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ELEMENT FREE FORMULATION USED FOR CONNECTING

DOMAIN BOUNDARIES

Hsing-Chih Tsai and Chan-Ping Pan*

ABSTRACT

The mapping method is widely used for automatic mesh generation.  This method
is used in this paper to generate a mesh, which is completely controlled by the program.
The user is expected to define the problem in the most simple and natural way.  The
concept of mesh is not required for the user at all.  To accomplish this purpose, sev-
eral problems need to be solved.  One is to combine connecting domains with differ-
ent numbers of elements.  Four methods are developed and are compared in this paper.
The element free concept is used by one of the methods.  A polynomial boundary is
established by the moving least square formulation.  Therefore the nodes in neighbor
areas are included to get the coefficients of this polynomial.  The result is pretty good
compared to the traditional methods.
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I. INTRODUCTION

According to the space characteristics of vari-
ous analysis systems, there are plane geometry, sur-
face geometry and space geometry categories.  How
to establish elements and nodes for a certain problem
is the basic procedure for all analyses.  In recent years,
many research results have been related to the devel-
opment of automatic mesh generation.  In a two di-
mensional plane problem, a triangle is the simplest
form of element shape used in automatic mesh gen-
eration (Cavendish, 1974; Cohen, 1980; Haber et al.,
1981; Brown, 1981; Ho-Le, 1988).  However, con-
vergence behavior of a triangle element is inferior to
that of a quadrilateral element.  However, intended
quadrilateral element meshes will largely increase the
difficulty of mesh generation. (Zienkiewicz and
Phillips, 1971; Gordon and Hall, 1973; Wordenweber,
1984; Kikuchi, 1985; Talbert and Parkinson, 1990;
Chinnaswamy et al., 1991; Blacker and Stephenson,
1991; Zhu et al., 1991; Rank et al, 1993; Lee and Lo,

1994; Cheng and Li, 1996; Sarrate and Huerta, 2000;
Kwak et al., 2002).  Therefore, many scholars have
put their efforts into research on mesh generation.

General software packages for commercial use
which have automatic mesh generation are largely
based on the mapping method (Cohen, 1980; Haber
et al., 1981; Brown, 1981; Ho-Le, 1988; Zienkiewicz
and Phillips, 1971; Gordon and Hall, 1973; Kikuchi,
1985; Chinnaswamy et al ., 1991; Cheng and Li,
1996).  This method is fast, simple and easily con-
trols geometry and mesh density as well as being ap-
plicable to highly changeable geometric boundaries
and mesh shapes.  Its results are of excellent quality.

To get a mesh which is divided by its degree of
requirement (Haber et al., 1981; Chinnaswamy et al.,
1991; Cheng and Li, 1996) will affect the speed of
convergence and the time consumption for the prob-
lem analysis.  Moreover, a mesh generation method
is judged by i ts  eff iciency,  convenience and
simplicity.  The encountered problems for a graded
mesh include aspect ratio, distortion, compatibility,
etc.  Some methods adopt a rigid mesh form and then
a mesh smoothing (Cheng and Li, 1996; Kwak et al.,
2002) procedure to allow for the improvement of as-
pect ratio and distortion of the elements.  If mesh di-
vision is based on a multi-region/multi-block map-
ping method, displacement compatibility between
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sub-domains will become an important factor to be
considered during the mesh generation procedure.
The adjacent boundary between two sub-domains is
usually divided into elements of the same form
(Fig. 1).  Therefore, each sub-domain will not,
independently, set up a mesh division. Some adjust-
ment must be made for the mesh division of adjacent
sub-domains.  It could distort subsequent element
shapes and degrade result’s quality.  In order to as-
sure compatibility between sub-domains, mesh adjust-
ment will produce the following two undesirable
situations:
1. The mesh action will constantly expand outwards,

necessitating re-mesh of many sub-domains.
2. In order to prevent the expansion of re-meshing,

distorted mesh could appear in a certain sub-
domain.

In general, an unstructured mesh could result
from the requirement of a fine-tuned graded mesh.
Due to the correlation between the number of nodes
and the number of elements, an unstructured mesh
does not posses the relevant regularity.  On the
contrary, a structured mesh is simple and easy to con-
struct in a program.  Therefore, the main purpose of
this paper is to establish the compatibility between
two sub-domains, which are free to make their own
mesh divisions (Fig. 2).

To maintain the compatibility of the interfaces,
some methods are employed for the conjunction of
sub-domains. Some examples are the penalty method
(Arora et al., 1991), the Lagrange multiplier method
(Houlsby et al., 2000), the master-slave concept
(Dohrmann et al., 2000), the pseudo-node method
(Aminpour et al., 1995) etc.

II. FOUR METHODS USED FOR THE
DISPLACEMENT COMPATIBILITY

BETWEEN SUBDOMAINS

Four methods developed in this paper:
Method I: Penalty Method
Method II: Direct Transformation Method (use 5-

point polynomial function to define the
common boundary)

Method III: Transformation Method with Modified
Elements (use 5-point polynomial func-
tion to define the common boundary and
modified elements for the adjacent area)

Method IV: MLSA Method (use moving least square

approximation to formulate the common
boundary)

1. Penalty Method

The penalty method is used to reduce displace-
ment difference between left and right sides by a rela-
tively strong spring to reach the requirement of dis-
placement compatibility. Strain energy due to the
penalty spring (UP)

  UP = 1
2(v1 – v2)EP(v1 – v2)ds

s
(1)

v1 and v2 of the above formula are the displace-
ments of the left and right domains on the adjacent
boundary.  EP is the distributed penalty spring con-
stant of this method.  This constant is determined by
a value relatively to the elastic modulus of the prob-
lem (E).  The value adopted in this paper is EP=E×108.
s represents the adjacent boundary of the two domains
(Fig. 3).

For the common boundary shown in Fig. 3.

    v1 = NiuiΣ
v2 = N ju jΣ

(2)

v1 and v2 represent the displacements simulated
in domain 1 and domain 2.  Ni and Nj are shape func-
tions used by each element.  ui and uj are nodal dis-
placements related to each element.
Therefore, (1) can be written as:

   
UP = 1

2{ui u j}
Ni

– N js

EP[Ni – N j]ds
ui

u j
     (3)

Penalty stiffness matrix [Kp] :

Fig. 1  Unstructured meshes Fig. 2  Structured meshes

Fig. 3  Sub-domain diagram



H. C. Tsai and C. P. Pan: Element Free Formulation Used for Connecting Domain Boundaries 587

   
[KP] =

Ni
– N js

EP[Ni – N j]ds (4)

Gauss quadrature is adopted in this paper to do
the integration.  Each integration segment contains
only one element on each side to ensure a systematic
programming procedure.  The example shown in Fig.
4 contains three elements on the left side and two el-
ements on the right side.  Four integration segments
are defined to reach the requirement.

Merits of This Method:
This method is simple and easy to understand.

It can be applied not only to a problem with the same
element type used on both sides, but also to a prob-
lem with different element types on each side.
Demerits of This Method:

This method is an approximated method.  The
displacements on each side are not the same.
However, the differences between them are very
small.  The accuracy of approximation depends on
the penalty spring constant chosen by the developer.
The bandwidth of stiffness matrix is increased sig-
nificantly by this method.  Therefore, the execution
time is increased also.

2. Direct Transformation Method

The nodes and elements on each side determine
the corresponding displacement field.  The elements
and nodes are developed by the automatic mesh
procedure.  However, proper procedure must be
implemented to ensure the compatibility and force
transmission of these sides.  The third individual dis-
placement field is assumed for the common side of
these adjacent elements.  Therefore, the correspond-
ing boundary nodes on each side are no longer
independent.  They must be transformed into the com-
mon displacement field.  A polynomial function de-
fined by five nodal displacements is assumed in this
method.  The combination of element types and the
displacement field assumed for the common bound-
ary can be very varied freely.  The element type used
for the example problems is the 9-point plane stress

Lagrange element.  The displacement field on the
element boundary is a quadratic polynomial.  In or-
der to improve the accuracy, a fourth degree polyno-
mial is chosen to represent the common boundary.

The strain energy of a typical element connected
to the common boundary:

   
U = 1

2{ui ut} [B]T[D][B]dV
ui

ut

  
= 1

2{ui ut}[K}
ui

ut
(5)

{u} represents two independent displacements
along the X and Y directions {u v}T.   In the above
equation, ui represents independent displacements of
non-adjacent boundaries.  ut represents dependent
nodal displacements on the adjacent boundaries (Fig.
5).  [K] represents the stiffness matrix of the element.
Displacement function of the common boundary:

    us = Ni(ς)usiΣ (6)

In which, us represents displacement on any
point of the common boundary interpolated by shape
functions Ni.  usi represents the nodal displacements
newly established on the common boundary (Fig. 5).

ςt is the ς value of corresponding nodes on each
adjacent boundary.  Therefore, the nodal displace-
ments of these nodes, ut,, can be represented as
follow:

    ut = Ni(ςt)usiΣ (7)

Displacement transformation matrix [T]

  ui

ut
= [T]

ui

usi
(8)

(8) is substituted into (5), then the strain energy may
be expressed as follow:

   
U = 1

2{ui usi}[Kt]
ui

usi
(9)

Fig. 4  Gauss quadrature segments for penalty method Fig. 5  Transformation of degrees of Freedom



588 Journal of the Chinese Institute of Engineers, Vol. 27, No. 4 (2004)

The corresponding stiffness matrix [Kt] after this
transformation is

[Kt]=[T]T[K][T] (10)

Considering all possible situations in an element,
five transformation templates are categorized in this
paper.  They include one common boundary, two com-
mon boundaries (on adjacent sides and on opposite
sides), three common boundaries and four common
boundaries (Fig. 6).

In general, the number of elements divided for
each sub-domain is very large.  Assume the number
of elements used for each side of a sub-domain is not
less than two. The transformation templates can be
simplified to only two types.  One is the single com-
mon boundary (Fig. 6(a)) and the other is two com-
mon boundaries on adjacent sides (Fig. 6(b)).

Merits of This Method:
This method is still an easy and simple way to

solve the problem.  Also, the total number of degrees
of freedom in the global stiffness matrix is less than
in the penalty method and the MLSA method.
Therefore, the execution time can be cut down.
Demerits of This Method:

Since the polynomial degrees used for adjacent
elements and for the common boundary are different,
the displacement fields simulated by neighboring el-
ements could be different.  Take the formulation shown
in this paper as an example.  The displacement field
used for the adjacent boundary of an element adopts
a quadratic polynomial.  The displacement field of the
common boundary is described by quadratic poly-
nomial.  Only the nodal displacements of the adjacent
boundaries are consistent with that of the simulated
common boundary.  There will be a discrepancy

between adjacent boundaries and simulated common
boundary.  However, displacement differences of this
kind can be reduced by mesh refinement.  The shown
examples can verify that the convergence is still very
good for this method.

3. Transformation Method with Modified Elements

The same as in the previous method, a polyno-
mial function is used to simulate the displacement
field of the common boundary.  However, the dis-
placement fields used for the adjacent elements are
modified to match the polynomial degree used for the
common boundary.  The plane stress element used in
this paper is the 9-point Lagrange element.  To reach
the requirement of compatibility, two modified ele-
ments are derived.  The first one is derived for ele-
ments with one adjacent boundary.  The nodes used
for the adjacent boundary will be modified to be five
nodes.  Therefore, the total number of nodes in an
element will be eleven.  Also the displacement field
on this boundary will be modified to be a quadratic
polynomial.  The second formulation is for elements
with two adjacent boundaries side by side.  The total
number of nodes will be thirteen (Fig. 7).  These two
elements are selected because of the assumption that
the number of elements used along a sub-domain
boundary is not less than two (Fig. 7).

The derived shape functions, Ni, for the 11-point
element are as follows (Fig. 8(a)):

Fig. 6  3_to_5 transform templates for an Element

Fig. 7 Two required transformation templates and modified ele-
ments

Fig. 8  11-point and 13-point modified elements
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N1=1/4ξ(ξ−1)η(η−1) (11a)

N2=-1/2ξ(ξ−1)(η+1)(η−1) (11b)

N3=1/4ξ(ξ−1)(η+1)η (11c)

N4=-1/2(ξ+1)(ξ−1)η(η−1) (11d)

N5=(ξ+1)(ξ−1)(η+1)(η−1) (11e)

N6=-1/2(ξ+1)(ξ−1)(η+1)η (11f)

N8=-4/3(ξ+1)ξ(η+1)η(η−1/2)(η−1) (11g)

N10=-4/3(ξ+1)ξ(η+1)(η+1/2)η(η−1) (11h)

N7=1/4(ξ+1)ξη (η−1)−3/8N8+1/8N10 (11i)

N11=1/4(ξ+1)ξ(η+1)η+1/8N8−3/8N10 (11j)

N9=-1/2(ξ+1)ξ(η+1)(η−1)−3/4N8−3/4N10  (11k)

The derived shape functions, Ni, for the 13-point ele-
ment are as follows (Fig. 8(b)):

N1=1/4ξ(ξ−1)η(η−1) (12a)

N2=-1/2ξ(ξ−1)(η+1)(η−1) (12b)

N5=-1/2(ξ+1)(ξ−1)η(η−1) (12c)

N6=(ξ+1)(ξ−1)(η+1)(η−1) (12d)

N4=-4/3(ξ+1)ξ(ξ−1/2)(ξ−1)(η+1)η (12e)

N8=-4/3(ξ+1)(ξ+1/2)ξ(ξ−1)(η+1)η (12f)

N10=-4/3(ξ+1)ξ(η+1)η(η−1/2)(η−1) (12h)

N12=-4/3(ξ+1)ξ(η+1)η(η+1/2)η(η−1) (12i)

N3=1/4ξ(ξ−1)(η+1)η−3/8N4+1/8N8 (12j)

N9=1/4(ξ+1)ξη (η−1)−3/8N10+1/8N12 (12k)

N13=1/4(ξ+1)ξ(η+1)η+1/8(N4+N10)

−3/8(N8+N12) (12l)

N7=-1/2(ξ+1)(ξ−1)(η+1)η−3/4N4−3/4N8 (12m)

N11=-1/2(ξ+1)ξ(η+1)(η−1)−3/4N10−3/4N12

(12n)

Merits of This Method:
Compared to the previous method, full compat-

ibility can be achieved on the adjacent boundaries.
Also, the total number of degrees of freedom of the

global stiffness matrix is smaller than in the penalty
method and MLSA method.
Demerits of This Method:

The derivation of this method is relatively
complicated, therefore it is not easy to change the
polynomial degree used for the common boundary.
Also, any change to the element type or to the simu-
lated model lead to tedious modification.

4. MLSA Method

Since the polynomial degree used to simulate
the common boundary in method II and method III is
bound to the number of nodes, the polynomial
degree is always equal to the number of nodes minus
one.  In order to get a better approximation, more
nodes are required to simulate this common boundary.
However, more nodes make the difference of poly-
nomial degrees between the common boundary and
adjacent elements get bigger.  They make the incom-
patibility condition in method II get worse.  This prob-
lem can be solved by a modification of the shape func-
tions of adjacent elements in Method III.  However,
this derivation is tedious to do.  Therefore, we use
the element free formulation (Nayroles et al., 1992;
Belytschko et al., 1994; Ginman, 1997) to define the
common boundary by a derivation based on the mov-
ing least square approximation method (MLSA).  The
derivation of MLSA can produce a polynomial
function, which is defined by a large number of nodes.
Therefore the polynomial degree of the common
boundary can be set to equal the one used for the ad-
jacent elements.  At the same time, the nodes used to
describe the common boundary can be increased
freely.  There is a special characteristic of MLSA,
that a simulated displacement field does not pass
through the nodal displacements.

According to MLSA, (Gordon and Wixson,
1978; Lancaster and Salkauskas, 1981) the simulated
displacement field of the common boundary, us, can
be expressed as

    us(ξ) = b j(ξ)a j(ξ)Σ
j = 1

m
≡ bT(ξ)a(ξ) (13)

ξ  is the variable representing the position of a
point along the common boundary.  bT is the polyno-
mial function used to simulate this boundary.  m is
the number of terms used in the polynomial function.
In order to match the quadratic polynomial function
used within an element, m is set to be three in this
paper.  Therefore

bT(ξ)= 1  ξ   ξ 2 (14)

a(ξ )  are the unknown coefficients of the
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simulated polynomial.  Notice that a(ξ) are function
of the position ξ, therefore they are changed continu-
ously along the boundary.  The matrix form of a(ξ) is

a(ξ)=[a0(ξ)  a1(ξ)  a2(ξ)]T (15)

A value, J, is defined as the weighted sum of
the square of errors.  The error is the difference be-
tween simulated displacement field us at nodes and
the nodal displacements usi.

    J = w(ξ – ξ i)Σ
i = 1

n
[bT(ξ i)a(ξ) – usi]

2 (16)

n is the total number of nodes defined in the
common boundary.  w(ξ−ξ i) are the weighting func-
tions defined for each node.  The matrix form of (16)
is

J=(BTa(ξ)−usi)
TW(ξ)(BTa(ξ)−usi) (17)

usi={u1  u2  ...  un}T (18)

u1, u2, ..., un in (18) are unknown nodal displace-
ments assumed on the common boundary.

B={b(ξ1)  b(ξ2)  ... b (ξn)} (19)

The matrix form of weighting functions is

    

W(ξ) =

w(ξ – ξ 1) 0 0
0 w(ξ – ξ 2) 0

0 0 w(ξ – ξ n)

(20)

In the above equation, ξ1, ξ2, ..., ξn are ξ coordinates
corresponding to the assumed nodes.  The chosen
weighting function is the modified exponential
function:

   w(ξ – ξ i) =

   
e– (dI cdI c)2k

– e– (dmI cdmI c)2k

1– e– (dmI cdmI c)2k dI ≤ dmI

0 dI > dmI

(21)

In the above equation, dI=ξ−ξ i; c is a constant
to control the shape of the weighting function.  k is a
constant related to the order of differentiation
required.  k=1 is adopted in this paper.  dmI deter-
mines the influence range of a node.  The minimum
requirement is that m number of nodes must be in-
cluded in dmI.

The unknown coefficients a(ξ) are determined
by making J to be the minimum.   This formulation is
the moving least square approximation.

    ∂J
∂a = H(ξ)a(ξ) – G(ξ)usi = 0 (22)

In the above equation,

H(ξ)=BW(ξ)BT (23)

G(ξ)=BW(ξ) (24)

a(ξ)=H−1(ξ)G(ξ)usi (25)

The simulated displacement us(ξ)

us(ξ)=bT(ξ)H−1(ξ)G(ξ)usi (26)

According to the ξ  value of the adjacent nodes,
ut are transformed by (26) to those independent nodes,
usi, of the common boundary.  The displacement trans-
formation matrix is as follow:

  ui
ut

= [Tmlsa]
ui
usi

(27)

To replace this displacement transformation matrix
into (5), the corresponding equation can be written
as:

   
U = 1

2{ui usi}[Kt
mlsa]

ui
usi

(28)

The stiffness matrix of the adjacent elements obtained
by MLSA, [  Kt

mlsa], can be formulated as

   [Kt
mlsa] = [Tmlsa]T[K][Tmlsa] (29)

The same as in the direct transformation method,
a minimum of two element transformation templates
should be established.

Independent nodes usi of the common boundary
can be selected from a set of nodes at the left and
right sides of the common boundary; but repeating
nodes should be excluded, otherwise H−1(ξ) cannot
be obtained. Therefore, if there are repeated nodes,
they should be considered as one single node.  The
weight function w(ξ−ξ i) of the repeated nodes can be
doubled up to increase the influence of this node.

Nodes on the common boundary can be deter-
mined from adjacent elements (Fig. 9), or nodes can
be newly defined without any connection to the origi-
nal nodes.   Those newly defined nodes can be se-
lected uniformly (Fig. 10) or non-uniformly (Fig. 11).
In order to get a nodal spacing which is gradually
changed.  The technique used in the finite element
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method is adopted here.  The distribution of defined
nodes can be obtained from a mapping of the master
element.  The density of any interval can be set by
the user.  The common boundary can be split into
several sections.  Each section is defined by a
mapping from the master element.  If quadratic shape
functions (or higher degrees) are used to do the
mapping, negative values may occur in the mapping.
This will make the procedure confused.  Therefore a
linear transformation is needed to correct these nega-
tives (Fig. 12).  This method is relatively simple to
the method mentioned by Kwak et al., 2002.

Merits of This Method:
The displacement field defined by MLSA is a

polynomial function with continuously changing
coefficients.  Therefore, the simulation efficiency
cannot be judged only by the polynomial degree.  A
quadratic polynomial function obtained from MLSA
is much more flexible than those obtained by inter-
polation method.
Demerits of This Method:

The displacement functions used by adjacent
elements are determined by a single quadratic
function.  The quadratic function is determined by

three nodes, which are obtained from the common
boundary displacement field.  Therefore, gaps still
exist between adjacent elements.  The displacement
field is not fully compatible.  However, the conver-
gence of this method can be guaranteed by increas-
ing the number of nodes.  To increase the number of
nodes in this method is quite easy.  The speed of con-
vergence is good also.

The parameters used in MLSA are much more
complicated than those used in interpolation methods.
Therefore, it is not easy to arrange all these param-
eters to get the optimum effect for a single problem.
Also ,  the  de r iva t ion  and  p rogramming  a re
complicated.  It will take time to make the MLSA
method more popular.

III. COMPARISON OF NUMERICAL
RESULTS

The four methods described in the last section
have their  merits  and demerits in theory and
efficiency.  For practical applications, execution time
and accuracy of analysis are the key points of concern.
Whether conditions are fully compatible and the time
used in developing the program are considered to be
less important.  This section will compare the results
obtained from these four methods.  Two example
problems are used for the comparisons.  Some para-
metric studies are executed for the MLSA method to
make clear their effects.

1. Displacement Results of Simply Supported
Beam and Cantilever Beam

Plane stress models are used to simulate the sim-
ply supported beam (Fig. 13) and the cantilever beam
(Fig. 14).  Three equally divided sub-domains are used

Fig. 10  Nodes newly defined by a uniform distribution

Fig. 9  Nodes obtained from the adjacent elements

Fig. 11  Nodes newly defined by a non-uniform distribution

Fig. 12  Nodes defined by mapping to get a smooth distribution

Fig. 13  Simply supported beam
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in this comparison.  The division of sub-domains is
not really required for these two problems.  They are
chosen for the comparison because of simplicity and
easy to get theoretical results.   The number of nodes
used to simulate the common boundary is five for the
direct transformation method and the transformation
method with modified elements.  All the nodes on
the adjacent elements are used for the penalty method
and the MLSA method.  The parameter k used for the
MLSA method is one.  dmI  is a variable which must
include at least three nodal points.  c is determined
by the maximum distance between nodes.

For the simply supported beam, three sets of
mesh are used to simulate these three sub-domains
(Set 1:{2×1 , 4×2, 2×1}, Set 2:{4×2, 8×4, 4×2}, Set
3:{8×4, 16×8, 8×4}).  The first number shown repre-
sents the number of elements used along the X
direction, while the second one represents the num-
ber of elements along the Y direction.  For the canti-
lever beam, three sets of mesh are (Set 1:{2×1, 4×2,
6×3}, Set 2:{4×2, 8×4, 12×6}, Set 3:{8×4, 16×8,
24×12}).  The maximum displacements of each model
are chosen to do the comparison.  Therefore, the dis-
placement at the middle point is chosen for the sim-
ply supported beam, and the end point is chosen for
the cantilever beam.  Also, the maximum normal
stress, σmax, and the maximum shear stress, τmax, of
the points for Gauss quadrature are shown in Table 1
to present the convergence of the displacement field
differentials.

Comparison of results:
Figure 15 and Fig. 16 show the analysis results

of the maximum displacements obtained from four
methods.  These figures demonstrate that all four
methods are feasible.  For the simply supported beam,
the maximum errors are about 12%, which occurred
in the MLSA method and the direct transformation
method.  The maximum error always occurred in the
first set of mesh, which is the coarsest mesh.  For the
cantilever beam, the maximum error is around 9.5%,
which occurred in the MLSA method.  The results of
these four methods converge to the theoretical an-
swers when finer meshes are used.

Sequence of the speed of convergence:
1. Transformation Method with Modified Elements

Table 1 Normalized maximum stress neighboring
the left interface of simply supported
beam with the mesh of Set 3

The left hand side The right hand side

(X, Y) (0.861, 0.014) (0.861, 0.236)
σmax/σexact 1.127 1.135

the left hand side the right hand side

(X , Y) (1.070, 0.007) (1.070 , 0.243)
τmax/τexact 0.937 0.96

Fig. 14  Cantilever beam

16

12

8

4

0

-4

E
rr

or
 (

%
)

1 2

Set

3

Method I
Method II
Method III
Method IV
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Fig. 16 Comparison of the maximum displacements of the canti-
lever beam
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2. Penalty Method
3. Direct Transformation Method
4. MLSA Method (the worst)
Sequence of execution time:
1. Penalty Method
2. MLSA Method
3. Transformation Method with Modified Elements
4. Direct Transformation Method (the shortest)

Because these two example problems are slen-
der beams, therefore the displacement field of the
common boundary is close to a linear line.  A linear
line can be simulated accurately by a polynomial of
the first degree.  Therefore, the results compared in
this section cannot represent the cases with more com-
plicated displacement fields.

2. Cases with Complicated Displacement Field on
the Common Boundaries

In order to get a more complicated displacement
field for comparison, the simply supported beam
shown in the above section is divided horizontally
into two sub-domains (Fig. 17).   In this case, the
theoretical results obtained from ordinary beam theory
can still be used for the comparison.  Also, the solu-
tion of a finite element model without the division of
sub-domains is used for comparison.  Three concen-
trated loads with converse directions are applied to
the beam to increase the variety of displacement fields.

The number of nodes used for the common
boundary is the same as in the previous section.  All
the nodes on the adjacent elements are used for MLSA
method.  The parameters of MLSA are the same as
the previous section also.

Two sets of mesh (Set 1:{10×2, 5×1}, Set 2:{20×4,
10×2}) are used for the four methods developed in
this paper to simulate this problem.  A mesh of (80×16)
is used for the ordinary finite element model without
sub-domain division (A_exact).    Discussion is fo-
cused on the displacement along the Y direction on
the common boundary.  Analysis results of these two
sets of mesh are shown in Fig. 18 and Fig. 19.

Comparison of results:
Results obtained from the penalty method and

the MLSA method are close to the exact solution.  The
results obtained from the direct transformation
method and the transformation method with modified
elements cannot even get the correct shape of dis-
placement field. The results of the two transforma-
tion methods are very close (almost a coincident line
in the figures).  The results in this problem show that
full compatibility is not a key point of solution
efficiency.  The comparison shows that problems with
complicated displacement fields cannot be modeled
well by small numbers of nodes.  Therefore, some
correction must be made to improve these methods.
One of the possible improvements is to increase the
polynomial degrees to include more nodes in its
model.   The other is to divide the common boundary
into several  sections modeled by a quadratic

Fig. 17 Division of sub-domains to get a more complicated dis-
placement field

Fig. 18 Y displacement along the common boundary {10×2, 5×1}

Fig. 19 Y displacement along the common boundary {20×4, 10×2}
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polynomial.  However, the two improvements will
greatly increase the complexity of the procedure.

The MLSA method shows the best solution ac-
curacy in this problem.

In summary, a good method can be applied to
all kinds of problems.  Therefore, the penalty method
and the MLSA method are better choices than the
other two methods.

3. Parametric Study of the MLSA Method

The method used to choose nodes for the com-
mon boundary and the size of dmI are two important
parameters in the MLSA method.  In this section,
several sets of the two parameters are compared.  The
problem in the second section with a mesh {20×4,
10×2} is used for these comparisons.

First, parameter dmI is tested.  All nodes on the

adjacent boundary are used to build the test model.
Four sets of data are selected, which include dmI

=L=10, dmI=5, dmI=2 and dmI=‘min’ (the lowest pos-
sible dmI).  Analysis results are shown in Fig. 20(a).
The major difference between these four sets of dmI

is focused on L=9.5~10 (Fig. 20(b)), in which,
dmI=‘min’ is the most outstanding one, while the re-
sults of the other three are very poor between L=
9.5~10.  So, it indicates that selection of a larger dmI

is not suitable.
Second, node selection for the common bound-

ary is discussed (choose dmI=‘min’).  Five sets of node
distribution include uniform distribution of 10 nodes
(nod=10 uniform), uniform distribution of 20 nodes
(nod=20 uniform), all nodes of the original adjacent
elements (nod=41), uniform distribution of 80 nodes
(nod=80 uniform), and 80 nodes distributed with var-
ied density (nod=80).  Better results can be obtained
by the increase of the number of selected nodes (Fig.
21).  However, the best choice is to adopt all nodes
of the original adjacent elements.

IV. CONCLUSIONS

The mapping method with graded mesh is suit-
able to most problems with its changeable conditions.
To simplify the procedure used in automatic mesh is
also an important concern of program developers.
Four methods are developed to solve the compatibil-
ity problem between sub-domains.  They are the pen-
alty method, the direct transformation method, the
transformation method with modified elements, and
the MLSA method.  All four methods are proved to
be feasible for this problem.  Comments about these
four methods are as follows:
1. The penalty method is the most straightforward,

but the time taken for the analysis is the longest.

Fig. 21  Selection of nodes for the common boundary

Fig. 20 (a) Parametric study of dmi; (b) Parametric study of dmi
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2. The two transformation Methods are very suitable
for problems with simple displacement fields.
However, when a complicated displacement is
encountered, the results are not acceptable.

3. MLSA has a balanced performance for most
problems.  The adequate use of all parameters is
important for this method.
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