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Abstract

In this paper, the dual integral formulation for the modified Helmholtz equation in solving the prop-
agation of oblique incident wave passing a thin barrier (a degenerate boundary) is derived. All the
improper integrals for the kernel functions in the dual integral equations are reformulated into regular
integrals by integrating by parts and are calculated by means of the Gaussian quadrature rule. The
jump properties for the single layer potential, double layer potential and their directional derivatives
are examined and the potential distributions are shown. To demonstrate the validity of the present
formulation, the transmission and reflection coefficients of oblique incident wave passing a thin rigid
barrier are determined by the developed dual BEM program. Also, the results are obtained for the
case of wave scattering by a rigid barrier with a zero thickness in a constant water depth and are
compared with those of experiment and analytical solution using eigenfunction expansion method.
Good agreement is made.
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1 Introduction

The dual formulation plays an important role in some problems, e.g., corner problems (4], adaptive
BEM [8], spurious eigenvalues of an interior problem [2], and fictitious frequencies of an exterior
problem [1]. The present formulation totally has four kernel functions, which make possible a unified
theory encompassing different schemes, various derivations and interpretations. For crack problems, a
detailed derivation can be found in [7]. The order of singularity for the kernel in the normal derivative
of the double layer potential is stronger than that of the Cauchy type kernel by one. The paradox of
the nonintegrable kernel is introduced due to the illegal change of the integral and trace operators from
the viewpoint of the dual integral formulation. Based on the theory of dual integral equations, the
dual boundary element method has been implemented (5, 6]. The dual integral representation for the
Laplace equation was proposed in [5] and a general purpose program, BEPO2D, was developed. Also,
the program for crack problems has been developed by Hong and Chen [7] and Portela et al. [12].
For the Helmholtz equation, the dual formulation was developed by Chen and Chen [3]. In the same
way, the acoustic problem of the Helmholtz equation with a screen was also solved successfully using
the dual BEM program [3]. However, the dual BEM for the modified Helmholtz equation of a thin
breakwater subject to oblique water wave was not constructed well to the authors’ best knowledge.

Prediction of wave interactions has been studied previously by a number of authors for many
kinds of configuration of a water barrier on the basis of linear wave diffraction theory [9]. Many
analytical solutions have been developed on the basis of the eigenfunction expansion method [11] and
the boundary element method [13]. Following the theory of dual integral equations and BEPO2D
program developed by Chen and Hong [5, 6], the dual boundary element method has been modified to
solve the water wave problem of normal incident water wave past a submerged thin barrier by Yueh
and Tsaur [13]. The reflection and transmission of oblique incident water wave past a submerged
barrier with a finite width were studied by using the conventional BEM under the linear wave theory
[10]. In these references, the incident angle of wave, shape of barrier, barrier height, width and slope
under various wave conditions have been considered. Nowadays, a thin barrier can be constructed
to protect a harbor economically from the open sea. The primary function is to reduce the wave
energy transmitted through it and to have the advantages of allowing water circulation, fish passage,
providing economical protection. A suitable arrangement of a thin barrier may act as a good model
for a breakwater. The effect of such an arrangement on incident wave can be studied by using the
dual BEM, assuming linear theory for the thin breakwater.

In this paper, we will construct the dual integral formulation for solving the problems of oblique
incident wave passing a “thin” water barrier, which is similar to the acoustic problem with a screen
[3]. Thin water barrier and screen can be seen as degenerate boundaries. The governing equation
considered here is the modified Helmholtz equation for oblique incident wave passing a thin water
barrier instead of the Helmholtz equation for acoustic wave impinging on a screen. The rigid boundary
condition of a thin barrier will be considered. All the improper integrals for the kernel functions
(UT in the singular equation, LM in the hypersingular equation) encountered in the dual integral
equations will be reformulated into regular integrals by integrating by parts and will be calculated
by the Gaussian quadrature rule. The roles of hypersingular integral equation in the dual BEM for
the problems with a degenerate boundary (thin barrier) will be examined. For the kernels in the
dual formulation, we will extend our experiences of the dual formulation on the Laplace equation
(6], Helmholtz equation [3] and the Navier equation [7] to the modified Helmholtz equation and will
examine the potential properties of the four kernel functions. After discretizing the dual integral
equations, a general purpose dual BEM program will be developed to solve the propagation of oblique
incident wave passing a thin barrier with a zero thickness. The result will be compared with those of
experiment and analytical solution by using the eigenfunction expansion method.

2 Dual integral formulation for the scattering wave problem with a
thin water barrier (a degenerate boundary)

Consider a vertical thin barrier parallel to the z-axis as shown in Fig.1. A wave train with a frequency
o propagates towards the barrier with an angle 6 in a constant water depth h. Assuming inviscid,
incompressible fluid and irrotational flow, the wave field may be represented by the velocity potential
®(z,y, z,t) which satisfies the Laplace equation as

V2®(z,y,2,t) =0, (1)
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Based on the uniformity of the water depth in 2-axis and the periodicity in time, the potential
®(z,y, z,t) of fluid motion can be expressed as:

o(z,y,2,t) = ¢(z,y)e’**~7) (2)
where A = ksin(f) and k is the wave number which satisfies the dispersion relation:
02 = gk tanh(kh), (3)

in which g is the acceleration of gravity. The unknown function, ¢(z,y), describes the fluctuation of
the potential on the xy plane. Substition of Egs.(2) into (1) yields the modified Helmholtz equation

as follows: ) 9 ‘

A% ¢($, y) - A ¢($ay) = 01 ($, y) m D7 (4)
where D is the domain of interest. The boundary conditions of the interested domain are summarized
as:

1. The linearized free water surface boundary condition:

0 o _ "

o g
2. Seabed and breakwater boundary conditions:

o¢
where n is boundary normal vector.
3. Radiation condition at infinity:
. 1,00
zlLI&x2(5—a-)— —tk¢) =0. (7)

4. The fictitious boundary conditions on the interface:

For the infinite strip problem, the domain can be devided into three regions after introducing two
pseudo-boundaries on both sides of the barrier, x = +I, as shown in Fig.1. The potential in the region
I without energy loss can be expressed as:

' - k(h
¢(1)($, y) == (eln(z-H) + Re‘"’(w"'l))C_O—S(I:O(S}f(k_’t)y)) (8)

where the superscript of ¢ denotes the region number, R is the reflection coefficient and 1 = k cos(6).
The potential in the region III without energy loss can be expressed as:

(3) — in(z+1) COSh(k(h + y))
#0(@,y) = T TS, ©)
where T is the transmission coefficient. The fictitious boundary conditions on the interface are

¢ (~Ly) = 6@ (1,9 (10)

_ a¢(1) 6¢(2)
9z z=—1= —5; |.1:=—l (11)
69 y) = 4P (L y) (12)

863 862
gm |o=1= gx o=t (13)

According to Egs.(8), (9), (10) and (12), we can derive the reflection and transmission coefficients

as follows: . ;
=1t ——mn [ 6O(- h(k(h +y))d 14
R= (kR /_,,¢ (~1,) cosh(k(h + y))dy (14)

k 0
1= Rosmh(kh) /_h 6@ (1, y) cosh(k(h +y))dy (15)
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1 2kh
where ng = 5(1 + Sh(2ER) ).

The first equation of the dual boundary integral equations for the domain point can be derived
from the Green’s third identity [10]:

$(3)

omé(7) = /B T(5,3)¢(3)dB(5) — /B U(é,i)aans dB(), & € D, (16)

where Z is the field point (& = (z,y)), 3 is the source point, and T'(3, %) is defined by

(s = 26, w

in which n; denotes the normal vector at the boundary point §, and U (3, Z) is the fundamental solution
which satisfies
V2U(%,8) - NU(%,5)=6(2-3), # € D. (18)

In Eq.(18), §(Z — 3) is the Dirac-delta function. After taking normal derivative with respect to Eq.(16)
for a thin barrier problem, the second equation of the dual boundary integral equations for the domain
point is derived:

27%5%) - /B M(3,3)$(3)dB(5) — /B L(g,@)agr(j)w(g), & € D, (19)

where e
L(3,z) = e (20)

2U (3, %
M(5,2) = 66—7[{;8;1—5)’ (21)

in which n; represents the normal vector of Z. The explicit forms for the four kernel functions are
shown in Table 1. By moving the field point # in Eqs.(16) and (19) to the boundary, the dual boundary
integral equations for the boundary point can be obtained as follows:

9¢(5)
Bng

2@ _ppy. /B M(5,%)6(3)dB(5) — C.P.V. /B 1(,5)228)

onz Ons

where R.P.V. is the Riemann principal value, C.P.V. is the Cauchy principal value and H.P.V. is the
Hadamard (Mangler) principal value.

7$(3) = C.PV. /B T(3,%)$(3)dB(5) — R.PV. /B U(,5)2%4B(3), 2 € B, (22)

dB(3), & € B, (23)

3 On the four kernel functions and their potentials

The four kernel functions, U(§,%),T(3,%), L(3,%) and M (3,%), in the dual integral equations have
different orders of singularity when & approaches 3. The order of singularity and the symmetry
properties for the four kernel functions and the continuous properties of the potentials across the
boundary resulting from the four kernel functions are summarized in Table 1. In Table 1, not only the
normal derivatives for the single and double layer potentials, but also the tangential derivatives are
considered. For the regular elements, no special treatment is needed since the Gaussian quadrature
rule can be directly employed. Without loss of generality, the four improper integrals for the singular
elements obtained by using constant element scheme after coordinate transformation can be formulated
into the following regular integrals:

(1) U(3, %) kernel:
0.51
diag ([U]) = ilim D (A2 + e2)ds
€=U J-0.51

_ Ve NG 0.5
= z'lim{/_0 g D((,l)(/\|s|)ds +/—\/E(_i) In(AV's? + €2)ds +/\/€ D(()l)()\s)ds}

e—0
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= ilim{ ~\/€D(1)(/\|5I)d3+0+ /O'SID“)(As)ds}
e—0"J_ g5 ° Ve 0

0.5!
= PPN [ (DPIs) Il ds}, (29

where i> = —1, diag ([U]) denotes the diagonal element of the influence matrix [U] (which will be

elaborated on later in Eq.(28)), D(()l)(/\s) is the first kind of the zeroth order modified Hankel function,
l is the element length and the coordinate of the collocation point Z is (0, 0).
(2) T(3, %) kernel:

0.50
. g @ T3 €
diag ([T]) = iA g /—o.st DrAVet +¢) s2 + €2 ds

e —iq) €
= i/\lim/ ds
=0/ ¥e \Ws? + €2 Vs + €2

. S ¥e
= lim arctan —
€—0 € |— %

= (25)

where Dgz)()\s) is the second kind of the first order modified Hankel function and [T is the influence
matrix (which will be elaborated on later in Eq.(29)).

(3) L(3,Z) kernel:

0.51 _
diag (L) = i\l DWW F )= d
zag([ }) L eﬁ% —051 1 ( s te )m S
{i/g .
e / i0) S
€—0 ~ ¥ /\‘/S2+€21/S2+€2
= - (26)

where [L] is the influence matrix (which will be elaborated on later in Eq.(30)).

(4) M (3, &) kernel:

0.5 Wy /a2 ) 5
diag (M) = —i\lim AM(_e)(_E)+D2_()‘___ VS® €)1
e=0J/_0.51 82 + €2 Nz
. Al bV 0.5
= —iN-2DP )+ D= [ DPOIsD Isl s ), )

where Dgl)(x\s) is the first kind of the second order modified Hankel function and [M] is the influence
matrix (which will be elaborated on later in Eq.(31)). After the above manipulations, the improper
integrals, including weak (U(3,Z)), strong (I'(3,Z), L(5,Z)) and superstrong (M (3, £)) singularities,
reduce to regular integrals and are calculated using the Gaussian quadrature rule.

The potentials of the six kernel functions, U (3, %), T (3, %), L(3, %), M (3, %), L*(5,Z) and M(3, %)
in Table 1, induced by the constant singularity source distributed along the boundary from 3 =
(—0.5,0) to § = (0.5,0) are shown in Figs.2 and 4 for different values of A = 0.01 and 10, respectively.
The behavior of the single layer potential (U(§, Z) kernel), the double layer potential (T'(5, Z) kernel),
the normal derivative of the single layer potential (L™(3, Z) kernel), the normal derivative of the double
layer potential (M™(3, &) kernel), the tangential derivative of the single layer potential (L!(, %) kernel)
and the tangential derivative of the double layer potential (M*(5, ) kernel) are all shown in the figures
where only real part is considered. It is found the asymptotic behavior of the real part of the kernels
for the modified Helmholtz equation in Figs.2 for A = 0.01 are similar to that of the Laplace equation
in [5, 6] as expected. The continuous behaviors of the single layer potential (U(3, %) kernel) and the
normal derivative of the double layer potential (M (3, ) kernel) are displayed in this figures. The jump
behaviors across the boundary connected from § = (—0.5,0) to § = (0.5,0) can be observed for the
double layer potential (7°(§, Z) kernel) and the normal derivative of the single layer potential (L(3, %)
kernel). Also, the dipole and quadrapole source structures are found. Based on the singular solutions,
the strength of the singularity can be determined by satisfying the boundary conditions.
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4 Dual boundary element method for a thin barrier

By discretizing Eqs(22) and (23) using boundary elements, we can obtain the transcendental equation
as follows:

T30} (653 = W5 HGD)),

(M (0] {85} = L5051,

where the elements of the four influence matrices are

Uij(\) = R.PV. /B U(E,5)4B(S), (28)
Ti(\) = —n6i; + C.PV. /B T(&,8)4B(5), (29)
Lij(3) = 76;; + C.PV. /B (5 #)4B(), (30)
Mij(\) = HPV. /B MU, 54B(s3), (31)

in which A is imbedded in the elements of each matrix, &; is the i** collection point, dB(s;) is the s
integration element and B; denotes the j** boundary element. After combining the dual equations on

the degenerate boundary when & collocates on C* or C~, the singular system of the four influence
matrix is desingularized. Since either one of the two equations, UT or LM, for the outer boundary S
can be selected, two alternative approaches, UT + LM and LM + UT in Fig.4, are proposed.

5 Illustrative examples

To demonstrate the validity of the dual integral formulation, The example is given as follows:

An example given by Losada et al. [11] is considered. The boundary mesh is shown in Fig.5. The
submergence ratio (%) is 0.7 and the thickness of the barrier is modeled as zero thickness, i.e., the
boundary of barrier is degenerate. Based on the dual formulation, the reflection and transmission
coeflicients are plotted against kh for = 0° in Fig.6. The results were compared with the eigenfunc-
tion expansion method by Losada etal. [11] and the experimental data by Ogilvie etal. [11]. Good
agreement among the three solutions is made. The reflection and transmission coefficients are plotted
versus the angle of incidence (@) for kh = 2.136 as shown in Fig.7. The two solutions, UT + LM and
LM + UT approaches, match well with the eigenfunction solution.

In order to study the sensitivity of barrier thickness, the nonzero thickness of 5m and 10m are
also considered. The comparisons of the reflection and transmission coefficients of the three cases are
plotted against kh for § = 0° as shown in Fig.8. The comparisons of the reflection and transmission
coefficients for the three cases are plotted against 8 for kh = 2.136 as shown in Fig.9. Further
experiments will be conducted to verify the phenomenon in the future.

6 Conclusions

The dual integral formulation for the boundary value problem of the modified Helmholtz equation in
solving the propagation of oblique incident wave passing a thin barrier (a degenerate boundary) has
been derived in this paper. The properties of the potentials resulting from the four kernel functions in
the dual integral equations have been examined, and their potential distributions have also been given.
A general purpose dual BEM program has been developed to solve for the water scattering problem
passing a barrier. The example for the problem with a zero thickness barrier has been successfully
solved using the proposed dual BEM, and the results were compared well with those obtained using
analytical solution and experiments.
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Table 1 The properties of the kernel functions for the modified Helmholtz equation.

Kernel function

K(s,x) | U(s,X) T(5,X) L(5,X) M(5,X) L'(5,%) | M'(5,%X)
1 " ) = N B
y v | MEX)=-idiA D; 'ﬁ” ) vt | Les,%) = iADP ()22 | M (s, x) = -idi2 Dg”ﬁm Yyt
. ) N - yin; " r r
Explicit forms | U (s.x) = iD¢" (Ar) | T(s.x) = ~iaD| )(ﬂr)T L(s.x) :MD.‘Z’UJ)T DO - PG -
+———nn;} R —
r r
Order of Oo(l/in 1) o(1/r) (/) ol/r? o(1/r) ol/r?y
singularity weak strong strong hypersingular strong hypersingular
Symmetry U(X,5) L(X,3) T(X,3) M(X,3) M'(5,X) L'(5,X)
Density
function
uG) 7] ¢ ) ¢ o ¢
on on ot
Potential type single layer double layer normal derivative normal derivative of tangential tangential
of single layer double layer derivative of derivative of
single layer double layer
1K(5,X)0()dBE)
continuity continuous discontinuous discontinuous Psuedo-continuous continuous discontinuous
across
boundary
0 0
2z 2 2 —¢
Jump value No jump 27g on No jump No jump ot
Principal value Riemann Cauchy Cauchy Hadamard Cauchy Hadamard

where D" (4r) is the first kind of n-th order modified Hankel function, 7 and 7, denote the ith component of normal
and tangent on ¥, respectively.

A Y
% - : ? -0 Free water surface Vi
3
$D(x,y) # I (x,) #3)(x,y)
I Pseudo boundary % =0 f II Pseudo oundary III

on O

Top view
0
o > x
z
X v

Figl. Definition sketch of the water scattering problem of
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Fig.2 Contours of the real-part potentials resulting ~ Fig.3 Contours of the real-part potentials resulting
from the six kernel functions for the case of A=0.01. from the six kernel functions for the case of A=10.

Method UT (normal boundary)+LM

uT
N5=80 elements
(-20,10) (20,10)
uT uT
LM(UT) | UT@LM) II
0,7)
uT N6=40 elements

N4=4( elements
N2=20 elements

Method LM (normal boundary)+UT

= (200 4 5, l ... (0,0) (20.0)
N1=40 elements , N3=40 elements
LM LM
LM(UT)| UT(LM) h=10 m, d&=7 m, b=0 m, L=20 m
LM
Fig.4 Two alternative approaches. Fig.5 The boundary element mesh.
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Fig.6 The reflection and transmission coefficients versus k4 for 8 =0°.
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Fig.7 The reflection and transmission coefficients versus 6 for kh=2.136.
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Fig.8 The comparisons of the reflection and transmission coefficients versus k% for the three cases,
0=0".
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Fig.9 The comparisons of the reflection and transmission coefficients versus € for the three cases,
kh=2.136.
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