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DIRECT APPROACH TO SOLVE NONHOMOGENEOUS

DIFFUSION PROBLEMS USING FUNDAMENTAL SOLUTIONS

AND DUAL RECIPROCITY METHODS

Der-Liang Young*, Chia-Cheng Tsai, and Chia-Ming Fan

ABSTRACT

This paper describes a combination of the method of fundamental solutions (MFS)
and the dual reciprocity method (DRM) as a mesh-free numerical method (MFS-DRM
model) to solve 2D and 3D nonhomogeneous diffusion problems.  Using our method,
the homogeneous solutions of the diffusion equations are solved by the MFS, and the
DRM, based on the radial basis functions (RBF) of the thin plate splines (TPS), is
employed to solve for particular solutions.  The present scheme is free from the fre-
quently used Laplace transform and the finite difference discretization method to deal
with the time derivative term in the governing equation.  By properly placing the
source points in the time-space domain, the solution is advanced in time until a steady
state solution (if one exists) is reached.  Since the present method does not need mesh
discretization and nodal connectivity, the computational effort and memory storage
required are minimal as compared to other domain-oriented numerical schemes such
as FDM, FEM, FVM, etc.  Test results obtained for 2D and 3D diffusion problems
show good comparability with analytical solutions and other numerical solutions, such
as those obtained by the MFS-DRM model based on the modified Helmholtz funda-
mental solutions.  Thus the present numerical scheme has provided a promising mesh-
free numerical tool to solve nonhomogeneous diffusion problems with space-time uni-
fication for diffusion fundamental solutions.
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I. INTRODUCTION

There are many physical phenomena governed by
diffusion equations, such as flow problems, heat transfer,
solute transports, chemical processes and among others.
Though analytical solutions can be obtained for some
cases, the complexity in geometry generally necessitates
the use of numerical methods.  Classical numerical
methods such as the finite difference, finite element, fi-
nite volume, and boundary element methods have been

extensively adopted to solve various types of diffusion
problems.  Chawla and Al-Zanaidi (1999) and Hobson
et al. (1996) applied the finite difference method to solve
diffusion problems, and Teixeira (1999) carried out the
analysis of the numerical stability of the problem.
Moreover, Oden et al. (1998) employed a finite element
method to solve the diffusion process in an unbounded
medium.  On the other hand, Jones and Menzies (2000)
used the cell-centered finite volume method for the dif-
fusion equation.  Also, Zhu (1998), Zhu et al. (1998),
Bulgakov et al. (1998), Zerroukat (1999), Sutradhar et
al. (2002), and Bialecki et al. (2002) applied the BEM
to solve diffusion equations.  These classical methods
are easy to apply for regular geometries.  However, when
the geometry is not regular, the mesh discretization re-
quires a significant computational effort and a large
amount of memory storage, especially for 3D problems,
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which is a big drawback for conventional domain-ori-
ented methods.

In the past years, there has been an increasing
interest in the idea of mesh-free numerical methods
for solving partial differential equations (PDEs).
Generally speaking, such methods can be divided into
three categories.  The first category is the so-called
MFS-DRM method, which combines the method of
fundamental solutions and the dual reciprocity
method.  The second type is the so-called Kansa’s
method (or multiquadrics (MQ) method) (Kansa,
1990a; 1990b), and the third type are so-called
meshless local Petrov-Galerkin (MLPG) and local
boundary integral equation (LBIE) methods based on
integral equations (Atluri and Zhu, 1998; Zhu et al.,
1998; Wordelman et al., 2000; Lin and Atluri, 2000;
Kim and Atluri, 2000; Lin and Atluri, 2001).  In this
paper, we focus on the MFS-DRM model based on
nonhomogeneous diffusion equations by the space-
time collocation technique.

In applications of the traditional boundary ele-
ment method, a lot of computational effort is required
to calculate the domain integration for the source term.
The DRM was thus first introduced by Nardini and
Brebbia (1982) to transform the domain integral to a
boundary type by a series of RBF in their pioneer work.
On the other hand, the MFS is used to approximate
the homogenous solution by a series of fundamental
solutions.  The boundary conditions of the problem
are satisfied by the boundary collocation method, and
then the solution in the whole domain can be obtained.
The present MFS-DRM method is free from the sin-
gular integral evaluation as required by the boundary
element method.  Therefore, the MFS-DRM method
as a mesh-free numerical algorithm, has been con-
sidered to solve many PDEs in different areas suc-
cessfully (Golberg, 1995; Chen et al . ,  1998b;
Poullikkas et al., 1998b; Berger and Karageorghis,
1999; Golberg and Chen, 1998; Balakrishnan and
Ramachandran ,  2000;  Smyr l i s  e t  a l . ,  2001;
Ramachandran, 2002).  Golberg (1995) used the MFS
to obtain a numerical solution of a Poisson equation.
Poullikkas et al .  (1998a) solved harmonic and
biharmonic boundary value problems by the MFS.
Chen et al. (1998a) applied the combination of MFS
and the quasi-Monte-Carlo method for diffusion
equations.  We utilize the MFS-DRM model to solve
nonhomogeneous diffusion problems in this paper,
which is an extension for the direct solution of the
homogeneous diffusion equation (Young et al., 2004).

In the literature, the solution of diffusion equa-
tions utilizing the MFS either use the Laplace trans-
form (Chen et al., 1998b) or the finite difference
scheme (Golberg and Chen, 1998; Balakrishnan and
Ramachandran, 2000) to deal with the time derivative.
This is due to the fact that the MFS is well treated in

the spatial domain after the treatment of the transient
part.  In Chen et al.’s (1998b) work, they transformed
the diffusion equation to the modified Helmholtz
equation using the Laplace transform and then used
the modified Helmholtz fundamental solution to solve
the problems.  When the Laplace transform is adopted,
the inverse transform will be needed and sometimes
it leads to certain difficulties in the solution process.
Moreover, the particular solutions of the modified
Helmholtz operator are mathematically more difficult
than the particular solutions of the diffusion operator,
in which only inverse the Laplace is required, if the
source term is assumed time-independent.  The same
drawback as encountered in the Laplace transform ap-
proach is encountered when the time derivative is
discretized by the finite difference scheme, since it
finally also results in the modified Helmholtz equa-
tion with source term.

In this paper, the fundamental solution of the
diffusion equation is directly used to obtain the ho-
mogeneous solution of the problem without the need
for the Laplace transform or finite difference method
as presented of early works.  On the other hand, the
DRM is utilized to solve the particular solution stem-
ming from the nonhomogeneous source term, which
is assumed to be quasi-static (Chen et al., 1996).  This
assumption is suitable since the source term is nearly
a temporal distribution when using a small enough
time step.  Of course, further research is worthwhile
for general cases of time-dependent sources.  Since
any diffusion problem is a time evolution process,
the diffusion process can be obtained in a number of
time steps by using the combination of the MFS and
DRM methods.  The proposed method is adopted to
find numerical solutions in 2D and 3D geometries.
As a first attempt the method is applied for a set of
problems with the Dirichlet boundary conditions.
Moreover, numerical solutions, which are obtained
from the MFS-DRM model, based on the modified
Helmholtz fundamental solution, as well as analyti-
cal solutions, are obtained for comparison purposes.

II. GOVERNING EQUATION

Consider a linear diffusion equation with time-
independent nonhomogeneous sources over a com-
putational domain Ω with boundary Γ ,

    ∂Φ(x, t)
∂t = k∇ 2Φ(x, t) + A(x) (1)

in which x is the general spatial coordinate, t is the
time, k is the diffusion coefficient, A(x) is the source
function, and Φ(x, t) is the scalar variable to be
determined.  The initial condition of the diffusion
problem is
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Φ(x, 0)=B(x) in Ω (2)

with the Dirichlet and Neumann boundary conditions

Φ(x, t)=C(x, t) on Γ 1

    ∂Φ
∂n (x, t) = D(x, t)  on Γ 2 (3)

where Γ 1+Γ 2 is equal to the boundary Γ  and n is the
normal direction. Moreover, the boundary condition
is of Dirichlet type if only Γ 2=O, of Neumann type if
only Γ 1=O, and of Robin type if both Γ 1≠O and Γ 2≠O.
The augmented data of the problem are A(x), B(x),
C(x, t), D(x, t).

III. NUMERICAL METHOD

Generally speaking, there are two alternative
MFS-DRM models which are capable of solving dif-
fusion equations.  They are the MFS-DRM model
based on the diffusion fundamental solution, which
is the main scheme to be derived here, and the MFS-
DRM model based on the modified Helmholtz fun-
damental solution to be revisited in the appendix
(Chen et al., 1998b; Golberg and Chen, 1998).

First of all, we derive the fundamental solution
of the linear diffusion equation, which is governed by

    ∂G(x, t; ξ , τ )
∂t = k∇ 2G(x, t; ξ , τ ) + δ(x, t; ξ , τ )     (4)

By taking the Fourier transform with respect to
x and the Laplace transform for t and then inverting
the transforms; the fundamental solution of the dif-
fusion equation can be obtained as

    
G(x, t; ξ , τ ) = e– x – ξ 2

4k(t – τ )x – ξ 2
4k(t – τ )

(4πk(t – τ ))m/2 H(t – τ ) (5)

where m is the spatial dimension number and H(t) is
the Heaviside step function.

Then, we formulate the MFS-DRM model by
decomposing the solution into homogeneous and par-
ticular solutions as follows:

Φ(x, t)=Φh(x, t)+Φp(x) (6)

in which the particular solution, Φp(x), is a time-inde-
pendent function which represents a steady state (or
quasi-static) solution (Chen et al., 1996), and satisfies

    ∇ 2Φp(x) +
A(x)

k = 0 (7)

On the other hand, the time-dependent homogeneous
solution, Φh(x, t), which represents a transient (or
dynamic) solution, satisfies the homogeneous diffu-
sion equation as well as the modified initial and
boundary conditions:

    ∂Φh(x, t)
∂t = k∇ 2Φh(x, t)  in Ω

Φh(x, 0)=B(x)−Φp(x) in Ω

Φh(x, t)=C(x, t)−Φp(x) on Γ 1

    ∂Φh

∂n (x, t) = D(x, t) –
∂Φp

∂n (x)  on Γ 2 (8)

The particular solution corresponding to Eq. (7) can be

approximated by the DRM for the source term −    A(x)
k

.

    

–
A(x)

k =
a jrij

2Ln[rij] + b 1x + b 2y + b 3Σ
j = 1

N
for 2D

a jrij + b 1x + b 2y + b 3z + b 4Σ
j = 1

N
for 3D

(9)

where rij=|xi−xj| is the radial distance between collo-
cation points xj and xi, and N is the number of colloca-
tion points.  Here, the collocation points are typically
distributed in the interior domain as well as on the bound-
ary (Fig. 1).  After applying Eq. (9) in N collocation
points and the following augmented conditions, the
unknown aj’s and the b’s can be solved (Madych, 1992).

   

a jΣ
j = 1

N
= 0

a jxjΣ
j = 1

N
= 0

a jyjΣ
j = 1

N
= 0

for 2D

a jΣ
j = 1

N
= 0

a jxjΣ
j = 1

N
= 0

a jyjΣ
j = 1

N
= 0

a jz jΣ
j = 1

N
= 0

for 3D

(10)

Fig. 1  Collocation points for the dual reciprocity method
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Therefore, the particular solution Φp(x) can be
determined (Golberg and Chen, 1998):

    

Φp(x) =

a j

ri j
2( – 2rij

2 + 4rij
2Ln[rij])

6144Σ
j = 1

N

+ b 1
x3

6 + b 2
y3

6 + b 3
x2 + y2

4 for 2D

a j

rij
3

12Σ
j = 1

N
+ b 1

x3

6 + b 2
y3

6

+ b 3
z3

6 + b 4
x2 + y2 + z2

6 for 3D

(11)

With the substitution of the Eq. (1) into the
modified initial and boundary conditions of the ho-
mogeneous Eq. (8), the result will be a well-posed
homogeneous equation.  The MFS is then applied to
solve the equation.  Since the diffusion fundamental
solution sat isf ies the homogeneous diffusion
equation, the solution can be assumed to be a linear
combination of the fundamental solution of the dif-
fusion operator.  Therefore, the numerical solutions
of the diffusion equation will be of the following form

    Φh(x, t) = c jG(x, t; ξ j, τ j)Σ
j = 1

Ni + Nb
(12)

where x represents the location of the field points and
ξ j gives the location of the source points.  Moreover,
t and τ j are the time of the field and source points
respectively, Ni and Nb are the number of initial and
boundary source points and cj’s are the undetermined
coefficients, which can be determined by the method
of collocation.  The distributions of the field points
and the source points are illustrated in Fig. 2 for a 2D
situation.  In Fig. 2, the field points are placed at the
boundary portion at t=(n+1)∆t and at the interior do-
main at t=n∆t.  The source points are placed in the
same position but at different time levels.  By collo-
cating these field points and using Eq. (8), a linear
matrix system with dimension Ni+Nb can be formed
as follows:

 Aij {cj}={di} (13)

where Aij=

    
e

– x i – ξ j
2

4k(ti – τ j)– x i – ξ j
2

4k(ti – τ j)

(4πk ti – τ j )m/2
for ti > τ j

0 for ti ≤ τ j

The vector {di} is the combination of initial and
boundary conditions.  After inverting the matrix
system, the coefficients {cj} can be obtained, and then
the homogenous solution at t=(n+1)∆t can be acquired
from Eq. (12).

If the homogeneous solution Φh(x, t) and the par-
ticular solution Φp(x) are solved, the solution Φ(x, t)
of the original diffusion equation is obtained by us-
ing the superposition principle of Eq. (6).  Therefore,
the procedure can be repeated until either the termi-
nal time or a steady state solution is achieved.

IV. RESULTS AND DISCUSSIONS

The proposed numerical scheme, the MFS-DRM
model based on the diffusion fundamental solution,
is validated by comparing the results obtained with
the analytical solutions for diffusion problems with
Dirichlet boundary conditions.  Moreover, compari-
sons with the MFS-DRM model based on the modi-
fied Helmholtz fundamental solution are also carried
out.  The effectiveness of the method is verified by
solving 2D and 3D nonhomogeneous diffusion prob-
lems and the results obtained are discussed in the fol-
lowing sections.  The collocation points of the 2D
DRM for the particular solutions are shown in Fig. 1.
On the other hand, the source points and the field
points of the MFS based on the diffusion fundamen-
tal solution are depicted in Fig. 2 for a 2D problem,
and the points for the 2D MFS based on the modified
Helmholtz fundamental solution are described in Fig.
3.

1. 2D Diffusion Problem

The proposed method is utilized to study two
examples of 2D diffusion problems in a square slab
of size [0,1]×[0,1].

Fig. 2 Schematic diagram of source and field points for the MFS
based on diffusion fundamental solution
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Example 1:

   G.E.: ∂u
∂t = ∇ 2u –

6x + 6y + 2
12

I.C.: u(x, y, t=0)

=2(cos[πx]+sin[πy])+   x3 + y3 + x2 + y
12

   

B.C.:

u(0, y, t) = 2(1 + sin[πy])e– π2t +
y3 + y

12

u(1, y, t) = 2(– 1 + sin[πy])e– π2t +
y3 + y + 2

12

u(x, 0, t) = 2cos[πx]e– π2t + x3 + x2

12

u(x, 1, t) = 2cos[πx]e– π2t + x3 + x2 + 2
12

(14)

The analytical solution of the problem is given by

u(x, y, t)

=2(cos[πx]+sin[πy])e−π2t+   x3 + y3 + x2 + y
12    (15)

The comparison between the MFS-DRM model,
based on the diffusion fundamental solution, and the
analytical solution of the u-distribution along y=0.5
is depicted in Fig. 4.  The results show generally good
agreement, with the analytical solution in different
time stages.  In the figure, the gradient between the
end surfaces decreases as time increases, thus ap-
proaching a steady state condition.  The variations
clearly demonstrate the physics underlying the diffu-
sion process.  Moreover, Fig. 5 and Fig. 6 show the
time evolution history at (0.5, 0.5) of the solution and
the absolute error, respectively, for the MFS-DRM
model based on the diffusion fundamental solution,
and for the MFS-DRM model based on the modified

Fig. 3 Schematic diagram of source and field points for the MFS
based on modified Helmholtz fundamental solution

Fig. 4 Comparison of u-distribution along y=0.5 by the MFS-DRM
model based on diffusion fundamental solution (a) t=0.2;
(b) t=0.4; (c) t=0.6; (d) t=0.8 (Nodes: 11×11, dt=0.07)
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Helmholtz fundamental solution.  In Fig. 6, the MFS-
DRM model based on the diffusion fundamental so-
lution shows better performance than the MFS-DRM
model based on the modified Helmholtz fundamental
solution, since the diffusion fundamental solution is
a time-dependent function, which is capable of cap-

turing the transient process much better (two order
accuracy).  On the other hand, Fig. 7 and Fig. 8 de-
pict the error histograms for the two methods for dif-
ferent  numbers  of  points  and different  t ime
increments, in which more points and smaller time
increments generally give better results, as expected.

Fig. 5  Comparison of time evolution of u at x=y=0.5 (Nodes:
11×11, dt=0.07)

Fig. 6 Comparison of absolute error of u at x=y=0.5 (Nodes:
11×11, dt=0.07)
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Fig. 7  Time evolution history of absolute error of u at x=y=0.5 by the MFS-DRM model based on diffusion fundamental solution
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Fig. 8  Time evolution history of absolute error of u at x=y=0.5 by the MFS-DRM model based on modified Helmholtz fundamental
solution
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Fig. 9 Comparison of u-distribution along y=0.5 by the MFS-DRM
model based on diffusion fundamental solution (a) t=0.2;
(b) t=0.4; (c) t=0.6; (d) t=0.8 (Nodes: 11×11, dt=0.07)
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Fig. 10 Comparison of time evolution of u at x=y=0.5 (Nodes:
11×11, dt=0.07)
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Example 2:

   G.E.: ∂u
∂t = ∇ 2u –

yex – x sin[y]
2

I.C.: u(x, y, t=0)=cos[πx]+cos[πy]+sin[πx]

+sin[πy]+   yex + x sin[y]
2

   

B.C.:

u(0, y, t) = (1 + cos[πy] + sin[πy])e– π2t +
y
2

u(1, y, t) = (– 1 + cos[πy] + sin[πy])e– π2t

+
ye + sin[y]

2
u(x, 0, t) = (cos[πx] + 1 + sin[πx])e– π2t

u(x, 1, t) = (cos[πx] – 1 + sin[πx])e– π2t

+ ex + x sin[1]
2

(16)

The analytical solution of the problem is given by

u(x, y, t)=(cos[πx]+cos[πy]+sin[πx]

+sin[πy])e−π2t+   yex + x sin[y]
2 (17)

The numerical results of this example are shown
in Figs. 9-13.  They are similar to the previous example.
The results of the MFS-DRM model based on the dif-
fusion fundamental solution also show very good agree-
ment with the analytical solution and demonstrate better
performance than the MFS-DRM model based on the
modified Helmholtz fundamental solution.

2. 3D Diffusion Problem

For the last problem, the proposed numerical
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method is extended to study 3D diffusion problem in-
side a solid cube with dimensions [0,1]×[0,1]×[0,1].

Example 3:

   G.E.: ∂u
∂t = ∇ 2u +

sin[y] – ex – ez – 6x – 6y – 6z
10

I.C.: u(x, y, z, t=0)=sin[πx]+sin[πy]+sin[πz]

  +
ex + sin[y] + ez + x3 + y3 + z3

10

Fig. 12 Time evolution history of absolute error of u at x=y=0.5
by the MFS-DRM model based on diffusion fundamental
solution
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Fig. 11 Comparison of absolute error of u at x=y=0.5 (Nodes:
11×11, dt=0.07)
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B.C.: 

   
u(0, y, z, t) = (sin[πy] + sin[πz])e– π2t +

1 + sin[y] + ez + y3 + z3

10

u(1, y, z, t) = (sin[πy] + sin[πz])e– π2t +
e + sin[y] + ez + 1 + y3 + z3

10

u(x, 0, z, t) = (sin[πx] + sin[πz])e– π2t + ex + ez + x3 + z3

10

u(x, 1, z, t) = (sin[πx] + sin[πz])e– π2t + ex + sin[1] + ez + x3 + 1 + z3

10

u(x, y, 0, t) = (sin[πx] + sin[πy])e– π2t +
ex + sin[y] + 1 + x3 + y3

10

u(x, y, 1, t) = (sin[πx] + sin[πy])e– π2t +
ex + sin[y] + e + x3 + y3 + 1

10

(18)

The analytical solution of the problem is given by

u(x, y, z, t)=(sin[πx]+sin[πy]+sin[πz])e−π2t

+   ex + sin[y] + ez + x3 + y3 + z3

10    (19)

Figure 14 shows the time evolution history at
(0.5. 0.5, 0.5) of the solution for the MFS-DRM model

based on the diffusion fundamental solution as well
as the MFS-DRM model based on the modified
Helmholtz fundamental solution.  On the other hand,
Fig. 15 shows the time evolution history of the abso-
lute error for the two methods, in which the MFS-
DRM model based on the diffusion fundamental
solution, which has better performance.  Finally, Fig.
16 and Fig. 17 depict the error histograms for the
two methods for different numbers of points and



D. L. Young et al.: Direct Approach for Nonhomogeneous Diffusion Problems by MFS-DRM Methods 605

different time increments, in which more points and
smaller time increments in general will give better
results, as before.

V. CONCLUSIONS

Transient diffusion problems with time-indepen-
dent source terms in multi-dimensions are solved

Fig. 13 Time evolution history of absolute error of u at x=y=0.5
by the MFS-DRM model based on modified Helmholtz fun-
damental solution
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Fig. 14  Comparison of time evolution of u at x=y=z=0.5 (Nodes:
7×7×7, dt=0.04)

4.00

3.00

2.00

1.00

0.00

0.00 0.40 0.80 1.20

Time

u(
0.

5,
 0

.5
, 0

.5
)

1.60 2.00

Analytical solution
Diffusion fundamental solution
Modified Helmholtz fundamental solution

Fig. 15 Comparison of time evolution of absolute error of u at
x=y=z=0.5 (Nodes: 7×7×7, dt=0.04)
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Fig. 16 Time evolution history of absolute error of u at x=y=z=0.5
by the MFS-DRM model based on diffusion fundamental
solution
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using the MFS-DRM model based on the direct us-
age of the diffusion fundamental solution.  The MFS
is adopted to obtain the homogeneous solution and
the DRM is utilized to solve the nonhomogeneous
source term.  The generally adopted Laplace trans-
form and finite difference scheme for the time
derivative term are not required in the proposed nu-
merical solution procedure.  The independent time
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variable was treated as one of the solution domains
in the time-dependent fundamental solutions and this
space-time unification makes it possible to make use
of the MFS to obtain the numerical solutions of the
homogeneous diffusion equation without transforma-
tion or difference discretization for the time domain.
By properly locating the source points and the field
points at every time level, the solutions were advanced
in t ime until  the system reached steady state
conditions.  The numerical procedure developed in
the present work was validated by comparing its re-
sults with the results obtained by analytical solutions
as well as the traditional MFS-DRM model based on
the modified Helmholtz fundamental solution for 2D
and 3D diffusion problems under the Dirichlet bound-
ary conditions.  The excellent agreement with the ana-
lytical results and better performance than the tradi-
tional method indicate the effectiveness of the present
method to solve diffusion equations with time-inde-
pendent source terms without requiring any time
transformation or time discretization.  Besides, the
unification of time and space variables makes the re-
moval of singularities with respect to both space and
time except t−τ=0 possible.
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APPENDIX

Here, we revisit the MFS-DRM model based on
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the modified Helmholtz fundamental solution (Chen
et al., 1998b; Golberg and Chen, 1998).  First of all,
we apply the finite difference in time to the diffusion
Eq. (1).  That is

    ∂Φ(x, t)
∂t t = n∆t

= Φ (n + 1)(x) – Φ (n)(x)
∆t

(A1)

where ∆t is an a priori constant of the time step, and
Φ(n)(x) is defined as Φ(x, n∆t).  Applying the defini-
tion (A1) to the diffusion Eq. (1), we are capable of
obtaining

    Φ (n + 1)(x) – Φ (n)(x)
∆t = k∇ 2Φ (n + 1)(x) + A(x)  in Ω

(A2)

or ∇ 2Φ(n+1)(x)−λ2Φ(n+1)(x)=−λ2Φ(n)(x)−    A(x)
k

 in Ω

(A3)

where λ2=    1
∆tk .  Combining with the boundary condi-

tion (3) and the initial condition (2), this will result
in

Φ(0)(x)=B(x) in Ω

Φ(n+1)(x)=C(n+1)(x) on Γ 1

   ∂Φ (n + 1)

∂n (x)=D(n+1)(x) on Γ 2 (A4)

The Eq. (A3) and Eq. (A4) can be viewed as a series
of modified Helmholtz equations for the unknown se-
ries of functions, Φ(1)(x), Φ(2)(x), Φ(3)(x), with known
initial function Φ(0)(x)=B(x).

In order to apply the MFS-DRM model based
on the modified Helmholtz fundamental solution to
solve the equation, we first decompose the unknown
function to

    Φ (n + 1)(x) = Φh
(n + 1)(x) + Φp

(n + 1)(x) (A5)

where the particular solution,    Φp
(n + 1) (x), satisfies

    ∇ 2Φp
(n + 1)(x) – λ 2Φp

(n + 1)(x) = – λ 2Φ (n)(x) –
A(x)

k

in Ω (A6)

and the homogeneous solution,     Φh
(n + 1)(x), satisfies

    ∇ 2Φh
(n + 1)(x) – λ 2Φh

(n + 1)(x) = 0  in Ω

    Φh
(n + 1)(x) = C (n + 1)(x) – Φp

(n + 1)(x)  in Γ 1

    ∂Φh
(n + 1)

∂n (x) = D(n + 1)(x) –
∂Φp

(n + 1)

∂n (x)  in Γ 2   (A7)

The particular solution corresponding to Eq.
(A6) can be approximated by the DRM for the source

term −λ2Φ(n)(x)−    A(x)
k

    – λ 2Φ (n)(x) – A(x)
k

   

=
a jrij

2Ln[rij] + b 1x + b 2y + b 3Σ
j = 1

N
for 2D

a jrij + b 1x + b 2y + b 3z + b 4Σ
j = 1

N
for 3D

 (A8)

in which the details are the same as the DRM for the
diffusion equation posted before.  Therefore, the par-
ticular solution    Φp

(n + 1) (x) can be determined (Golberg
and Chen, 1998):

    Φp
(n + 1)(x)

   

=

a jΣ
j = 1

N
{– 4

λ 4 (K0(λrij) + Ln[rij])

–
rij

2Ln[rij]

λ 2 } – 4
λ 4 –

b 1x

λ 2 –
b 2y

λ 2 –
b 3

λ 2 for 2D

a jΣ
j = 1

N
{ 2
λ 4rij

(e
– λrij – 1) –

rij

λ 2 }

–
b 1x

λ 2 –
b 2y

λ 2 –
b 3z

λ 2 –
b 4

λ 2 for 3D

(A9)

where K0(• ) is the zero order modified Bessel
function of the second kind.

With the substitution of the Eq. (A9) into the
governing equation of the homogeneous Eq. (A7), the
result will be a well-posed homogeneous modified
Helmholtz equation, and hence it is capable of being
solved.  Since the modified Helmholtz fundamental
solution satisfies the modified Helmholtz equation,
we may assume the homogeneous solution is a linear
combination of the fundamental solution of the modi-
fied Helmholtz operator, i.e.:

    Φh
(n + 1)(x) = cig( x – ξ i )Σ

i = 1

N
(A10)

where
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g(r) =
1

2πK0[λr] for 2D

e– λr

4πr for 3D
(A11)

is the fundamental solution of the modified Helmholtz
operator (Chen et al., 1998b; Golberg and Chen,
1998), x represents the location of the field points, ξ i

gives the location of the source points, r=|x−ξ i| is the
distance, and N is the number of source points and
field points.  The source points are typically distrib-
uted away from the boundary field points to avoid
the singularity as shown in Fig. 3.  By collocating
these field points and using Eq. (A7), a linear matrix
system can be formed as follows

 Aij {cj}={di} (A12)

where   Aij =

    
1

2πK0[λ xi – ξ j ] for 2D

e
– λ x i – ξ j

4π xi – ξ j

for 3D

The vector {di} stems from the boundary
conditions. After inverting the matrix system, the
coefficients {cj} can be obtained, and then the ho-
mogenous solution at t=(n+1)∆t can be acquired.

After the homogenous solution and the particu-
lar solution are solved, the solution of the original
diffusion equation at t=(n+1)∆t can be obtained by
the superposition principle of Eq. (A5).  Therefore,
the procedure can be repeated until either the termi-
nal time or a steady state solution is achieved.


