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ABSTRACT

A meshless Local Kriging (LoKriging) method is developed and used in this
paper to analyze the behaviors of microelectromechanical system (MEMS) devices,
which are simplified as thick beam systems subjected to dynamic non-linear loading
induced by applied voltages.  In LoKriging, the Kriging interpolation technique is
employed to obtain the shape function, which has a partition of unity and delta func-
tion properties. The local Petrov-Galerkin weak form of the governing equations for
MEMS devices is derived.  The developed LoKriging method is used to analyze the
behavior of microswitches and microtweezers, widely used for MEMS devices.  Their
static and dynamic characters are analyzed and compared with the results of experi-
ments and other numerical methods.  The computed results show that the present
LoKriging method is easy to implement, efficient and accurate for the numerical simu-
lation of MEMS devices.  In addition, the method developed in this paper also has
good potential for analysis of other complex MEMS devices.
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I. INTRODUCTION

Microelectromechanical systems (MEMS) have
recently attracted a lot of attention because of numer-
ous applications.  Besides conventional fields, appli-
cations involve previously unrelated fields, such as
biology and microelectronics, and their uses will con-
tinue to expand.  At present, there are a few interest-
ing applications in avionics and aerospace (microscale
ac tua tors  and  sensors) ,  au tomot ive  sys tems
(transducers and accelerometers), manufacturing and
fabrication (micro smart robots), medicine and
bioengineering (DNA and genetic code analysis and
synthesis, drug delivery, diagnostics and imaging),
etc. (Lyshevski, 2002).  Among these applications,

the traditional finite element methods (FEM) and
computer-aided design (CAD) are the major simula-
tion techniques.  However, in the FEM analysis of
some MEMS devices,  the mesh generation is
computationally expensive and mesh refinement is
difficult, especially for problems with complicated
geometries and multiple domains.   In MEMS
structures, the mesh generation is complicated for the
following reasons:

• Multi-domain problems are usually consid-
ered because they often involve electric and
mechanical domains.

• The problems analyzed are often non-linear.
In order to overcome diff iculty in mesh

generation, more efficient simulation methods are
required (Senturia, 1998; Hung and Senturia, 1999).
The recently developed meshless technique is one
good alternative, because it does not require a mesh
and simulation can be implemented by arbitrarily dis-
tributed nodes covering the multiple energy domains.

In the development and application of meshless
methods, many researchers have made great achieve-
ments (Belytschko et al., 1996; Liu, 2002).  A group
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meshless methods have been developed.  The devel-
oped meshless methods can be classified based on dif-
ferent criteria.  According to the computational mod-
eling used, they can be largely categorized into two
types (Liu, 2002).  One type is meshless methods
based on the strong form of partial differential equa-
tions (PDEs).  It includes smooth particle hydrody-
namics (SPH) (Gingold and Monaghan, 1977;
Monaghan, 1985), the vortex method (Leonard, 1980;
Bernard, 1995) and the generalized finite difference
method (Liszka, 1984), etc.  The other type is based
on the weak form of PDEs, including the element-
free Garlerkin (EFG) method (Belytschko et al., 1994,
1996), the meshless local Petrov-Galerkin (MLPG)
(Atluri and Zhu, 1998; Atluri et al., 1999a, b; Gu and
Liu, 2001a), the point interpolation method (PIM)
(Liu and Gu, 2001a, b; Gu and Liu, 2001b), and so
on. In them, MLPG (Atluri and Zhu, 1998; Atluri et
al., 1999a, b) and the local radial point interpolation
method (LRPIM) (Liu and Gu, 2001b; Liu et al.,
2002b) are meshless methods based on the local
Petrov-Galerkin weak forms, which are used to avoid
global integrations.

Among the above mentioned meshless methods,
the moving least squares (MLS) and the radial point
interpolation method (RPIM) are two widely used
meshless interpolation techniques.  Recently, re-
searchers have tried to use the Kriging interpolation
technique for construction of meshless shape
functions.  The Kriging is the estimation procedure
originally used in geostatistics by using known val-
ues and a semivariogram to determine unknown
values.  It is named after Krige (1951, 1976) and has
been extensively used in computer experiments
(Sacks et al., 1989) and optimal design (Simpson et
al., 1998).  The simplified Kriging version can be
found in the work of Trochu (1993).  Kriging inter-
polation has the following advantages:

• Since the Kriging is based on the statistics
for the minimum of the mean square error, it
can ensure interpolation accuracy.  In other
words, the Kriging has a solid theoretical base
to ensure desirable interpolation accuracy.

• A group of variogram models has been pro-
posed in Kriging interpolation.  For example,
in (Olea, 1999), there are seven variogram
models (e.g. spherical, rational quadratic,
etc.).  Applying one or another variogram
model allows better representation of the vari-
ance in the data set.

• The Kriging interpolation is stable for arbi-
trary nodal distributions.

• The shape functions constructed by the
Kriging interpolation possess Kronecker delta
function properties.

Because of the above advantages of the Kriging

interpolation, the Kriging method has found wide
application in a variety of fields so far.  Recently,
researchers have tried to explore its possible appli-
cation in meshless methods based on global weak
forms (Liu et al., 2002a; Gu, 2003).  However, this
application is in the beginning stage.  A lot of re-
search is required. It should be noted that Liu et al.
(2002a) unveiled that the Kriging interpolation will
lead to the same shape functions as RPIM if the same
RBF and semivariogram are adopted.  However, theo-
ries and algorithms of RPIM and Kriging are com-
pletely different. RPIM and Kriging interpolation
cannot replace each other.  Hence, the research for
the application of Kriging to meshless methods is still
very significant because the Kriging method opens
an alternative avenue to develop meshless methods.

In this paper, a novel meshless Local Kriging
(LoKriging) method is developed for analyses of
microelectromechanical system (MEMS) devices that
are subjected to dynamic nonlinear loading induced
by applied voltages.  These MEMS devices are sim-
plified as beam systems.  The Kriging interpolation
technique is employed to obtain the shape function,
which has a partition of unity and delta function
properties.  The local Petrov-Galerkin weak form of
the governing equations for MEMS devices is derived.
The developed LoKriging method is used to analyze
the static and dynamic behaviors of MEMS devices,
the microswitch and the microtweezer.  The numeri-
cal results obtained by LoKriging are compared with
the results from experiments and other numerical
methods.  It is found that the present LoKriging
method is easy to implement, efficient and accurate
for the numerical simulation of MEMS devices.  In
addition, the method developed in this paper has also
very good potential for analysis of other complex
MEMS devices (e.g. devices with plate structures).

II. KRIGING INTERPOLATION
FORMULATION

We consider a random function u(x) defined in
the domain Ω which is discretized by a set of scat-
tered nodes xi (1≤i≤N), where N is the total number
of nodes. It is assumed that only surrounding nodes
of one point x0 have any effect on u(x0).  The domain
that includes these surrounding nodes is defined as
the interpolation domain.  Then, the estimated value
at point x0, uh (x, x0), can be written as

    uh(x, x0) = λ iu(xi)Σ
i = 1

n
(1)

where u(xi) is the value at xi (i=1, 2, ..., n), and n is
the number of nodes in the interpolation domain of
x0.  λ i is the weight assigned to the neighboring nodes.
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λ i can be determined by minimizing the squared vari-
ance of the estimation error E{[u(x0)−uh(x, x0)]2}
(Trochu, 1993; Olea, 1999).

If the estimation formula (Eq. (1)) is no-bias,
the expected values of u(x0) and uh(x, x0) must be
identical, i.e.

    E[u(x0)] = E[uh(x, x0)] = λ iE[u(xi)]Σ
i = 1

n
(2)

In Kriging, the unknown function u(x0) is com-
posed of two parts

u(x0)=Za(x0)+Zb(x0) (3)

where Zb(x0) represents a stationary fluctuation, i.e.
E[Zb(x0)]=0.  Za(x0), called the drift, represents the
expected value of u(x0).  It is written as

    Za(x0) = λ iZa(xi)Σ
i = 1

n
(4)

Usually, the drift can be chosen arbitrarily.  If it is
assumed that the drift belongs to a finite linear sub-
space S and taken as a linear polynomial, we have
the form

    λ ipl(xi)Σ
i = 1

n
= pl(x0) ,  1≤l≤k (5)

where the basis function pl(x) is the monomial in S.
In one-dimensional space, pT(x)={1, x} and in two
dimensions, pT(x)={1, x, y}.

Minimizing the squared variance of the estima-
tion error, we obtain the Kriging system equation as
follows:

    E[u(xi)u(x j)]λ jΣ
j = 1

n
+ µ l pl(xi)Σ

l = 1

m
= E[u(x0)u(xi)] ,

1≤i≤n (6)

    λ jpl(x j)Σ
j = 1

n
= pl(x0) ,   1≤l≤k (7)

where coefficients µl (1≤l≤k) are the Lagrange mul-
tipliers associated with the constraints that satisfy the
no-bias conditions.

The covariance E[u(x0)u(xi)]  in Eq. (6) can be
expressed by the semivariogram γ(h) by using the in-
trinsic hypothesis (Trochu, 1993), i.e.

    γ(x0, xi) = γ(h) = 1
2E{[u(xi) – u(x0)]2} (8)

where h is the Euclidean distance between x0 and xi.
Similarly, the covariance E[u(xi)u(xj)]  is replaced by
γ(xi, xj).

The Kriging system (Eqs. (6) and (7)) can be

rewritten in the matrix form

Gc=g (9)

where

    
G = R P

PT 0

    

=

γ(x1, x1) γ(x1, xn) p1(x1) pk(x1)

γ(xn, x1) γ(xn, xn) p1(xn) pk(xn)
p1(x1) p1(xn) 0 0

pk(x1) pk(xn) 0 0

(10)

c={λ1  ...  λn  µ1  ...  µk}
T (11)

g={γ(x0) p(x0)}T

={γ(x0, x1)  ...  γ(x0, xn)  p1(x0)  ...  pk(x0)}T

(12)

In practical applications, several semivariogram
models have been proposed and used (Olea, 1999).
Among them, the Gaussian semivariogram model is
widely used and leads to good results for problems in
computational mechanics (Liu et al., 2002a; Gu,
2003).  Therefore, it is also employed in this paper

   γ(h) = c0 1 – e
– 3( h

a0
)2

(13)

where h is the lag, c0 and a0 are the sill and range,
respectively.  The sill c0 represents the average vari-
ance of points at such a distance away from the con-
sidered point that there is no correlation between the
points.  The range a0 represents the distance at which
there is no longer a correlation between the points.
A practical rule is to determine the range to be the
distance, for which the semivariogram is 0.95 c0.

Substituting the weights λ i solved from Eq. (9)
into Eq. (1), the estimated value can be obtained and
written in the following form (Stein, 1999)

uh(x, x0)=ΦΦ (x)u (14)

where u={u(x1)  u(x2)  ...  u(xn)}T, and ΦΦ (x) is de-
fined as the shape function matrix, which can be writ-
ten as
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ΦΦ (x)=γγ(x0)TS+p(x0)TY (15)

where

S=R−1(I−PY) (16)

Y=(PTR−1P)−1PTR−1 (17)

Then, the estimation variance can be easily com-
puted by

    se
2(x0) = λ iγ(x0, xi)Σ

i = 1

n
– µ l pl(x0)Σ

l = 1

k
(18)

The estimation of variance is useful in the field
of statistics, and it has been extended to many other
fields.  In our work, the scattered points for the inter-
polation can be considered as random inputs or
parameters, the estimation of variance computed by
Eq. (18) is a useful indicator to estimate and control
the error of the interpolation.

Figure 1 plots the one-dimensional shape func-
tions constructed by Kriging interpolation.  It can be
found that the Kriging interpolation is a passing node
interpolation, and the shape functions derived from
it possess the delta function property, i.e.

    
φi(x j) = δij = 1 (i = j, i = 1~n)

0 (i ≠ j, i, j = 1~n)
(19)

and satisfy the partition of unity,

    φi(xi)Σ
i = 1

n
= 1 (20)

Equations (19) and (20) are the delta function
property and the partition of unity of the Kriging
shape functions.  They can be obtained from the na-
ture of the Kriging interpolation, and proven by the
reproduction properties of the meshfree shape func-
tions (Liu, 2002).  The detailed demonstrations can
be found in (Gu, 2003; Liu, 2002; Stein,  1999).

III. MESHLESS FORMULATION FOR THE
ANALYSIS OF MEMS DEVICES

1. Governing Equation of MEMS Devices

In this paper, the static and dynamic behaviors
of MEMS devices are simulated.  Two MEMS
devices, the microswitch and microtweezer, are
considered.

The microswitch is composed of a pair of
electrodes.  One electrode is rigid and fixed.  The
other is a deformable elastic structure.  When a po-
tential difference (applied voltage) is applied, the

elastic structure will close to the fixed electrode.  This
creates an electrostatic force and causes the contact
between the electrodes.  The electrostatic pull-in char-
acteristic is important in the analysis, which is a sharp
instability in the behavior of an elastically supported
structure subjected to parallel-plate electrostatic ac-
tuation (Osterberg and Senturia, 1997).

The Microtweezer is a novel application of
MEMS technology. It can be used as a microgripper,
which could be the fingers of the microtelerobot.  The
microtweezer was designed and fabricated by
MacDonald et al. (1989), and studied by Shi et al.
(1995).  The microtweezer comprises two arms, which
are rigidly attached at one end but free at the other.
Each arm is conformally coated with a thin layer of
insulating material to prevent shorting upon closure.
When an applied voltage is applied between the arms,
they will attract each other.  When the applied volt-
age reaches a value, the two arms will touch each
other and the microtweezer is closed.

According to the geometry and deflection char-
acter of the microswitch and the microtweezer, they
are simplified as 1-D beam structures governed by
the Timoshenko beam theory.  Neglecting the damp-
ing effect, the governing equation of MEMS devices
is written as (Reddy, 1993)

   
ρA∂2w

∂t2 – ∂
∂x[GAks(

∂w
∂x + θ)] – f = 0

ρI∂2θ
∂t2 – ∂

∂x(EI∂θ
∂x ) + GAks(

∂w
∂x + θ)] = 0

in domain Ω (21)

where w is the deflection of the device, θ the rotation,
ρ the mass density, E the modulus of elasticity, I the

1

0.8

0.6

0.4

0.2

0

-0.2
-1 -0.8 -0.6

Sh
ap

e 
fu

nc
tio

n

-0.4 -0.2 0

x

0.2 0.4 0.6 0.8 1
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moment of inertia, A the cross section area, G the
shear modulus, and ks the shear correction coefficient.
f is the external loading.

The boundary conditions for the fixed end of a
device (assuming at x=x0) are

   w(x0) = w = 0 , on Γ w

θ(x0) = θ = 0 , on Γ θ
(22)

For the free end of a device (assuming at x=x0), they
are

   
M(x0) = EI ∂θ

∂x x = x0

= M = 0 , on Γ M

Q(x0) = GAks(θ + ∂w
∂x x = x0

= Q = 0 , on Γ Q

(23)

where Γw, Γθ, ΓM and ΓQ are the corresponding bound-
aries of the deflection w, rotation θ, moment M, and
force Q prescribed, respectively.

The initial conditions (at t=t0) can be written as

   
w(x, t0) = w0(x) ,

θ(x, t0) = θ0(x) ,

∂w(x, t0)
∂t = w0(x) ,

∂θ(x, t0)
∂t = θ0(x) ,

 in domain Ω (24)

2. Local Weak Form

Using the weighted residual technique in a lo-
cal support domain Ωs bounded by Γ s, we obtain the
local weak form of Eq. (21) as follows:

   
v{ρA∂2w

∂t2 – ∂
∂x[GAks(

∂w
∂x + θ)] – f }dΩ

Ωs

= 0

v{ρI
∂2θ
∂t2 – ∂

∂x(EI
∂θ
∂x ) + GAks(

∂w
∂x + θ)]dΩ

Ωs

= 0

(25)

where v is the weight function.
Integrating Eq. (25) by parts, we have

   

vρA∂2w
∂t2 dΩ

Ωs

+ [dv
dxGAks(

∂w
∂x + θ) – vf ]dΩ

Ωs

– [ n vGAks (∂w
∂x + θ)]

Γ s

= 0

vρI
∂2θ
∂t2 dΩ

Ωs

+ [dv
dx(EI

∂θ
∂x ) + vGAks(

∂w
∂x + θ)]dΩ

Ωs

– [ n v (EI∂θ
∂x )]

Γ s

= 0

(26)

where  n  is the unit outward normal to the domain
Ωs.  In implementation, the boundary Γ s is usually
separated into five parts (Gu and Liu, 2001b), which
are the internal boundary Γ si, the boundaries Γsw, Γ sθ,
Γ sM, and Γ sQ, over which the essential boundary con-
ditions w, θ and natural boundary conditions M, Q
are specified, respectively.

In the local weak form (Eq. (25) or (26)), there
exist two types of functions, the trial function and
weight function.  In this paper, the trial function is
constructed by the Kriging interpolation (see section
II).  The 4th order spline function is used as the weight
function.  The reason is that compared with the quad-
ric and cubic spline function, the 4th order spline func-
tion has higher continuity and simpler form.  In
addition, it can be easily constructed with zero value
on the boundary.  Therefore, the 4th order spline func-

tion is adopted in this paper, i.e.

  vi(x) =

   
1 – 6(

di
rv

)2 + 8(
di
rv

)3 – 3(
di
rv

)4 , 0 ≤ di ≤ rv

0 , di ≥ rv

(27)

where di=|xi−x| is the distance from node xi to point
x, and rv is the size of the local support domain.

3. Discrete Formulation

In the Timoshenko beam theory, the deflection
w and rotation θ are independent variables, so they
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are separately discretized in the space domain, that
is

       w(x, t) = ΦΦw(x)we(t)

θ(x, t) = ΦΦθ(x)θθ e(t)
(28)

where ΦΦ w(x) and ΦΦ θ(x) are shape functions corre-
sponding to  the def lect ion and the rotat ion,
respectively, which can be computed from Eq. (15).
we(t) and θθ e(t) are the nodal deflections and rotations,
which are functions of time t.

Applying Eq. (28) in Eq. (26) for all nodes in
the whole domain Ω, we can obtain the discretized
equations.  They can be written as the following form

Mu(t)+Ku(t)=f(t) (29)

where M and K are the mass matrix and stiffness
matrix, respectively.  u(t) is the vector of nodal de-
flections and rotations at time t, i.e. u(t)={w1  θ1  ...
wN  θN}T, where N is the total node number in Ω.  u(t)
is the accelerator vector, and f(t) is the vector of ex-
ternal force.

The elements of matrixes M, K, and vector f can
be written as

   mij
11 = ρAviΦ j

wdΩ
Ωs

  mij
12 = mij

21 = 0

   mij
22 = ρIviΦ j

θdΩ
Ωs

   
k ij

11 = GAks
dvi
dx

dΦ j
w

dx dΩ
Ωs

   
– [ n GAksvi

dΦ j
w

dx ]
Γ si + Γ sw + Γ sθ + Γ sM

   k ij
12 = GAks

dvi
dx Φ j

θdΩ
Ωs

   – [ n GAksviΦ j
θ]

Γ si + Γ sw + Γ sθ + Γ sM

   
k ij

21 = GAksvi

dΦ j
w

dx dΩ
Ωs

   
k ij

22 = (EI
dvi
dx

dΦ j
θ

dx + GAksviΦ j
θ)dΩ

Ωs

   
– [ n EIvi

dΦ j
θ

dx ]
Γ si + Γ sw + Γ sθ + Γ sV

   fi
w = vi fdΩ + [ n vi V ] Γ sVΩs

   fi
θ = [ n vi M ]

Γ sM
(30)

where i, j=1~N.
The dynamic system Eq. (29) is solved by the

standard Newmark method (Reddy, 1993).

4. The Nonlinear Loading and Iteration Technique

In Eq. (21), f is the external loading.  If  f is a
linear load, Eq. (29) can be solved by the standard
Newmark method.   In  the  s imulat ion of  the
microswitch and microtweezer, the external loading
f in Eq. (21) is nonlinear.  It is the function of the
deflection and takes the following form (Osterberg
and Senturia, 1997)

   
f = –

ε0V 2b
2g2 (1 + 0.65

g
b)  for static case

   
f = –

ε0V 2b
2g2 (1 + 0.65

g
b) ⋅ k(t)   for dynamic case

(31)

where ε0 is the permittivity of vacuum, V applied
voltage, b beam width, and g the gap between the
beam and the electrode, i.e.  g=g0−w(x, t), where g0

is the distance between the initial position of the
MEMS device and the electrode.  In Eq. (31), the time
function k(t) is considered as a constant 1.0.

It can be found from Eq. (31), the force acting
on the device is the function of the deflection, i.e.,
non-linear loading.  The nonlinear force f leads to the
nonlinearity of Eq. (29).  The common solver for lin-
ear equations cannot be used.  Therefore, the itera-
tion technique is required to solve this non-linear
equation.  The iteration is performed in each time step,
and the iteration criteria is

   (wj
i + 1 – wj

i)2Σ
j = 1

N
≤ e (32)

where N is the number of nodes used,  wj
i  and   wj

i + 1

are the deflections of the ith and (i+1)th iteration
steps, respectively.  e is a specified accuracy tole-
rance.

IV. RESULTS AND DISCUSSIONS

To prove the efficiency, the present LoKringing
meshless method is first tested on two benchmark
problems, and then the present method is used to ana-
lyze the static and dynamic behaviors of MEMS
devices, i.e. the microswitch and microtweezer.
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1. Benchmark Problems

(i) Fixed-Fixed Thin Beam

When the ratio of the length to thickness of the
beam is larger (i.e. more than 5~10), it is usually de-
fined as a thin beam shown in Fig. 2.  The parameters
of the thin beam studied in this example are: L=10
(length), b=1.0 (width), and t =0.1 (thickness).  The
ratio of the length to thickness is 100.  The Young’s
modulus is 1.2×107, the Poisson ratio is 0.3, and the
uniform distributed loading f(x)=1.0.  The beam is
discretized by 21 uniformly distributed nodes.  The
static deflections and rotations of the beam are com-
puted and plotted in Fig. 3.  They are compared with
the analytical solution of Bernoulli-Euler beam theory
(Timoshenko, 1955).  It is shown that the computed
results and the analytical solution agree very well.

In practical applications, when a thin beam is
studied by thick beam theory, there usually exists a
shear-locking phenomenon, which leads to incorrect
results.  To avoid this phenomenon, some special tech-
niques have been developed, such as adding the trans-
verse shear strain as another variable (Cho et al.,
2000), using the high order shape functions (Liu,
2002), and so on.  In Fig. 3, it can be seen that the
shear-locking phenomenon has been avoided success-
fully by the LoKriging method.  It is because the shape
functions constructed by the Kriging interpolation
have high order.

(ii) Cantilever Thick Beam

When the ratio of the length to thickness of the
beam is smaller (less than 5), thick beam theory, in
which the shear effect is considered, should be used.
As shown in Fig. 4, the parameters of the thick beam
are: L=48 (length),  b=1.0 (width),  and t =12
(thickness).  The Young’s modulus is 3.0×107, the
Poisson ratio is 0.3, and the concentrated loading
F(L)=1000.  Because the ratio of the length to thick-
ness is only 4, this beam is a thick beam.

A total of 21 uniformly distributed nodes are
used to discretize the beam.  The computed static de-
flections of the beam are compared with the analyti-
cal solution (Timoshenko and Goodier, 1970) in Fig.
5.  It is found that the present LoKriging method leads
to a very good result.

2. Microswitch

As shown in Fig. 6, a widely used MEMS device,
a microswitch, is considered.  The dimension of the
microswitch is 80 µm long, 10 µm wide and 0.5 µm
thick.  The initial gap, g0, between the switch and the
electrode is 0.7 µm.  The Young’s modulus E is 169
GPa,  and the  mass  densi ty  ρ  i s  2231 kg/m 3

(Ananthasuresh et al., 1996).  It is simplified as a
fixed-fixed beam, as shown in Fig. 6, and it is

f(x)=1.0

L
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b
t

Fig. 2  A fixed-fixed thin beam under uniform loading

Fig. 3  Deflection and rotation results of the fixed-fixed thin beam
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discretized by 41 uniformly distributed nodes.
The static behavior of the microswitch is first

analyzed by the present LoKriging method.  Deflec-
tion results of different applied voltage are obtained
by the LoKriging method, and plotted in Fig. 7.  It is
found that when the applied voltage is imposed on
the microswitch, it deflects.  With the increase of the
applied voltage, the deflection of the microswitch
increases; the gap between the microswitch and the
electrode becomes smaller.  When the applied volt-
age increases to one certain value, defined as the criti-
cal pull-in voltage, the microswitch becomes unstable
and the centre of the microswitch touches the
electrode.  For the above mentioned microswitch, the
static critical pull-in voltage is 15.09 volts.  This
r e s u l t  i s  c o m p a r e d  w i t h  t h e  e x p e r i m e n t a l
(Ananthasuresh et al., 1996) and other numerical (Li
et al., 2003) results, and listed in Table 1.  It is shown

that these results agree very well.
In the dynamic simulation for the microswitch,

the time step is taken as ∆t=1×10−3  µs.  Fig. 8 shows
the dynamic response of the centre of the microswitch,
called peak deflection, under different applied
voltages.  It can be observed that when the applied
voltage increases,  the peak defect ion of  the
microswitch increases.  It can be also found that the
fundamental frequency of the microswitch decreases
with the increase of the applied voltage. Similar to
the static simulation, the dynamic critical pull-in volt-
age can be obtained.  For the same microswitch, the
dynamic critical pull-in voltage is 13.77 volts.  The
dynamic pull-in behavior of the microswitch is plot-
ted in Fig. 9.  It can be seen that this process is
nonlinear.  The comparisons with other simulation
results of the dynamic critical pull-in voltages are also
listed in Table 1.  The error is only 2%. Very good
results are obtained.  In addition, comparing the static
and dynamic critical pull-in voltage, we find that the
static value is larger than the dynamic value by about
9%.

3. Microtweezer

As shown in Fig.  10(a) ,  another  MEMS
device, a microtweezer, is analyzed.  The simplified

Table 1 Comparison of the critical pull-in volatge of  the microswitch between the present method and
other methods

Experimental method vLPIM LoKriging method
(Ananthasuresh et al., 1996) (volt) (Li et al., 2003)  (volt) (volt)

Static simulation 15.17 15.1 15.09
Dynamic simulation 13.8 13.8 13.77

Fig. 6  The microswitch simplified as a fixed-fixed beam

Fig. 7 Static deflection of the microswitch at different applied
voltages
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geometry of the tungsten microtweezer is shown in
Fig. 10(a).  The tweezer arms are simplified as canti-
lever beams in Fig. 10(b).  In the simulation, the ef-
fect of the coating layers is neglected.

The parameters for the microtweezer arms are:
200 µm long, 2.7 µm wide and 2.5 µm thick.  The
Young’s modulus is 410 GPa, and the mass density ρ
is 19300 kg/m3.  The initial opening of the two arms,
d0, is 3 µm.  It has been designed and simulated
(MacDonald et al., 1989; Shi et al., 1995).

In practical applications, there may be an initial
angle between the arms and the central line of the
microtweezer, shown in Fig. 10(c).  For generaliza-
tion, a microtweezer with an initial angle β=0.5° is
simulated using the present LoKriging method.  When
the applied voltage is imposed on the arms, they de-
flect and move to the central line. As the applied volt-
age increases, the deflections of the arms become
larger.  When the voltage reaches one certain value,
the tips of two arms contact with each other (As shown
in Fig. 10(d)).  This critical voltage is defined as pull-
in voltage (closing voltage).  Because of the symme-
try of the microtweezer, only one arm is considered
in the simulation.  The closing voltages for the static
and dynamic analyses are summarized in Table 2.  The
static results agree very well with the experimental
and other numerical results.

Figure 11 plots the deflection of the micro-
tweezer arm at different applied voltages.  It is ob-
served that when the applied voltage is smaller than
150 volts, the two arms do not contact.  When the
voltage is increased slightly beyond 150 volt up to

Fig. 9  Dynamic pull-in behavior of the microswitch
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Table 2  Comparison of the critical closing voltage of the microtweezer between the present method and
other methods

Experimental method FEM LoKriging method
(MacDonald, et al., 1989) (volt) (Shi et al., 1995) (volt) (volt)

Static simulation 150 156~157 153
Dynamic simulation − − 125.2~125.3
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153 volt, a large deflection of the arm tip is generated,
leading to the contact of the two arms.

The dynamic response of the arm tip is obtained
and plotted in Fig. 12.  In dynamic analysis, the time
step is taken as ∆ t=1×10−3 µs.  Similar to the
microswitch discussed above, with the increase of the
applied voltage, the fundamental frequency decreases.
In addition, the dynamic closing voltage is also ob-
tained and listed in Table 2.  Compared with the static
closing voltage, the dynamic closing voltage is smaller.

V. CONCLUSIONS

A meshless Local Kriging (LoKriging) method
is developed for static and dynamic analyses of
MEMS devices.  In LoKriging, the Kriging interpo-
lation method is used to construct the trial function,
and the locally weighted residual technique is used
to get the local weak form.  The present LoKriging
method is used to analyze the characteristics of
MEMS structures.  The comparisons between the
computed results and the experimental or other nu-
merical results show that the present method is effi-
cient and accurate to solve MEMS structures.

It should be mentioned here that although the
MEMS devices are simplified as beam structures in
this paper, there are many MEMS devices with very
complex geometry in practical applications.  Because
of the efficiency, accuracy and stability of the
LoKriging method, the present LoKriging method has
very good potential for simulations of practical com-
plex MEMS devices (for example a MEMS device
with a plate structure).  Of course, further research is
required.
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