12).

We first consider a homogeneous plate with a
linear temperature dependence of the thermal absorp-
tivity coefficient, i.e.,, n=1in Eq. (56). To obtain the
critical value of the thermal absorptivity [q
analytically, the method of Frank-Kamenetskii (1955)
isused. A comparison of our numerical results with
analytical and other numerical results obtained by the
DRBEM (Zhu et al., 1995) is given in Table 1 for
three different values of the decay constant y.

Table 1 shows a good agreement between our
results and analytical and other numerical results,
which demonstrates the accuracy of the LBIEM. To
visualize the dependence of the temperature distri-
bution on the parameters 3, and y, the steady-state
temperature profiles at x,=0.5 are presented in Fig.
13 for three values of By and y=2. It can be seen in
Fig. 13 that the maximum of the temperature profile
is shifted to the left side of the square plate, where a
higher value of microwave energy is expected. The
shift is caused by the exponential variation of the heat
source in the governing Eq. (46).
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Table 2 Critical By-values for quadratic thermal absor ptivity in a square homogeneous plate

. TDRBEM
Decay constant Analytical Zhu et al., 1995 LDRBEM Present results
y=0 4.9 4.78 4.77
y=2 11.4 11.27 11.2
y=4 20.1 21.09 20.3

Temperature 6

OZ—‘ T T T T T T T T T d
0 01 02 03 04 05 06 07 08 09 1

X

Fig. 13 Steady-state temperature profiles along x;-axis at X,/a=
0.5 for n=1 and y=2

To explore the effect of the temperature depen-
dence of the thermal absorptivity on the critical value
of By, @ homogeneous plate with a quadratic tempera-
ture dependence of the thermal absorptivity is con-
sidered in the second example, i.e., n=2 in Eqg. (56).
The linearized LBIEs (59) and (60) are solved by an
iteration method where the first iteration value of 8
is used as the prescribed uniform boundary quantity.
The tolerance for stopping the iterations was chosen
as 1073, The total number of required iterations was
less than 7 in all numerical calculations. In Table 2,
our numerical results are compared with analytical
and other numerical results obtained by atime march-
ing DRBEM (TDRBEM) (Zhu et al., 1995) and a
Laplace transform DRBEM (LDRBEM) (Zhu and
Satravaha, 1996). Analytical results are obtained
again by the Frank-Kamenetskii method (Frank-
Kamenetskii, 1955). Table 2 shows a quite good
agreement of our numerical results with analytical and
other numerical results. A comparison of Table 2 with
Table 1 reveals that the critical Bo-values are signifi-
cantly lower for quadratic temperature dependence
than for linear temperature dependence of the ther-
mal absorptivity as givenin Table 1. This means that
hot spots for a quadratic temperature dependence of
the thermal absorptivity occur at lower By-values.

Next, a square FGM plate with a spatial varia-
tion of the thermal conductivity is considered.

Table 3 Critical By-values for thermal absor ptiv-
ity in a square FGM plate

Gradient parameter

Decay constant

0=0 o=1 o=-1
y=0 19.99 39.5 10.85
y=2 46.7 86.2 25.15

Though the LBIEM presented in this paper has no
restrictions on the spatial variation of the material
parameters of the FGMs, an exponential variation of
the material properties with Cartesian coordinates is
used here. A uni-directional variation of the thermal
conductivity

k(x)=koe™

is applied, where ky=1.0 Wm™deg™ is arbitrarily
chosen. Two values of the gradient parameter d=
+1.0 m™ are selected in our numerical calculations.
In Table 3, the corresponding numerical results for
the critical Bo-values in the FGM plate are compared
with the critical By-values for a homogeneous plate.

One can see from Table 3 that the critical value
of the absorptivity increases considerably with in-
creasing gradient parameter for both decay constants
investigated here. For afixed gradient parameter 9,
the critical value of the thermal absorptivity increases
with increasing decay constant y, which is caused by
the fact that an increase of the decay constant leads
to adrop of the intensity of the heat source.

For y=0 and for two values of the gradient pa-
rameter J, the temperature profiles at the section x,=
0.5 are presented in Fig. 14. Fig. 14 shows that the
gradient parameter d has an influence on the tempera-
ture profile similar to the decay constant y. For an
exponential gradation of the thermal conductivity
along the x;-axis, the maximum value of the tempera-
ture is lower than the reference value corresponding
to a homogeneous plate, i.e., =0, as shown in Fig.
14 for afixed absorptivity parameter 5,=14.

(i1) A Square Plate under Transient Microwave Heat-
ing

The LBIEM can be also successfully applied to
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Temperature 6
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0 01 02 03 04 05 06 07 08 09 1
X1

Fig. 14 Comparison of the temperature profiles in a homogeneous
and an FGM square plate for Sy=14 and y=0

transient heat conduction analysisin a solid subjected
to microwave heating. To demonstrate this ability,
we consider a homogeneous square plate considered
in the previous example. On all sides of the square
plate a thermal shock of the form 6(x, t)=T-H(t) is
applied, where T=1 deg is the amplitude of the ther-
mal shock, and H(t) is the Heaviside step function.
The initial condition 6=1 deg is prescribed at t=0. A
linear temperature dependence of the thermal absorp-
tivity is assumed, and Stehfest’s numerical inversion
method of the Laplace transform is used. The nu-
merical results are presented in Fig. 15, which shows
the time evolution of the temperature at three differ-
ent positions x;/a=0.25, 0.5, 0.75 at the middle sec-
tion x,=0.5 of the square plate for fixed values 3,=64
and y=4. Fig. 15 showsthat the temperature increases
sharply with increasing time in the initial stage, and
after a short time it tends to its stationary or steady-
state value.

V. CONCLUSIONS

This paper summarizes recent advances in
meshless LBIEM for solving heat conduction prob-
lems in continuously non-homogeneous solids such
as FGMs. A reliable and efficient computational
method for these materialsis required due to the grow-
ing interests in FGMs for engineering applications.
Heat conduction problems often occur in FGMs due
to their excellent thermal properties, which are pre-
ferred for situations subjected to severe thermal load-
ing conditions. An advanced computational method
based on meshless LBIEM is presented here for 2-d,
3-d axisymmetric and microwave heating problems.
Both stationary and transient heat conduction prob-
lems are dealt with. The Laplace transform and time

Temperature 6
W
N
1

—o—x;=0.25

—o— x,=0.50
157 —— x;=0.75
1.0 T T T
0 0.3 0.6 0.9 1.2 1.5
Time ¢ [sec]

Fig. 15 Time variations of the temperature at the section x,/a=0.5
and for ;=64 and y=4

difference techniques are applied to eliminate the time
variable in the governing equations. In the time dif-
ference method the second order approximation of the
time derivative is needed to obtain an accuracy com-
parable with that of the Laplace transform approach.
The LBIEM with a meshless approximation was suc-
cessfully applied to steady state and transient heat
conduction analysis.

LBIEs with a simple fundamental solution van-
ishing on the boundary of fictitious subdomains al-
low the reduction of a boundary or initial-boundary
value problem of continuously non-homogeneous
solids into a system of linear algebraic equations with
sparsely populated matrix, if a convenient domain
approximation for the temperature field isused. This
makes the method competitive with the FEM. Most
of the available commercial computer codes based on
the FEM can model the material properties only with
piecewise uniform distributions within a particular
element. Our meshless LBIEM puts no restrictions
on material properties. The classical pure BEM for-
mulation is restricted to special cases, where funda-
mental solutions for continuously non-homogeneous
solids can be obtained. The conventional boundary-
domain formulation is not efficient due to the coupled
system of integral equations for the primary
(temperature) and secondary (temperature gradients)
fields with hypersingular kernels. Even in the homo-
geneous case when a simple fundamental solution is
available, it seems to be profitable to use simplified
fundamental solutions leading to boundary-domain
integral formulations on small subdomains. Thisis
advantageous, especially for elongated bodies, where
the nonlocal connection between remote pointsin the
conventional BEM leads to ill-posed algebraic
systems.
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Unlike the construction of interpolation func-
tionsin conventional BEM, the LBIEM with MLS ap-
proximation does not need connectivity information
among points or nodes. Nodes can be randomly
sprinkled in the analysed domain. It removes the
well-known drawbacks of classical discretization
methods associated with mesh generation. In
addition, the meshless LBIEM is flexible regarding
the adoption of nodal density at any location of the
investigated domain, which benefits adaptive strate-
gies to be developed in future.

The numerical implementation of the meshless
LBIEM is quite easy for subdomains with a simple
geometry such as circles in 2-d or spheresin 3-d.
Contrary to the conventional BIEM or BEM, all inte-
grandsin the present LBIEM are regular. Hence, no
special computational techniques are required to
evaluate the integrals numerically. However, the
complexity of the chosen shape functions in a
meshless approximation may provide some difficul-
ties in the numerical integration. By introducing
small partitions in the integration domain, numerical
integration errors in meshless methods can be sub-
stantially reduced. The necessity of more integra-
tion points and more complex shape functions in the
meshless approach increases the computing time in
comparison with conventional BIEM or BEM, where
polynomial shape functions are frequently applied.
Future research efforts should be directed to improv-
ing the efficiency of the meshless methods. It can be
expected in the near future that the present LBIEM
with an efficient meshless approximation will pro-
vide an advanced numerical tool for analyzing ther-
mal and mechanical problems in continuously non-
homogeneous solids.
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