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NUMERICAL SOLUTION OF BACKWARD HEAT CONDUCTION

PROBLEMS BY A HIGH ORDER LATTICE-FREE FINITE

DIFFERENCE METHOD

Kentaro Iijima

ABSTRACT

We construct a high order finite difference method in which quadrature points
do not need to have a lattice structure.  In order to develop our method we show two
tools using Fourier transform and Taylor expansion, respectively.  On the other hand,
the backward heat conduction problem is a typical example of ill-posed problems in
the sense that the solution is unstable for errors of data.  Our aim is creation of a
meshless method which can be applied to the ill-posed problem.  From numerical
experiments we confirmed that our method is effective in solving two-dimensional
backward heat conduction equations subject to the Dirichlet boundary condition.
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I. INTRODUCTION

We take a bounded domain D in R2 and a space-
time domain Ω=D×(0, T) in R3 for a final time T>0,
where D represents a heat conductor.  A point in the
domain Ω is written by x=t(x1, x2, t) =t(x1, x2, x3).  We
set two surfaces ΓB=∂D×[0, T] and ΓF=D×{T} of the
boundary ∂Ω.  A symbol ∆ denotes the Laplacian

   ∂2

∂x1
2 +    ∂2

∂x2
2 .  Then for given boundary data uB: ΓB→R

and final data uF: ΓF→R, we consider a problem to
look for a function u such that

 ∂u
∂t =∆u in Ω (1)

u=uB on ΓB (2)

u=uF on ΓF (3)

We call the problem (1)-(3) a two-dimensional back-
ward heat conduction problem.

The backward heat conduction problem is an ill-
posed problem in the sense that the solution is un-
stable for the given final data uF (Kress, 1989).  We
illustrate instability of the backward heat conduction

problem: Let the domain D be (−π, π)×(−π, π).  We
give final data   uF

(n) (x):=e−2n2T sinnx1sinnx2, x∈ ΓF and
boundary data   uB

(n) (x)=0, x∈ ΓB for n∈ N.  Then the
exact solution of the heat Eq. (1) is represented by
u(n)(x)=e−2n2t sinnx1sinnx2.  We choose two L2 norms

    u L2(Ω): = { u(x)2dx
Ω

}1/2 ,

    v L2(Γ F): = { v(x ′, T)2dx ′
D

}1/2

for functions u:Ω→R and v: ΓF→R, respectively,
where x′=t(x1, x2)∈ D.  The solution is estimated by

   u (n)
L2(Ω)

2

    = (e– 2n2tsin nx1sin nx2)2

Ω
dx

    
= e4n2(T – t)

0

T
dt × (e– 2n2Tsin nx1sin nx2)2

D
dx ′

   = 1
4n2 (e4n2T – 1) uF

(n)
L2(Γ F)

2
(4)

Since for any C>0 there exists n ∈ N  such that

  1
2n e4n2T – 1 > C ,  a n  i n e q u a l i t y    u (n)

L 2 ( Ω ) >
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C   uF
(n)

L2(ΓF) holds for any C>0.  This means that the
solution does not depend on the final data con-
tinuously.  Therefore the solution of the backward
heat conduction problem is unstable for the final data
with respect to the L2 norm.

In order to solve the backward heat conduction
problem numerically, we consider an application of
conventional finite difference schemes.  For any time
step size∆t>0 in the time range [0, T] and for any lat-
tice width ∆x1>0 and ∆x2>0 in each direction of D we
can show by the von Neumann condition (Richtmyer
and Morton, 1967) that the following finite differ-
ence scheme approximating the Eq. (1) is unstable.

   u(x1, x2, t) – u(x1, x2, t – ∆t)
∆t

   = {u(x1 + ∆x1, x2, t) – 2u(x1, x2, t)

   + u(x1 + ∆x1, x2, t)}/∆x1
2

   + {u(x1, x2 – ∆x2, t) – 2u(x1, x2, t)

   + u(x1, x2 + ∆x2, t)}/∆x2
2 (5)

We state a motivation for research.  There are
researches which challenge numerical analysis of ill-
posed problems.  The techniques in these researches
make discretization error and rounding error arbi-
trarily small by the spectral collocation method and
an arbitrary precision arithmetic, respectively (Imai
et al., 1999; Fujiwara and Iso, 2001).  The backward
heat conduction problem is solved very precisely with
no observation error by their techniques.  However
in the spectral collocation method we must take the
Chebyshev-Gauss-Lobatto points (Canuto et al.,
1988).  Therefore it is difficult to apply the technique
to the problem in a domain with curved boundaries.
As a method applicable to such problems, we pro-
pose a high order finite difference scheme which can
choose quadrature points at arbitrary locations.

II. NOTATION

We introduce a set Z+:={z∈ Z: z≥0} and let    Z+
m=

   
Z+ × Z+ × × Z+ , where Z denotes the set of all non-
negative integers.  Then an element α=(α1, α 2, ...,
αm)∈    Z+

m is called a multi-index.  A symbol 0 denotes
(0, ..., 0).  For αα =(α1, α2, ..., αm)∈    Z+

m, a few opera-
tions and relations are defined in the following: A
length of αα  is defined by |αα |=α1+α2+...+αm.  Let x=
t(x1, x2, ..., xm) be a vector in Rm.  We distinguish the
length of a multi-index |.| from the length of vector

|x|=    xk
2Σ

k = 1

m
.  A power of x is defined by      xαα :=    x1

α 1x2
α 2

...   xm
α m.  A factorial of αα  is defined by αα !:=α1!α2!...

α m! .   A  d i f f e ren t i a l  ope ra to r    ∂ αα

∂xαα  deno te s
   ∂α 1 + α 2 + + α m

∂x1
α 1∂x2

α 2 ∂xm
α m

=    ∂α 1

∂x1
α 1

∂α 2

∂x2
α 2

. . .   ∂α m

∂xm
α m

.  Setting ∂ j=   ∂
∂xj

and ∂∂=(∂1, ∂2, ..., ∂m) formally, we write   ∂ αα

∂xαα =     ∂∂αα .

Taylor’s theorem can be written as follows.  Let
Ω be a domain in Rm and let f be a function of class
Cµ in Ω for some µ∈ Z+.  Then for each x∈ Ω there
exists r>0 such that

       f (x + h) = hαα

αα!Σ
αα ≤ µ – 1

∂∂αα f (x)

    
+

µhαα

αα!Σ
αα = µ

(1 – t)µ – 1∂∂αα f (x + th)
0

1
dt

for all h∈ Rm with |h|<r, x+h∈ Ω.

III. FINITE DIFFERENCE APPROXIMATION

In this section, we introduce a finite difference
approximation.  Let u be an analytic function from a
bounded domain Ω⊂ Rm into R, namely, the function
u can be expanded into the Taylor series

       u(y) =
(y – x)αα

αα!Σ
αα ∈ Z+

m
∂ααu(x) ,  x, y∈ Ω (6)

in the sense of absolute and uniform convergence.  We
take N+1 quadrature points x=t(x1, x2, ..., xm), x(j)=
t(    x1

( j) ,    x2
( j) , ...,    xm

( j) ) in Ω for j=1, 2, ..., N randomly.
For real constants      aαα , αα ∈    Z+

m , we set a differential
operator P(∂∂) of the order µ0 as

       P(∂∂): = aαα ∂∂ααΣ
αα ∈ Z+

m
(7)

where      aαα =0, |αα |>µ0 for some µ0∈ N.  We consider ap-
proximating the value P(∂∂)u(x) at the point x by us-
ing linear combination of values u(x(j)), j=1, 2, ..., N.
More specifically, choosing weights wj(x)∈ R; j=1, 2,
..., N, we represent the value P(∂∂)u(x) as

       P(∂∂)u(x) = wj(x)u(x ( j)) + ε(x; u)Σ
j = 1

N
(8)

where ε(x; u) denotes the discretization error.  When
ε(x; u) is sufficiently small, we call the approxima-
tion (8) a high order finite difference approximation
of P(∂∂) at x with respect to x(j), j=1, 2, ..., N.

Concretely we can determine weights wj(x), j=1,
2, ..., N in the equality (8).  Substituting the operator
(7) into the equality (8) we can see that the left hand
side of the equality (8) becomes

       P(∂∂)u(x) = aαα ∂∂ααu(x)Σ
αα ∈ Z+

m
,  αα ∈    Z+

m (9)
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From Taylor’s expansion (6) the first term on the right
hand side of the equality (8) becomes

    wj(x)u(x ( j))Σ
j = 1

N

    = wj(x)Σ
j = 1

N
{ 1

αα!(x ( j) – x)αα ∂∂ααu(x)Σ
αα ∈ Z+

m
} (10)

From the approximation (8) and the above two equa-
tions, we obtain

    ε(x; u)

       = {aαα – wj(x) 1
α!(x ( j) – x)ααΣ

j = 1

N
}∂∂ααu(x)Σ

αα ∈ Z+
m

.

In the conventional finite difference approximation,
weights wj(x), j=1, 2, ..., N are given by a solution of
the linear system

       aαα = wj(x) 1
αα!(x ( j) – x)ααΣ

j = 1

N
,      αα ≤µ (11)

for the largest possible integer µ.
We present the following method in order to choose

our weights: Let ξξ (i), i=1, 2, ..., N be vectors in Rm

such that ξξ (i)≠ξξ (j) for i≠j.  Multiplying by (ξξ (i))αα  and
summing for all α∈    Z+

m, the equality (11) becomes

       aαα (ξξ (i))ααΣ
αα ∈ Z+

m

    = wj(x)Σ
j = 1

N
{ 1

αα!(ξξ (i))αα (x ( j) – x)ααΣ
αα ∈ Z+

m
} (12)

Generally, the equality

       1
αα! ξξ ααxααΣ

αα ∈ Z+
m

= 1
αk!

ξ k
α kxk

α kΠ
k = 1

m

Σ
αα ∈ Z+

m

   = 1
αk!

ξ k
α kxk

α kΣ
α k = 0

∞
Π
k = 1

m

   = eξ kxkΠ
k = 1

m

       = eξξ ⋅ x ,   x, ξξ ∈ Rm (13)

holds. By the equality (13) and a polynomial P(ξξ )=
       aαα ξξ ααΣ

αα ∈ Z+
m

, ξξ ∈ Rm, the equality (12) is transformed

into

       P(ξξ (i))eξξ (i) ⋅ x = wj(x)eξξ (i) ⋅ x ( j)Σ
j = 1

N
,  i=1, 2, ..., N

(14)

Setting matrices L=(l1, l2, ..., lN):=        (eξξ (i) ⋅ x ( j)

) i, j = 1
N , Q:=

      (P(ξξ (i))δij) i, j = 1
N  and column vectors l(x):=        (eξξ (i) ⋅ x) i = 1

N ,
w(x):=    (wj(x)) j = 1

N , we can write the linear system (14)

as

Ql(x)=Lw(x) (15)

where δij denotes the Kronecker delta.  Therefore the
weights wj(x), j=1, 2, ..., N are given by

w(x)=L−1Ql(x) (16)

if L has the inverse.
By using a vector u:=(u(x(j)

  ) j = 1
N  the high order

finite difference approximation (8) is represented by

P(∂∂)u(x)=tw(x)u+ε(x; u)

=t(L−1Ql(x))u+ε(x; u) (17)

We have not obtained even a sufficient condi-
tion for the existence of the inverse of L.  However
we know that the determinant |L| of L becomes 0 un-
der the following condition:

There exist i, j∈ {1, 2, ..., N}, i≠j and ηη , ηη′∈ Rm

such that the vectors {ξξ (p)} and the points {x(q)} sat-
isfy either

(ξξ (k)−ηη)⊥ (x(i)−x(j))  or (ξξ (i)−ξξ (j))⊥ (x(k)−ηη′ )

for k=1; 2, ..., N (18)

The first condition of (18) implies that N points ξξ (k),
k=1, 2, ..., N are contained in a plane that contain ηη
and the vector x(i)−x(j) is perpendicular to the plane.
In fact, we assume that the first condition in (18) is
satisfied.  Then the determinant |L| becomes

       L = (eξξ ( p) ⋅ x (q)

) p, q = 1
N

       
= (eξξ ( p) ⋅ x ( j)

δpq) p, q = 1
N (eξξ ( p) ⋅ (x (q) ⋅ x ( j))) p, q = 1

N

       
= (eξξ ( p) ⋅ x ( j)

δpq) p, q = 1
N (e(ξξ ( p) – ηη) ⋅ (x (q) ⋅ x ( j))) p, q = 1

N

    ⋅ (eηη ⋅ (x (q) – x ( j))δpq) p, q = 1
N

       
= eξξ ( p) ⋅ x ( j)Π

p = 1

N
(e(ξξ ( p) – ηη) ⋅ (x (q) – x ( j))) p, q = 1

N

    × eηη ⋅ (x (q) – x ( j))Π
q = 1

N

In the matrix        (e(ξξ ( p) – ηη) ⋅ (x (q) – x ( j))) p, q = 1
N  the jth column

vector (as q=j) becomes   (1) p = 1
N .  From the condition



614 Journal of the Chinese Institute of Engineers, Vol. 27, No. 4 (2004)

(18) the ith column vector (as q=i) also becomes
  (1) p = 1
N .  Therefore |L|=0 follows.

IV. EXPONENTIAL INTERPOLATION

We show a relation between the high order fi-
nite difference approximation and an exponential
interpolation.

Let a function u  be a linear combination of N
exponential functions        eξξ (i) ⋅ x , i=1, 2, ..., N for given
ξξ (i), and be equal to the function u on each quadrature
point x(j) for j=1, 2, ..., N.  More specifically, let there
exist constants bi∈ R, i=1, 2, ..., N such that

       u(x) = b ie
ξξ (i) ⋅ xΣ

i = 1

N
=tl(x)b ,

   u(x ( j)) = u(x ( j)) ,   j =1, 2, ..., N

where b:=   (b i) i = 1
N  is an N-vector to be determined.  We

call the function u  an exponential interpolation for-
mula of the N-vector u=    (u(x ( j))) j = 1

N .   Since u=
   (u(x ( j))) j = 1

N =    ( l j
t b) j = 1

N =tLb, the coefficients of the lin-
ear combination become b=tL−1u.  Therefore the lin-
ear combination can be written by

u (x)=tl(x)tL−1u=t(L−1l(x))u (19)

Here we make P(∂∂) operate on both sides of the
formula (19).  From the equality

       P(∂∂)l(x) = (P(∂∂)eξξ (i) ⋅ x) i = 1
N

       = (P(ξξ (i))eξξ (i) ⋅ x) i = 1
N = Ql(x)

we obtain

P(∂∂)u (x)=t(L−1P(∂∂)l(x))u=t(L−1Ql(x))u (20)

Furthermore, from

t(L−1Ql(x))=t(L−1QLL−1l(x))=t(L−1l(x))t(L−1QL)

the Eq. (20) can be written as

P(∂∂)u (x)=t(L−1l(x))t(L−1QL)u.

Therefore we can see that the matrix P:=t(L−1QL) is
equivalent to the differential operator P(∂∂) via expo-
nential interpolation (19).  In Fig. 1 we illustrate the
equivalence of P  and P(∂∂), where ΛN:=span{        eξξ (i) ⋅ x :
i=1, 2, ..., N}.  From the equality (20) the high order
finite difference approximation (17) is represented by

P(∂∂)u(x)=P(∂∂)u (x)+ε(x; u) (21)

V. DEDUCTION VIA FOURIER TRANSFORM

We deduce the high order finite difference ap-
proximation from another viewpoint by using the
Fourier transform.

From Plancherel’s theorem (Ito, 1963) the Fou-
rier transform

        F [u](ξξ ): = u(x)e– – 1 ξξ ⋅ xdx
Rm

,  ξξ ∈ Rm

is a bijective operator on L1(Rm)∩L2(Rm).  We assume
that     ∂∂αα u∈ L1(Rm)∩L2(Rm) for all     αα ≤µ0.  The Fourier
transform is linear and it has properties

F[P(∂∂)u](ξξ )=P(  – 1 ξξ )F[u](ξξ ) (22)

F[u(.+h)](ξξ )=        e– – 1 ξξ ⋅ hF[u](ξξ ) (23)

We assume u≡0 and take a function v(x+y):=
u(x) for y∈ Rm.  Then the approximation (8) is repre-
sented as

       P(∂∂)v(x + y) ≈ wj(x)v(x ( j) + y)Σ
j = 1

N
(24)

By operating the Fourier transform on each side of
the approximation (24) with respect to y, the left and
right hand sides become

        F [P(∂∂)v(x + ⋅ )](ξξ ) = P( – 1 ξξ)e– – 1 ξξ ⋅ xF [v](ξξ )

and

     F [ wj(x)v(x ( j) + ⋅)Σ
j = 1

N
](ξξ)

        = wj(x)e – 1 ξξ ⋅ x ( j)F [v](ξξ )Σ
j = 1

N

respectively.  When the sides are equated with each
other for ξξ =ξξ (i), i=1 2, ..., N, equations

        P( – 1 ξξ (i))e – 1 ξξ ⋅ x (i)F [v](ξξ (i))

        = wj(x)e – 1 ξξ (i) ⋅ x ( j)F [v](ξξ (i))Σ
j = 1

N
,  i =1, 2, ..., N

Fig. 1  Equivalence of P and P(∂∂)
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follow.  If the vector ξξ (i) is chosen as F[v](ξξ (i)) ≠0 for
i=1, 2, ..., N, the above equations become

       P( – 1 ξξ (i))e – 1 ξξ (i) ⋅ x = wj(x)e – 1 ξξ (i) ⋅ x ( j)Σ
j = 1

N
,

i =1, 2, ..., N .

Replacing  – 1 ξξ (i) with ξξ (i) for i=1, 2, ..., N formally,
we obtain the linear system (14).

VI. HIGH ORDER FINITE DIFFERENCE
METHOD

We use the finite difference approximation (8)
in a method to solve backward heat conduction prob-
lems numerically.

Let quadrature points x(k); k=1, 2, ..., N belong
to the closure   Ω  of the domain Ω.  We set differen-
tial operators

      Pk(∂∂)

       
: =

∂∂(0, 0, 1) – (∂∂(2, 0, 0) + ∂(0, 2, 0)) , x (k) ∈ Ω
I , x (k) ∈ Γ B ∪ Γ F ,

and data

    

fk: =
0 , x (k) ∈ Ω
uB(x (k)) , x (k) ∈ Γ B

uF(x (k)) , x (k) ∈ Γ F

,

for k=1, 2, ..., N, where I denotes the identity operator.
We restrict the domain Ω considered in the problem
(1)-(3) to quadrature points x(k), k=1, 2, ..., N as

Pk(∂∂)u(x(k))=fk, k=1, 2, ..., N (25)

Let uj be an approximate value of u(x(j)) for j=1, 2,
..., N.  We set vectors ξξ (i)=ρx(i), i=1, 2, ..., N for a
parameter ρ>0.  Then we consider finding the approxi-
mate values uj, j=1, 2, ..., N from the given data fk,
k=1, 2, ..., N.

Let Sk⊂ Rm be a neighborhood of each quadra-
ture point x(k) for k=1, 2, ..., N, where their union

   Sk∪
k = 1

N
 includes the closed domain   Ω .  Let Mk be the

number of elements which belong to the set N(Sk):=
{j∈ {1, 2, ..., N}: x(j)∈ Sk} for k=1, 2, ..., N.  We make
a table {mkj} such that mkj∈ N(Sk), j=1, 2, ..., Mk, k=1,
2, ..., N.

Let k∈ {1, 2, ..., N} be fixed arbitrarily.  From
an approximation

       Pk(∂∂)u(x (k)) ≈ wkju(x ( j))Σ
j∈ N(Sk)

(26)

we calculate weights wkj, j∈ {mk1, mk2, ..., mkMk
}=

N(Sk).  Since weights in the approximation (8) are
determined as a solution of the Eq. (14), we set weights
wkj, j∈ N(Sk) as a solution of the linear system

    Pk(ρx (i))eρx (i) ⋅ x (k) = wkje
ρx (i) ⋅ x ( j)Σ

j∈ N(Sk)
,  i∈ N(Sk)

(27)

and wkj=0, j∉ N(Sk).  When k moves through 1, 2, ...,
N, from the Eqs. (25) and the approximation (26) it is
suitable to define approximate values uj, j=1, 2, ..., N
as the solution of the linear system

   wkju jΣ
j = 1

N
= fk ,  k=1; 2; ...; N (28)

Setting a matrix W:=(wkj   )k, j = 1
N  and vectors u:=

(uj   ) j = 1
N , f:= (fk   )k = 1

N , the linear system (28) is repre-
sented by Wu=f.  Therefore approximate values uj,
j=0, 1, ..., N−1 are obtained by

u=W−1f (29)

We call the above method a high order finite differ-
ence method.

VII. NUMERICAL RESULTS

We apply the high order finite difference method
to the backward heat conduction problem (1)-(3).  In
the high order finite difference method we choose
such a neighborhood, Sk, that includes all quadrature
points for k=1, 2, ..., N in this paper.  Therefore the
set N(Sk) coincides with {1, 2, ..., N}.

Example 1
We compare the precision in numerical solutions

between the following direct and inverse problems.
We choose the domain D=(−0.5, 0.5)×(−0.5, 0.5) and
a time interval (TI, TF)=(−0.5, 0.5), where TI and TF

denote the initial time and the final time, respectively.
We write each surface of the space-time domain
Ω=D×(TI, TF) by ΓB=∂D×[TI, TF], Γ I=D×{TI}, and
ΓF=D×{TF}.  Let a function u satisfy (1) and (2) for
given boundary data uB.

Direct problem: Determine the function u which sat-
isfies u=uI for given initial data uI on Γ I.

Inverse problem: Determine the function u which
satisfies u=uF for given final data uF on ΓF.

We choose the quadrature points at cubic
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lattice points by equally dividing   Ω  in p−1 parts in
each direction of xk-axis.  Then the number of quadra-
ture points is N=p3.  They are represented by x([i1 i2 i3]p)

=t(   i1
p – 1 −0.5;   i2

p – 1 −0.5;   i3
p – 1 −0.5) for i1, i2, i3=0,

1, ..., p−1, where [i1 i2 i3]p:=1+i1+i2p+i3p2 is the se-
rial number.  Here we choose the number N=53=125
and the parameter ρ=1.  Fig. 2 shows the allocation
of the quadrature points.  A maximum absolute error
is defined by

   abs – err(t): = max
x3

(k) = t
uk – u(x (k)) .

A maximum relative error is defined by

  rel – err(t)

:=

    
max
x3

(k) = t

uk – u(x (k))

u(x (k))
, u(x (k)) ≥ ε

max
x3

(k) = t
uk – u(x (k)) , u(x (k)) < ε

for ε=10−13 in the double precision arithmetic.
For a parameter n∈ N the function

u(n)(x)=e−2n2tsinnx1sinnx2

satisfies the heat Eq. (1).  The solution of the direct
problem is u(n) for the boundary data uB=u(n) on ΓB

and the initial data uI=u(n) on Γ I.  The solution of the
inverse problem is also u(n) for the boundary data uB=
u(n) on ΓB and the final data uF=u(n) on ΓF.

In Table 1 we show maximum absolute values
of u(n)(x′ , t) with respect to x′∈   D  for n=1.  We show
the maximum absolute error and the maximum rela-
tive error in Table 2 for the direct problem and in
Table 3 for the inverse problem.

From Table 2 we can see that the numerical so-
lution is highly accurate for the direct problem with
n=1.  At the time t=−0.5 the numerical errors are not
0 although the discretization error is 0 since the ini-
tial data are given at t=−0.5.  We guess that errors
are caused by rounding errors.  We can see that the
precision of the numerical solution for the inverse
problem is almost equivalent to the precision for the
direct problem except for times t=−0.5, 0.5.

In Table 4 we show the maximum absolute value
of u(n)(x′ , t) with respect to x′∈   D  for n=2.  The maxi-
mum absolute values decrease faster than the case of
n=1 when t increases.  Solving the direct problem and
the inverse problem for n=2, we show both the maxi-
mum absolute error and the maximum relative error

Table 1  Maximum norm of the exact solution (n=1)

t
    max

x′∈ D
|u(1)(x′ , t)|

−0.5 6.25×10−1

−0.25 3.79×10−1

0 2.30×10−1

0.25 1.39×10−1

0.5 8.46×10−2

Table 2  Errors in the direct problem (n=1)

t abs-err(t) rel-err(t)

−0.5 5.38×10−9 1.72×10−8

−0.25 2.90×10−5 2.87×10−4

0 1.01×10−5 1.64×10−4

0.25 1.28×10−5 3.44×10−4

0.5 9.61×10−6 4.27×10−4

Table 3  Errors in the inverse problem (n=1)

t abs-err(t) rel-err(t)

−0.5 2.71×10−6 1.63×10−5

−0.25 2.90×10−5 2.87×10−4

0 1.01×10−5 1.65×10−4

0.25 1.27×10−5 3.41×10−4

0.5 2.89×10−9 1.29×10−7

Table 4  Maximum norm of the exact solution (n=2)

t
    max

x′∈ D
|u(2)(x′ , t)|

−0.5 3.87×101

−0.25 5.23×100

0 7.08×10−1

0.25 9.58×10−2

0.5 1.30×10−2

Fig. 2  Quadrature points
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in Table 5 for the direct problem and in Table 6 for
the inverse problem.

The error abs-err(−0.5)=1.39×10−5 in Table 5
and the error abs-err(0.5)=1.92×10−5 in Table 6 are
accumulations of rounding errors for the direct prob-
lem and for the inverse problem, respectively.  From
Tables 5, 6 we can estimate the absolute errors be-
tween 10−2 and 10−1 except for t=−0.5, 0.5.  For n=2
we can see that the precision of the numerical solu-
tion for the inverse problem is almost equivalent to
the precision for the direct problem except for times
t=−0.5, 0.5.

Example 2.
We consider the problem (1)-(3).  Let the do-

main D be (−0.5, 0.5)×(−0.5, 0.5) and let the final
time be T=1.  We take the solution u(n)(x) in Example
1.  We give the boundary data and the final data as

  uB
(n) (x)=u(n)(x), x∈ ΓB and   uF

(n) (x)=u(n)(x), x∈ ΓF .  Then
we calculate numerical solutions of the problem (1)-
(3) by using the high order finite difference method
for the number N=500 of quadrature points.

In Fig. 3 distribution of quadrature points is
presented.  We show the exact solution and the nu-
merical solution in Fig. 4 for parameters n=1 and ρ=4
at t=0, and in Fig. 5 for parameters n=2 and ρ=4 at
t=0.  In Fig. 6 and Fig. 7 we show the numerical so-
lution and the exact solution for parameters n=3 and
ρ=4 at t=0, respectively.  We observe increase in the
error of the numerical solution when the parameter n
becomes large.

From the estimation (4) the ratio between
the solution u (n) and the final data   uF

(n)  is Cn=   1
2n

.   e4n2T – 1 =O(   e2n2

n ) with respect to L2 norm.  For n=2,
3 ratios are estimated as C2≈700 and C3≈107.  For n=
3 we guess an accumulation of rounding error in the
computational arithmetic as a source factor for the
large error in numerical solutions.

Example 3.
We consider the problem (1)-(3).  Let the do-

main D be {(x1, x2):  x1
2+  x2

2<0.52}∪ (0, 1)×(−0.25, 0.25)

Table 5  Errors in the direct problem (n=2)

t abs-err(t) rel-err(t)

−0.5 1.39×10−5 1.24×10−5

−0.25 6.26×10−2 3.69×10−2

0 2.25×10−2 9.81×10−2

0.25 2.39×10−2 7.68×10−1

0.5 6.64×10−2 1.58×101

Table 6  Errors in the inverse problem (n=2)

t abs-err(t) rel-err(t)

−0.5 3.48×10−1 2.77×10−2

−0.25 5.62×10−2 3.31×10−2

0 2.06×10−2 8.95×10−2

0.25 2.16×10−2 6.93×10−1

0.5 1.92×10−5 4.57×10−3

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

-0.5

0

0.5 -0.5

0

0.5

x1

x2

x3

Fig. 3  Quadrature points

Fig. 4  Numerical(—) and exact(- - -) solutions (n=1, t=0)

Fig. 5  Numerical(—) and exact(- - -) solutions (n=2, t=0)
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Fig. 6  Numerical solution (n=3, t=0)

Fig. 7  Exact solution (n=3, t=0)

and the final time be T=1.  For a parameter y=
t(y1, y2, τ)∉ Ω the function

    
G(x, y) = 1

4π(t – τ )Exp[–
(x1 – y1)2 + (x2 – y2)2

4(t – τ ) ]

with respect to x satisfies the heat Eq. (1).  For y=t(0,
0, −0.3) we give the boundary data and the final data

as   uB
(n) (x)=G(x, y), x∈ ΓB and   uF

(n) (x)=G(x, y), x∈ ΓF.

Then we calculate numerical solutions of the prob-
lem (1)-(3) by using the high order finite difference
method for N=500 and ρ=3.

We show the numerical solution and the exact
solution in Fig. 8 at t=0.5 and in Fig. 9 at t=0.  For
the problem in which the domain is not a rectangle
we obtained the accurate solution although the prob-
lem is unstable.

VIII. MULTI-PRECISION ARITHMETIC

We consider behavior of rounding errors in the
high order finite difference method by numerical
computations.

We calculate the high order finite difference ap-
proximation u ′′ (x) to the derivative u′′ (x) of a one-
dimensional function u(x) on the interval [−3, 3] by
using a multi-precision arithmetic (Fujiwara and Iso,
2001).  A maximum absolute error is defined by

  max
j = 1, 2, , N

 |u ′′ (x(j))−u′′ (x(j))| with the accumulation of

rounding errors for the quadrature points x(j)∈ [−3, 3],
j=1, 2, ..., N.

In Figs. 10 and 11 we show error for u(x)=sinx
and u ′′ (x)=−sinx.  Here we choose the quadrature
points in case 1 as dividing the interval [−3, 3]

equally, namely x(j)=−3+   6( j – 1)
N – 1 , j=1, 2, ..., N, and in

case 2 as x(j)=3cos   j – 1
N – 1 π, j=1, 2, ..., N.  We use 16

and 200 digits in the multi-precision arithmetic, where
using 16 digits means double precision arithmetic.
The axis of the abscissa indicates the number, N, of
quadrature points and the axis of the ordinate indi-
cates the error by the logarithmic scale.

In Fig. 10 the increment of accuracy of u ′′  stops
for N>20 for both cases 1 and 2 in the arithmetic by
16 digits.  The approximations u ′′  in the arithmetic
by 200 digits sharply improve in accuracy for both
types of quadrature points as N increases.  The above

Fig. 8  Numerical(—) and exact(- - -) solution (t=0.5)

Fig. 9  Numerical(—) and exact(- - -) solution (t=0)



K. Iijima: Numerical Solution of Backward Heat Conduction Problems by a High Order Lattice-Free FDM 619

results imply that we can obtain the approximate func-
tion with high accuracy by using our finite difference
method.

In Fig. 11 we show the error of the approxima-
tion to u(x)=   1

1 + x2  for both ways of choosing the

quadrature points.  In the double precision arithmetic
the accuracy of the approximation does not improve
for either way of choosing the quadrature points.  In
the arithmetic by 200 digits, we observe that the ap-
proximation in case 1 diverges, although the error of
the approximation in case 2 decreases exponen-tially.
In Fig. 12 we show the approximation in case 1 for
N=50.  We can see that the Runge’s phenomenon oc-
curs in case 1.  From the above results we can not
always choose the quadrature points randomly.

IX. CONCLUSIONS

We considered a high order finite difference
method in order to solve the backward heat conduc-
tion problem.  The high order finite difference ap-
proximation is based on the idea that the derivative
of an unknown function can be approximated by a
linear combination of values of the function at quadra-
ture points.  Since we can use quadrature points which
are chosen at arbitrary locations, the approximation
gains a meshless property.  Two examples from the
Taylor expansion and the Fourier transform are
presented.  It is shown that the approximation coin-
cides with the derivative of the exponential interpo-
lation formula.  In numerical experiments, the two-
dimensional backward heat conduction problem was
solved as a three-dimensional problem in the space-
time domain.  By using N=125 cubic lattice points as
the quadrature points, the accuracy of the numerical
solution for the inverse problem is shown to be al-
most equivalent to the accuracy for the correspond-
ing direct problem.  When magnification of the solu-
tion for the final data is very large, we guess that the
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Fig. 10  Errors of u ′′  for u(x)=sinx
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Fig. 12 Derivative u′′ (x) =   – 2 + 8x2

(1 + x2)3  (- - -) and the approximation

u ′′ (x) (—) in case 1 for N=50

Fig. 11  Errors of u ′′  for u(x)=   1
1 + x2

numerical solution is strongly contaminated by round-
off errors.  We confirmed that our method is appli-
cable to the problem in a domain with a curved
boundary.
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