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A BOUNDARY METHOD OF THE TREFFTZ TYPE FOR

HYDRODYNAMIC APPLICATION
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ABSTRACT

The aim of the work is to present a new boundary technique for solving hydrody-
namic problems in arbitrary domains.  It is based on the use of the method of funda-
mental solutions with approximate trial functions.  In particular, two dimensional
Stokes and Navier-Stokes systems are considered.
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 I. INTRODUCTION

The method presented belongs to the group of
the Trefftz type methods.  Recall, that according to
this approach, an approximate solution of a partial
differential equation (PDE) L[u]=f is looked for in
the form of linear combination:

    u( x q1, ..., qk) = v(x) + qkΦk(x)Σ
k = 1

K
(1)

Here, v(x) is the particular integral and the trial
functions Φk(x) satisfy the homogeneous PDE
(L(x)−p)[Φk]=0 exactly, but do not necessarily sat-
isfy boundary conditions.  They are used to determine
the unknown qk.

The Trefftz type methods can be divided into
two groups depending on the trial functions which
are used.  The first method applies analytically de-
rived nonsingular trial functions, sometimes called
T-functions, identically fulfilling certain governing
PDEs inside a solution domain Ω (Herrera, 2000).
Methods of the second group employ the fundamen-
tal solutions of the PDE with singular points situated
outside the investigated region.  This kind of trial func-
tions is suggested and investigated by V.  Kupradze
(Kupradze and Aleksidze, 1967).  An example of this
technique is the method of fundamental solutions
(MFS) where the singular solutions are used (see re-
view (Golberg et al., 1999) and bibliography presented
there).  Recently this method has been extended to

time-dependent problems (Golberg and Chen, 1998).
Following the general scheme of the MFS, we

suggested to use the trial functions Φ(x|ξξ ) which sat-
isfy the governing PDE only approximately (Reutskiy,
2002; 2004).  More precisely, Φ(x|ξξ ) is a solution of
the equation L[Φ]=I(x|ξξ ), where the right hand side
is the truncated series

       I( x ξξ ) = rnψn(ξξ)ψn(x)Σ
n = 1

M
≡ cn(ξξ)ψn(x)Σ

n = 1

M
     (2)

over an orthogonal basis system ψn(x).  Here n=
(n1,n2) or (n1, n2, n3) denotes a multi-index.  In the
general case ψn(x) is a solution of some Sturm-
Liouville problem.  The two basis systems

ψn(x)=sin[λn(x+1)], ϕn(x)=cos[λn(x+1)],

λn=0.5π(n−0.5) (3)

and their products in many dimensional cases are used
throughout the work.  The regularizing coefficients
rn depend on the particular choice of the system
ψn(x).  For the trigonometric functions (3) in the one
dimensional case, they are

rn(M, χ)=[σn(M)]χ,    σn(M) =
sin[ν(n, M)]

ν(n, M)
,

   ν(n, M) = nπ
M + 1 (4)

where σn(M) are the Lanczos sigma-factors which are
used to overcome the so-called Gibb’s phenomenon
in the Fourier expansion of non smooth functions, χ
is a parameter of regularization.  The functions I(x|ξξ )
which essentially differ from zero only inside some
neighborhood of the source point ξξ  are analogous in
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some sense to the Dirac delta functions δ (x−ξξ ) in
the MFS procedure.

In this work we consider the application of this
technique to the time dependent incompressible
Stokes problem.  The paper is organized as follows.
In Section II, we describe the main algorithm for the
Stokes problem in the velocity-pressure formulation

∂tv=−∇ p+∆v, divv=0, v(x, 0)=v0(x),

v|∂Ω=v1(x, t) (5)

inside a 2D arbitrarily bounded domain, Ω, with the
boundary ∂Ω.  Here v=(u, v) is the velocity vector, p
is the pressure, v0(x), v1(x, t) are prescribed functions.
The stationary case was considered in Pontrelli et al.,
1997.  In Section III, we consider ω−ψ formulation
of the problem.  In Section IV, we extend this tech-
nique to 2D Navier-Stokes system at a low Reynolds
number.

    ∂tv + (v, ∇ )v = – ∇ p + 1
Re∆v,  divv=0 (6)

Numerical results are presented in Section V.

II. STOKES PROBLEM IN v-p
REPRESENTATION

Finite differencing in time transforms (5) to a
sequence of generalized Stokes problems.  For
example, when the Crank-Nicholson scheme is
applied, then one gets:

∆v j+1−sv j+1=−∆v j−sv j+2∇ p j+1/2, divv j+1=0, s=2/∆t

(7)

The three sets of the basis functions

    ϕn
(u) (x)=ψn1

(x1)ϕn2
(x2),    ϕn

(v)(x)=ϕn1
(x1)ψn2

(x2),

    ϕn
(p)(x)=ψn1

(x1)ψn2
(x2) (8)

are used to approximate the u ,  v  and p  fields
correspondingly:

    u(x) = Unϕn
(u)(x)Σ

n = (1,1)

M
,     v(x) = Vnϕn

(v)(x)Σ
n = (1,1)

M
,

    p(x) = Pnϕn
(p)(x)Σ

n = (1,1)

M
(9)

The two kinds of the source functions are used:

       Iu( x ξξ ) = cn
(u)(ξξ)ϕn

(u)(x)Σ
n = (1,1)

M
,

       Iv( x ξξ) = cn
(v)(ξξ)ϕn

(v)(x)Σ
n = (1,1)

M
(10)

According to the method presented we write (7) in
the form:

   (∆ – s)u j + 1 = – (∆ + s)u j + 2∂x1
p j + 1/2

       + qu, k
j + 1Iu( x ξξ k)Σ

k = 1

K
(11)

   (∆ – s)v j + 1 = – (∆ + s)v j + 2∂x2
p j + 1/2

       + qv, k
j + 1Iv( x ξξ k)Σ

k = 1

K
(12)

These equations are considered inside Ω0=[−1, +1]×
[−1,+1]⊃ Ω.  The source points ξξ k are placed outside
the solution domain Ω.  Substituting (9), (10) in (11),
(12) one gets:

    – (λ n
2 + s)Un

j + 1 = (λ n
2 – s)Un

j + 2λ n1
Pn

j + 1/2

    + qu, k
j + 1cn, k

(u)Σ
k = 1

K
(13)

    – (λ n
2 + s)Vn

j + 1 = (λ n
2 – s)Vn

j + 2λ n2
Pn

j + 1/2

    + qv, k
j + 1cn, k

(v)Σ
k = 1

K
(14)

Here   λ n
2 =    λ n1

2 +    λ n2

2 ,    cn, k
(u) =    cn

(u) (ξξ k),    cn, k
(v) =    cn

(v)(ξξ k).  The
condition divvn+1=0 gives:

    λ n1
Un

j + 1 + λ n2
Vn

j + 1 = 0 (15)

System (12), (13), (14) can be resolved for each har-
monic n=(n1, n2) separately.  Coming back to the
physical values we get:

    v j + 1 = vp
j + 1 + Φk(x)qk

j + 1Σ
k = 1

K
(16)

Here    vp
j + 1  is a particular integral and   Φk (x) is the 2×2

matrix which does not depend on time.  The free pa-
rameters qn+1=(   qu, k

j + 1 ,   qv, k
j + 1 ) should be determined from

the boundary conditions vn+1|∂Ω=    v1
n + 1 .  We would like

to pay attention to the following two points of the
algorithm: 1) particular solution    vp

n + 1  at each time
layer can be found in the same form of the truncated
series in an analytic way without any numerical
integration; 2) the solution satisfies the condition
divvn+1=0 exactly at each time layer.

III. ωωωωω-ψψψψψ REPRESENTATION

Another approach is based on the ω-ψ represen-
tation:

∂tω=∆ω, ∆ψ=ω, u=∂yψ, v=−∂xψ (17)

Differencing (17) in time one gets:
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∆ω j+1−sω j+1=−∆ω j−sω j, ∆ψ j+1=ω j+1 (18)

Here we use the same 2D basis system for ω  and
ψ approximation:

    ω(x) = Wnφn(x)Σ
n = (1,1)

M
, ψ(x) = Ψnφn(x)Σ

n = (1,1)

M

(19)

where φn(x)=ϕn1
(x1)ϕn2

(x2) and ϕn is given in (3).
Similar to the previous section we replace (18)

with the following system (cf. (11), (12)):

    ∆ω j + 1 – sω j + 1 = – ∆ω j – sω j + q1, k
j + 1I( x ξξ k)Σ

k = 1

K

(20)

    ∆ψ j + 1 – ω j + 1 = q2, k
j + 1I( x ξξ k)Σ

k = 1

K
(21)

Here I(x|ξξ k) is the source expanded over the same
basis system φn(x).  Substituting (19) one gets:

    – (λ n1

2 + λ n2

2 + s)Wn
j + 1 = (λ n1

2 + λ n2

2 – s)Wn
j

       + q1, k
j + 1cn(ξξ k)Σ

k = 1

K
(22)

    – (λ n1

2 + λ n2

2 )Ψn
j + 1 – Wn

j + 1 = q2, k
j + 1cn(ξξ k)Σ

k = 1

K

    (23)

The last part of the algorithm is the same as the
one in the previous section.  We solve Eqs. (22), (23)
for each harmonic n.  Then, passing onto the physi-
cal values one gets an expression like (16) with the
free parameters   q1, k

j + 1 ,   q2, k
j + 1 .  They are determined

from the boundary conditions.

IV. NAVIER-STOKES PROBLEM AT LOW RE

Differencing (6) in time one gets:

∆v j+1−sv j+1=−∆v j−sv j+2Re∇ p j+1/2

+2Re(v j+1/2, ∇ ) v j+1/2 (24)

Here s=2Re/∆t and the vector field v j+1 satisfies divv j+1=0.
Let us assume that the velocity v j is known.  The

nonlinear term is approximated using this field:

(v j+1/2, ∇ )v j+1/2≈(v j, ∇ )v j=[su(x), sv(x)]T (25)

Similar to the method described in the previous section
(24) is replaced by the following system (cf. (11), (12)):

    (∆ – s)u j + 1 = – (∆ + s)u j + 2Re(∂x1
p j + 1/2 + su(x))

       + qu, k
j + 1Iu( x ξξ k)Σ

k = 1

K
(26)

    (∆ – s)v j + 1 = – (∆ + s)v j + 2Re(∂x2
p j + 1/2 + sv(x))

       + qv, k
j + 1Iv( x ξξ k)Σ

k = 1

K
(27)

The orthonormal basis systems     ϕn
(u)  and    ϕn

(v) (see (8))
are used to approximate the functions su(x) and sv(x).
For example,

    su(x) ≈ Su, nϕn
(u)(x)Σ

n = (1,1)

M
,

    Su, n = su(x)ϕn
(u)(x)dx

Ω0

    = Ak 1
Ak 2

su(xk 1
, xk 2

)ϕn
(u)(xk 1

, xk 2
)Σ

k 1, k 2 = 1

nq

where Ak and xk are weights and nodes of a one-di-
mensional quadrature.  In particular, 32 points Gauss
quadrature is used.  The velocity components and the
pressure are sought in the form of expansion (9).
Similar to (13), (14) one gets:

    – (λ n
2 + s)Un

j + 1

    = (λ n
2 – s)Un

j + 2Re( – λ n1
Pn

j + 1/2 + Su, n)

    + qu, k
j + 1cn, k

(u)Σ
k = 1

K
(28)

    – (λ n
2 + s)Vn

j + 1

    = (λ n
2 – s)Vn

j + 2Re( – λ n2
Pn

j + 1/2 + Sv, n)

    + qv, k
j + 1cn, k

(v)Σ
k = 1

K
(29)

Multiplying (28) and (29) on λn1
 and λn2

 and add-
ing the results one gets the coefficients of the pres-
sure field expansion:

    
Pn

j + 1/2 =
λ n1

Su, n + λ n2
Sv, n

λ n
2

     
+ 1

2Re [qu, k
j + 1

λ n1
cu, n

λ n
2 + qv, k

j + 1
λ n2

cv, n

λ n
2 ]Σ

k = 1

K

(30)

Here we use:

    λ n1
Un

j + 1 + λ n2
Vn

j + 1 = λ n1
Un

j + λ n2
Vn

j = 0 .

Substituting (30) in (28) and (29) in a similar way one gets:

   Un
j + 1

    
=

s – λ n
2

s + λ n
2 Un

j +
2Re[λ n1

(λ n1
Su, n + λ n2

Sv, n) – λ n
2Su, n]

λ n
2(s + λ n

2)

    
+ [qu, k

j + 1cu, n(
λ n1

2

λ n
2(s + λ n

2)
–

1

s + λ n
2 )Σ

k = 1

K

    
+ qv, k

j + 1cv, n

λ n1
λ n2

λ n
2(s + λ n

2)
] (31)
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   Vn
j + 1

    
=

s – λ n
2

s + λ n
2 Vn

j +
2Re[λ n2

(λ n1
Su, n + λ n2

Sv, n) – λ n
2Sv, n]

λ n
2(s + λ n

2)

    
+ [qu, k

j + 1cu, n

λ n1
λ n2

λ n
2(s + λ n

2)
Σ

k = 1

K

    
+ qv, k

j + 1cv, n(
λ n2

2

λ n
2(s + λ n

2)
–

1

s + λ n
2 )] (32)

Coming back to the physical values (31), (32) can be
written in the form (cf. (16)):

   u j + 1

v j + 1 =
up

j + 1

vp
j + 1 +

Φ1, 1 Φ1, 2

Φ2, 1 Φ2, 2

qu, k
j + 1

qv, k
j + 1Σ

k = 1

K

    = vp
j + 1 + Φk(x)qk

j + 1Σ
k = 1

K
(33)

Here the particular integral    vp
j + 1 =(   up

j + 1 ,   vp
j + 1 ) de-

pends on the time layer.  The coefficients of the ex-
pansion over     ϕn

(u) (x) and    ϕn
(v)(x) are

    
U p, n

j + 1 =
s – λ n

2

s + λ n
2 Un

j

     
+

2Re[λ n1
(λ n1

Su, n + λ n2
Sv, n) – λ n

2Su, n]

λ n
2(s + λ n

2)

(34)

and

    
Vp, n

j + 1 =
s – λ n

2

s + λ n
2 Vn

j

    
+

2Re[λ n2
(λ n1

Su, n + λ n2
Sv, n) – λ n

2Sv, n]

λ n
2(s + λ n

2)
(35)

for   up
j + 1  and   vp

j + 1  correspondingly.
The terms of   Φk (x) do not change in time.  Φ1,1

and Φ1,2 are expanded over     ϕn
(u) (x) system.  The co-

efficients are:

    
Φ1, 1 ~ cu, n(

λ n1

2

λ n
2(s + λ n

2)
– 1

s + λ n
2 ) ,

    Φ1, 2 ~ cv, n

λ n1
λ n2

λ n
2(s + λ n

2)
.

For the terms Φ2,1 and Φ2,2 the coefficients of expan-
sion over     ϕn

(u) (x) are:

    Φ2, 1 ~ cu, n

λ n1
λ n2

λ n
2(s + λ n

2)
,

    
Φ2, 2 ~ cv, n(

λ n2

2

λ n
2(s + λ n

2)
– 1

s + λ n
2 )

The free parameters    qk
j + 1  are determined from

the boundary conditions.
There are two following possibilities here: 1)

u j+1(x) and v j+1(x) can be considered as the final val-
ues of the velocity components at the j+1th time layer;
2) these functions can be considered as intermediate
values u j+1(x), v j+1(x) and can be used for correction
of the nonlinear term (v j+1/2, ∇ )v j+1/2:

   u j + 1/2(x) = 1
2(u j + 1(x) + u j(x)) ,

   v j + 1/2(x) = 1
2(v j + 1(x) + v j(x)) (36)

Then, the final values, u j+1(x) and v j+1(x) are obtained
by repeating the algorithm (26)-(33) with this cor-
rected nonlinear term.

V. NUMERICAL EXAMPLE

1. Stokes Problem

As an example, consider the problem when an
infinitely long cylinder with the radius a containing
a viscous liquid begins to rotate with the angular ve-
locity ε at the time moment t=0.  The solution do-
main is a disk with the radius a.  The initial condi-
tion is: u(x, 0)=v(x, 0)=0 i.e., the liquid is at rest for
t≤0.  The boundary conditions are:

v(x, t)cosθ−u(x, t)sinθ=ε,

u(x, t)cosθ+v(x, t)sinθ=0, |x|=a

Here r, θ are the polar coordinates of the point x with
the origin at the centre of the disk.  This problem has
an analytic solution (Sneddon, 1951): u(x ,  t)=
−V(r, t)sinθ, v(x, t)=V(r, t)cosθ, where

   V(r, t) = εa[ r
a + 2 exp( –

µk
2

a2 t)Σ
k = 1

∞ J1(rµk/a)

λ kJ1′ (µk)
] (37)

and µk is the kth root of the quation J1(µ)=0.
The source points are placed on the circle with

the radius 0.95.  The number of the source points, i.e.
the number of free parameters, is K=25.

The computations show that stability of the so-
lution process is managed by the parameter of regu-
larization χ in (4).  Namely, for each M, there exists
a minimal χdiv such that the solution process diverges
for x<χdiv and it converges for χ≥χdiv.  These values
are χdiv=3, 4, 6, 7 for M=10,15,20, 25 correspondingly.
In Table 1, we present the mean square root error

    esq(t) = 1
2N [vθ(xi, t) – V(ri, t)]2 + [vr(xi, t))]2Σ

i = 1

N

(38)
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corresponding to a=0.5 and ε=1.  The time steps are
∆t1=0.05 and ∆t2=0.005.

One can see that when t is small, a main error
occurs due to the discontinuity at the first moment of
motion. Its value decreases together with ∆t and does
not depend on the number of harmonics M.  For a
large t, the error esq(t) depends on M.  When we de-
crease the time step ∆t in 10 steps from 0.05 to 0.005
this makes little change in the error for M=10.  So, in
this case the main error is the one due to a low num-
ber of harmonics in the approximate solution.  At the
same time, this decreasing reduces the error in almost
100 times for M=20.  So, the error introduced by the
Crank-Nicholson scheme is dominant for these val-
ues of M.  Besides, one can see that the error in the
v−p model is less than the one in ω−ψ approach with
the same number of harmonics and  degrees of freedom.

2. Navier-Stokes Equation

As an example of the method described in Sec-
tion III consider the stationary Couette flow between
two cylinders with the radiuses a1 and a2 (>a1) .  The
inner cylinder is at rest and the outer one is rotated
with the angular velocity ε.  The stationary solution
for the fluid flow between the cylinders is:

   vθ(r, θ) =
εa2

2(r – a1
2/r)

a2
2 – a1

2 ,   vr(r, θ)=0 (39)

The calculations were performed with the following
parameters: ε=1, a1=0.4, a2=0.6.  In Table 2, the mean
square root error is placed.  The source points ξξ k are
placed on the two circles.  On the circle with the ra-
dius 0.1 16 sources are placed and 24 sources are
placed on the circle with the radius 0.95.
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Table 2 The mean square root error in solution
of the 2D Navier-Stokes problem for sta-
tionary Couette flow

Re M=10 M=20 M=30

1 5.3.10−3 2.6.10−3 2.0.10−4

3 5.2.10−3 2.6.10−3 2.1.10−4

5 1.1.10−2 2.6.10−3 3.3.10−4

Table 1  The mean square root error in solution of the 2D Stokes problem

t v−p ω−ψ
M=10, χ=3 M=20, χ=6 M=10, χ=3

∆t1 ∆t2 ∆t1 ∆t2 ∆t1 ∆t2

0.05 6.1.10−2 1.2.10−3 6.2.10−2 1.5.10−3 6.2.10−2 1.3.10−3

0.1 1.5.10−3 3.3.10−4 1.6.10−2 6.1.10−5 1.6.10−2 1.0.10−4

1 3.7.10−4 3.8.10−4 4.4.10−4 5.1.10−6 2.2.10−4 1.3.10−4


