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Abstract

The dual integral formulation for the Helmholtz equation for use in solving the acoustic

modes of a two-dimensional square cavity is derived, and a general dual boundary element

method (BEM) program is developed. Numerical experiments for the degenerate acoustic

modes of a square cavity are performed. It is found that the degenerate modes can be dis-

tinguished by specifying the normalized boundary data at di�erent boundary points using

either the singular integral equation (UT method) or the hypersingular integral equation (LM

method). This technique can be employed to determine the multiplicity of the eigenvalue. Two

examples with Dirichlet and Neumann boundary conditions are given to show the validity of

the proposed technique. Sensitivity and failure in determining the acoustic modes by specify-

ing the normalized data at the boundary locations near and on the node are examined,

respectively. Also, numerical results are obtained using ®nite element method (FEM) and

analytical solutions for comparison. Good agreement between them is obtained. # 1998

Elsevier Science Ltd. All rights reserved.

1. Introduction

The two numerical methods widely used in the analysis of interior acoustic ®elds

are the ®nite element method (FEM) and boundary element method (BEM) [1].

Most BEM applications were based on the singular integral equation (UT method)

instead of the hypersingular integral equation (LM method) of dual BEM.
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The hypersingular integral was formulated by Hadamard [2] to treat the cylind-

rical wave equation by spherical means of descent. Also, Mangler derived the

hypersingular kernel in solving the thin airfoil problem [3]. The improper integral

was then de®ned by Tuck [4] as the ``Hadamard principal value (H.P.V.)''. In aero-

dynamics, it was termed ``Mangler's principal value (M.P.V.)'' [3,5]. Such a non-

integrable integral naturally arises in the dual integral formulation especially for

problems with a degenerate boundary, e.g., crack problems in elasticity [6±11], heat

¯ow through a ba�e [12], Darcy ¯ow around a cuto� wall [13,14], the aerodynamic

problem of a thin airfoil [5] and acoustic waves impinging on a screen [15±18].

From the viewpoint of computational mechanics, the dual formulation also

plays an important role in some other problems, e.g., the corner problem [19],

adaptive BEM [20], and the exterior problem [21]. A general application of the

hypersingular integral equation in mechanics was discussed in [22], and a review

lecture on recent developments of dual BEM was presented by Chen [23]. When

we combine the conventional integral equation, e.g., the Green's Identity or

Somigliana Identity, with the hypersingular integral equation, we call the two

equations ``dual integral equations'' due to the presence of a pair of continuous

and discontinuous properties of the potential as the ®eld point moves across the

boundary [24±26]. From the above point of view, the de®nition of the dual

integral equations is quite di�erent from the conventional one used in crack

elastodynamics by Buecker [27]. However, the dual equations in the present

paper are independent with respect to each other for the undetermined coe�-

cients of the complementary solution. The dual integral equations de®ned by

Buecker resulted from the same equation but through collocation of di�erent

points. The present formulation has in total four kernel functions, which make

possible a uni®ed theory encompassing di�erent schemes and interpretations. For

elasticity, a detailed derivation can be found in [6]. In the dual formulation, the

singularity order of hypersingularity for the kernel in the normal derivative of

the double layer potential is stronger than that of the Cauchy type kernel by

one. The paradox of the nonintegrable kernel is introduced due to the change of

the integral and trace operators which is illegal from the point of view of the

dual integral formulation [24]. In order to ensure a ®nite value, Leibnitz's rule

should be considered as the derivative of the C.P.V. so that the boundary term

2=� can be included to compensate for the minus in®nity. After the principal

values are determined [28,29], the dual BEM can be easily implemented to solve

the acoustic modes for a cavity.

For structural dynamics and acoustic problems, degenerate eigenfunctions occur

in discrete systems and continuous systems for some limiting cases [30]. For exam-

ple, a two-dimensional cavity with equal length and width results in a degenerate

eigenvalue [31]. From the mathematical point of view, the degenerate eigenmodes

result from an n by n matrix with a rank, r, which is smaller than nÿ 1; i.e. this

matrix has a nullity, nÿ r, which is larger than one. The multiplicity of the eigenva-

lue is equal to the number of nullity. The set of null solutions is used to construct the

degenerate modes. From the theoretical point of view, Gladwell et al. [34] discussed

the question of whether the level lines (contours) do or do not intersect each other
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for the degenerate modes, i.e. whether the pressure ®eld does or does not have saddle

points. That paper concentrated on the qualitative properties of modes, but in so

doing it resulted in a need for numerical studies on calculating mode shapes using,

for instance, FEM or BEM. A discussion of the degenerate eigenvalues was also

given by Laura et al. [35]. In the numerical approach using BEM [32], a technique in

which the width was perturbated was used to separate the degenerate eigenvalues.

As mentioned by Kamiya et al. [32], the direct determinant search method seems to

be inadequate for the degenerate case; therefore, they transformed the nonlinear

eigenvalue problem into a generalized eigenvalue problem to overcome this di�culty

[33]. In the ®nite element method, di�erent schemes for the degenerate modes were

employed. Lin et al. [36] proposed a dummy link technique to determine the degen-

erate eigenmodes. Also, the ®nite element program [37] can deal with the problem of

degenerate modes. This problem will be dealt with using a special technique in this

study.

In this paper, we apply the dual integral formulation to solve the degenerate

eigenfunctions of the two-dimensional Helmholtz equation for a square cavity. A

general dual BEM program was developed. The role of the dual formulation for

degenerate modes will be examined. The transcendental eigenequation will be con-

structed, and the degenerate eigenvalues will be still solved using the direct deter-

minant search method. Since the multiplicity of the degenerate eigenvalue is greater

than one, a special technique by setting a normalized value at di�erent boundary

locations will be employed to ®nd the degenerate eigenfunctions. Also, the degen-

erate modes will be distinguished by using singular integral equation (UT method)

and hypersingular integral equation (LM method). Illustrative problems for the

degenerate modes of a square cavity will be given to check the validity of the pro-

posed technique. Results obtained using dual BEM will be compared with those of

analytical solutions and FEM results [37].

2. Dual integral formulation for the degenerate eigenfunctions of a square cavity

Consider an acoustic problem which has the following governing equation:

r2��x� � k2��x� � 0; x inD; �1�

where D is the domain of interest, x is the domain point, � is the acoustic pressure

and k is the value of frequency divided by the speed of sound. The homogeneous

boundary conditions can be shown as follows:

��x� � 0; xonB1; �2�

@��x�
@nx

� 0; xonB2; �3�
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where B1 is the essential boundary in which the acoustic pressure is prescribed, B2 is

the natural boundary where the normal derivative of the acoustic pressure in the nx
direction is speci®ed, and B1 and B2 construct the whole boundaries of the domain

D.

The ®rst equation of the dual boundary integral equations for the domain point

can be derived from Green's third identity:

2���x� �
�
B

T�s; x���s� dB�s� ÿ
�
B

U�s; x� @��s�
@ns

dB�s�; x 2 D; �4�

where x and s denote the ®eld point and the source point, respectively, and T�s; x� is
de®ned by

T�s; x� � @U�s; x�
@ns

; �5�

in which ns is the normal vector at the boundary point s, and U�s; x� is the funda-
mental solution which satis®es

r2U�x; s� � k2U�x; s� � ��xÿ s�; x 2 D: �6�

In Eq. (6), ��xÿ s� is the Dirac-delta function. Since only Eq. (4) can not determine

all the degenerate modes, another integral equation is necessary to be found. After

taking the normal derivative with respect to Eq. (4), the second equation of the dual

boundary integral equations for the domain point can be derived:

2�
@��x�
@nx

�
�
B

M�s; x���s� dB�s� ÿ
�
B

L�s; x� @��s�
@ns

dB�s�; x 2 D; �7�

where

L�s; x� � @U�s; x�
@nx

; �8�

M�s; x� � @2U�s; x�
@nx@ns

: �9�

The explicit forms for the four kernel functions are summarized below:

U�s; x� � ÿi�H�1�
0 �kr�
2

; �10�

T�s; x� � ÿik�
2

H
�1�
1 �kr� yini

r
; �11�
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L�s; x� � ik�

2
H
�1�
1 �kr� yi �ni

r
; �12�

M�s; x� � ÿik�
2

ÿkH
�1�
2 �kr�
r2

yiyjni �nj �H1
1�kr�
r

ni �ni

( )
; �13�

where H
�1�
n �kr� is the nth order Hankel function of the ®rst kind, r is the distance

between x and s points, yi � si ÿ xi, ni; �ni are the ith components of the normal

vectors at s and x, respectively.

By moving the ®eld point x in Eqs. (4) and (7) to the boundary, the dual boundary

integral equations for the boundary point can be obtained as follows:

���x� � C:P:V:

�
B

T�s; x���s� dB�s� ÿR:P:V:

�
B

U�s; x� @��s�
@ns

dB�s�; x 2 B;

�14�

�
@��x�
@nx

� H:P:V:

�
B

M�s; x���s� dB�s� ÿ C:P:V:

�
B

L�s; x� @��s�
@ns

dB�s�; x 2 B;

�15�

where R.P.V. is the Riemann principal value, C.P.V. is the Cauchy principal value

and H.P.V. is the Hadamard (Mangler) principal value.

It must be noted that Eq. (15) can be derived by simply applying a normal deri-

vative operator with respect to Eq. (14). Di�erentiation of the Cauchy principal

value must be carried out carefully using Leibnitz's rule. The commutative property

provides us with two alternatives for calculating the Hadamard principal value. The

details can be found in [24]. Eqs. (4) and (7) are termed dual boundary integral

equations for domain point, and Eqs. (14) and (15) are named dual boundary inte-

gral equations for the boundary point.

3. Dual boundary element formulation using constant element

After deriving the above compatible relationships of boundary data in Eqs. (14)

and (15), the dual boundary integral equations can be discretized by using constant

elements and the resulting algebraic system can be obtained as

� �Tij�� � �Uij� @�

@n

� �
; �16�

�Mij�� � � �Lij� @�

@n

� �
; �17�
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where [ ] denotes a square matrix, a column vector and the elements of the square

matrices are respectively,

Uij � R:P:V:

�
Bj

U�sj; xi� dB�sj�; �18�

�Tij � ÿ��ij � C:P:V:

�
Bj

T�sj; xi� dB�sj�; �19�

�Lij � ��ij � C:P:V:

�
Bj

L�sj; xi� dB�sj�; �20�

Mij � H:P:V:

�
Bj

M�sj; xi� dB�sj�; �21�

where Bj denotes the jth element. All the above formulae can be separated into two

parts, one is regular, the other is irregular. For the irregular part, the partial inte-

gration is employed to transform the hypersingular, strongly singular and weakly

singular integrals into regular integrations. Therefore, the quadrature rule is used to

determine all the integrals.

For the diagonal terms, Uii;Tii;Lii and Mii, we have

(1) U�s; x� kernel:

Uii � ÿi�
2

lim
�!0

�0:5l
ÿ0:5l

H
�1�
0 �k

��������������
s2 � �2

p
� ds

� ÿi�
2

lim
�!0

�ÿ ��
�

p

ÿ0:5l
H
�1�
0 �kjsj� ds

(

�
� ��

�
p

ÿ ��
�

p i
2

�
ln

k

2

��������������
s2 � �2

p� �
ds�

�0:5l��
�

p H
�1�
0 �ks� ds

)

� ÿi�
2

lim
�!0

�ÿ ��
�

p

ÿ0:5l
H
�1�
0 �kjsj� ds� 0�

�0:5l��
�

p H
�1�
0 �ks� ds

( )

� ÿi�
2

H
�1�
0

kl

2

� �
l� k

�0:5l
ÿ0:5l

H
�1�
1 �kjsj�jsj ds

� �

�22�

(2) T�s; x� kernel:

Tii � i�k

2
lim
�!0

�0:5l
ÿ0:5l

H
�1�
1 �k

��������������
s2 � �2

p
� ���������������

s2 � �2
p ds

� i�k

2
lim
�!0

� ��
�4

p

ÿ ��
�4

p
i�ÿ2�

�k
��������������
s2 � �2

p ���������������
s2 � �2

p ds

� lim
�!0

arctan
s

�
j
��
�4

p
ÿ ��

�4
p

� �:

�23�
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(3) L�s; x� kernel:

Lii � i�k

2
lim
�!0

�0:5l
ÿ0:5l

H
�1�
1 �k

��������������
s2 � �2

p
� ÿ���������������

s2 � �2
p ds

� lim
�!0

ÿi�k
2

� ��
�4

p

ÿ ��
�4

p
i�ÿ2�

�k
��������������
s2 � �2

p ���������������
s2 � �2

p ds

� ÿ�:

�24�

(4) M�s; x� kernel:

Mii � ÿi�k
2

lim
�!0

�0:5l
ÿ0:5l

ÿkH
�1�
2 �k

��������������
s2 � �2

p
�

s2 � �2
�ÿ���ÿ��

�H
�1�
1 �k

��������������
s2 � �2

p
���������������

s2 � �2
p ds

� ÿi�k
2

ÿ2H�1�
1

kl

2

� ��

�k H
�1�
0

kl

2

� �
� k

�0:5l
ÿ0:5l

H
�1�
1 �kjsj�jsj ds

� ��
:

�25�

4. Eigenequation for the eigenvalue problem obtained using dual BEM

For simplicity, problems with Dirichlet and the Neumann boundary conditions

will be considered in this section. Numerical results obtained under either Dirichlet

or Neumann conditions will be elaborated on later. After obtaining Eqs. (16) and

(17) using dual BEM, we can obtain the transcendental equations as follows:

UTmethod : � �Tij�k���j � 0 for theNeumann problems; �26�
LMmethod : �Mij�k���j � 0 for theNeumann problems; �27�

UTmethod : �Uij�k�� @�

@n

� �
j

( )
� 0 for theDirichlet problems; �28�

LMmethod : � �Lij�k�� @�

@n

� �
j

( )
� 0 for theDirichlet problems; �29�

where �j is the boundary mode of the acoustic pressure, �@�=@n�j is the boundary
mode of the normal ¯ux of the acoustic pressure, and the eigenvalue, k, is imbedded

in the elements of the matrix. The nontrivial eigensolution for �j and �@�=@n�j in
Eqs. (26)±(29) only exists when the determinants of their in¯uence matrix are zero.
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Since either one of the two equations, UT or LM, can be selected, two alternative

approaches, the UT and LM methods, are proposed. To solve for the eigenequation,

a direct determinant search method is employed. After determining the eigenvalues,

the boundary mode can be obtained by setting a normalized value to be one in any

one element of the column vector of �j. By changing the normalized data in one

element of the vector �j, di�erent modes can be obtained if the eigenvalue is degen-

erate. By substituting the eigenvalue, boundary mode and known boundary condi-

tion into Eq. (4), the mode of the ®eld can be obtained. It must be noted that

sensitivity and failure in determining the boundary mode will occur if the locations

of the normalized data are near and on the node, respectively. This phenomenon will

be demonstrated in the following numerical experiments.

5. Acoustic analysis carried out using ®nite element method

Acoustics, ``the science of sound'', is the study of problems involving small vibra-

tions in an inviscid ¯uid. Most of acoustic problems are generally modeled using the

boundary element method; however, this method has not yet been implemented in

the commercial code, ABAQUS. Thus, acoustic modeling in ABAQUS is restricted

to the ®nite element approach. Acoustic pressure is the basic variable in acoustic

analysis. For the Neumann boundary condition case, the gradient of the pressure

normal to the plane, @�=@n; is zero. Since @�=@n corresponds to surface ``loading'' in

the acoustic problem, this boundary condition requires no data - it is an unloaded

surface. This means that an arbitrary acoustic pressure value is present in the solu-

tion ± the equivalent of a rigid body mode in a structural problem-resulting in a zero

frequency mode. During the *FREQUENCY procedure, therefore, we introduce a

shift of ÿ10 cycles/s2. This eliminates the di�culty of having a singularity in the

matrix that must be solved during eigenvalue extraction. The negative shift ensures

that the frequencies are still extracted in ascending order, starting with the zero fre-

quency. For the problem with the Dirichlet boundary condition, � � 0, on the sur-

face, the *BOUNDARY option is employed. From the mathematical point of view,

Table 1

Eigenproblems using FEM, complex BEM and Real MRM

FEM Complex BEM Real MRM

State X
�

u
�
; t
�

U
�
; t
�

Eigenproblem KX
�
� !2MX

�
Uc�!� t� � Tc�!�u� UR�!� t� � TR�!�u�

Lc�!� t� � Mc�!�u� LR�!�t� � MR�!� t� � MR�!�u�

Eigenvalue l � !2
l � !2

l � !2

Eigenmode X
�

u
�
t
�

� �
u
�
t
�

� �

Eigenequation AX
�
� lX

�
A�l�X

�
� O

�
�Ao � lA1 � l

2A2 � � � � lnAn�X� � O
�
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the two boundary conditions are termed the ``Dirichlet'' and ``Neumann'' types. The

equation of state, i.e., the constitutive behavior, is

K=�0 � c2; �30�

where �0 is the ambient density of the ¯uid, K is the bulk modulus of the ¯uid, and c

is the speed of sound. For the case of air, we have

c � 340 m=s: �31�

In order to calculate the frequencies of an enclosed cavity, a standard linear eigen-

value problem can be obtained as follows:

�K�x � ÿk2x; �32�

where �K� is a square symmetric matrix, and x is an eigenvector. As shown in Table 1,

the eigenvalue problem of Eq. (32) is linear for FEM instead of nonlinear as in Eqs.

(26)±(29) for BEM. Since the ®nite element method is employed in the ABAQUS

code, x is the mode shape in the ®eld instead of the boundary mode in BEM. Many

eigenvalue solvers have been used in the literature. The subspace technique is

employed in this paper.

Fig. 1. Contour plot of the exact solution of the degenerate modes of the ®rst eigenvalue 170 Hz for the

Neumann problem.
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Fig. 2. (a) Contour plot of the degenerate modes of the ®rst eigenvalue for the Neumann problem using

the UT method.
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Fig. 2. (b) Contour plot of the degenerate modes of the ®rst eigenvalue for the Neumann problem using

the LM method.
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6. Illustrative examples

Example 1. A square cavity with the Neumann boundary condition.

A square cavity of area `2m2 with the Neumann boundary condition will be con-

sidered as a demonstrative example. The former ®ve eigenvalues are shown in

Table 2 for l � 1. Analytical solutions and numerical results obtained using the UT

and LM methods are both shown. Also, the FEM results obtained using ABAQUS

have been worked out for comparison. The analytical solution of the eigenvalue is

kmn � �

�������������������������
m

l

� �2
� n

l

� �2r
; �m � 0; 1; 2; 3; . . . ; n � 0; 1; 2; 3; . . .�; �33�

Fig. 2. (c) Contour plot of the degenerate modes of the ®rst eigenvalue for the Neumann problem using

ABAQUS.
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Fig. 3. A linear combination of two independent degenerate modes.
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Fig. 4. (a) Sensitivity in determining the mode of the second eigenvalue 240.4 Hz for the Neumann

problem by specifying the normalized value near the node using the UT method (80 elements).
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Fig. 4. (b) Sensitivity in determining the mode of the second eigenvalue 240.4 Hz for the Neumann

problem by specifying the normalized value near the node using the LM method (80 elements).
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and its corresponding degenerate eigenfunctions can be expressed as

a�mn�x1; x2� � b�nm�x1; x2�, where a and b are real numbers, and �mn�x1; x2� is the
analytical solution of the eigenfunction as shown below:

�mn�x1; x2� � cos
m�x1

l

� �
cos

n�x2

l

� �
; �m � 0; 1; 2; 3; . . . ; n � 0; 1; 2; 3; . . .�:

�34�

The rigid mode (m=0, n=0) resulting from a zero eigenvalue is not considered here.

Both the (0,1) and (1,0) modes are degenerate eigenfunctions for the ®rst eigenvalue

of 170 Hz with multiplicity two as shown in Table 2. The analytical solutions for the

modes corresponding to the ®rst eigenvalue in the contour are shown in Fig. 1.

Using the UT method, we obtained the degenerate modes by specifying a normal-

ized value of one for boundary data at di�erent locations. Also, the same modes

could be obtained using the LM method. The results are shown in Fig. 2(a) and (b)

for the UT and LM methods, respectively, where the dark circle ``�'' denotes the
speci®ed position of the normalized boundary data. Both Fig. 2(a) and (b) indicate

that the degenerate mode depends on the speci®ed location of the normalized data.

It is found that the maximum value of the obtained mode occurs at the speci®ed

position. For comparison, Fig. 2(c) shows the degenerate modes obtained using

ABAQUS. Fig. 2(a)±(c) all indicate that distortion appears in comparison with the

exact solution in Fig. 1. The ABAQUS results listed in Fig. 2(c) show that the

obtained modes are the linear combinations, (ÿ0.1, 1) and (1, 0.1), of the two inde-

pendent modes of the exact solution in Fig. 1, respectively. Also, a linear combina-

tion for the two independent degenerate modes obtained using dual BEM is used to

construct another mode in Fig. 3. For the case of nondegenerate (1,1) eigenfunctions

of the second eigenvalue 240.4 Hz, the same eigenmode was obtained even when the

Fig. 4. (c) Contour plot of the node of the second eigenvalue 240.4 Hz for the Neumann problem using

ABAQUS.
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Fig. 5. (a) Failure in determining the mode of the second eigenvalue 240.4 Hz for the Neumann problem

by specifying the normalized value on the node using the UT method (84 elements).
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Fig. 5. (b) Failure in determining the mode of the second eigenvalue 240.4 Hz for the Neumann problem

by specifying the normalized value on the node using the LM method (84 elements).
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position of the boundary data having a value of one was changed except to the

locations of at the node and near the node. To demonstrate this point, Fig. 4(a)

shows the sensitivity in determining the mode corresponding to the second eigenva-

lue by specifying the normalized value near the node using the UT method (80 ele-

ments). Fig. 4(b) shows the sensitivity in determining the same mode by specifying

the normalized value near the node using the LM method (80 elements). For com-

parison, Fig. 4(c) shows the same mode obtained using ABAQUS. Also, Fig. 5(a)

shows the failure in determining the same mode by specifying the normalized value

on the node using the UT method (84 elements). Fig. 5(b) shows the failure in

determining the same mode by specifying the normalized value on the node using

the LM method (84 elements). Since the constant element scheme was used, two

meshes, 80 elements in Fig. 4(a) and (b) and 84 elements in 5(a) and 5(b) were pro-

vided to specify the normalized data on the boundary locations, near the node and

on the node, respectively. Both cases illustrate the sensitivity and failure in deter-

mining the mode. As shown in Fig. 4(a), (b), Fig. 5(a) and (b), the same mode was

obtained if the position of the normalized data was not on the node or near the

node. For the degenerate (0,2) and (2,0) modes of the third eigenvalue 340 Hz, Fig. 6

shows the contour plot of the exact solution of some possible degenerate modes. Fig.

7(a) shows the contour plot of the degenerate modes obtained using the UT method.

Fig. 7(b) shows the contour plot of the degenerate modes obtained using the LM

method. For comparison, Fig. 7(c) shows the degenerate modes obtained using

ABAQUS. The two modes are combinations of two analytical solutions with

Fig. 6. Contour plot of the exact solution of the degenerate modes of the third eigenvalue 340 Hz for the

Neumann problem.
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Fig. 7. (a) Contour plot of the degenerate modes of the third eigenvalue for the Neumann problem using

the UT method.

J.T. Chen et al./Applied Acoustics 57 (1999) 293±325 313



Fig. 7. (b) Contour plot of the degenerate modes of the third eigenvalue for the Neumann problem using

the LM method.
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coe�cients of (1, 0.5) and (0.5, ÿ1) as in Fig. 6. It is found that dual BEM (UT and

LM) and FEM, using ABAQUS, can obtain at least these two possible degenerate

modes.

Example 2. A square cavity with the Dirichlet boundary condition.

A square cavity of area `2m2 with the Dirichlet boundary condition will be con-

sidered next. The former ®ve eigenvalues are also shown in Table 2 for l � 1. Ana-

lytical solutions and numerical results obtained using the UT and LM methods are

both shown. Also, results obtained using ABAQUS were worked out for compar-

ison. The analytical solution of the eigenvalue is

Fig. 7. (c) Contour plot of the degenerate modes of the third eigenvalue for the Neumann problem using

ABAQUS.
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kmn � �

�������������������������
m

l

� �2
� n

l

� �2r
; �m � 1; 2; 3; . . . ; n � 1; 2; 3; . . .�; �35�

and its corresponding degenerate eigenfunctions can be represented by

a�mn�x1; x2� � b�nm�x1; x2�, where a and b are real numbers, and �mn�x1; x2� is the
analytical solution of the eigenfunction as shown below:

�mn�x1; x2� � sin
m�x1

l

� �
sin

n�x2

l

� �
; �m � 1; 2; 3; . . . ; n � 1; 2; 3; . . .�: �36�

Both the (1,2) and (2,1) modes are degenerate eigenfunctions for the second eigen-

value 380.1 Hz in Table 2. The analytical solutions for the possible degenerate

modes in the contour are shown in Fig. 8. Using the UT method, we obtained the

degenerate modes by specifying a value of one for the corresponding boundary data

at di�erent locations shown in Fig. 9(a). Also, the same modes could be obtained

using LM method in Fig. 9(b). Both Fig. 9(a) and (b) show that the eigenfunctions

could be distinguished by specifying the normalized data at di�erent boundary

positions. Both Fig. 9(a) and (b) indicate that the degenerate mode depends on the

speci®ed location of the normalized data. It is also found that the maximum value of

the obtained mode occurs at the position where the normalized data is speci®ed. For

comparison, Fig. 9(c) shows the degenerate modes obtained using ABAQUS. The

Fig. 8. Contour plot of the exact solution of the degenerate modes of the second eigenvalue 380.1 Hz for

the Dirichlet problem.
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Fig. 9. (a) Contour plot of the degenerate modes of the second eigenvalue for the Dirichlete problem

using the UT method.
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Fig. 9. (b) Contour plot of the degenerate modes of the second eigenvalue for the Dirichlet problem using

the LM method.
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two modes are similar to the analytical solutions shown in Fig. 8. It is found that

dual BEM (UT and LM) and FEM using ABAQUS can obtain the two independent

degenerate modes. For the degenerate modes corresponding to the fourth eigenva-

lue, 537.6 Hz, as shown in Table 2, the exact solution is shown in Fig. 10. In the

same way, Fig. 11(a) and (b) show the modes obtained using the UT and LM

methods, respectively. Both Fig. 11(a) and (b) also indicate that the eigenfunctions

can be distinguished by specifying the normalized data at di�erent boundary posi-

tions. It is interesting to ®nd that the modes obtained using both the UT and LM

methods are di�erent even though the speci®ed locations of the normalized data of

value one are the same. This ®nding shows that the LM method can also be used to

distinguish whether the eigenvalue is degenerate or not in spite of the change of the

Fig. 9. (c) Contour plot of the degenerate modes of the second eigenvalue for the Dirichlet problem using

ABAQUS.
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position of the normalized data. In addition, the FEM results obtained using

ABAQUS are shown in Fig. 11(c). The two modes are combinations of the two basic

modes in the analytical solutions of Fig. 10 with the coe�cients (1, 1) and (0.5, ÿ1).
Fig. 11(a)±(c) show that dual BEM (UT and LM) and FEM using ABAQUS can

obtain at least two possible degenerate modes.

7. Conclusion

The dual formulation for the eigenvalue problem of acoustics has been derived.

Numerical experiments on degenerate eigenfunctions have been performed using

dual BEM. By specifying the appropriate locations for the normalized data, we can

obtain the degenerate eigenfunctions. Also, this method can be used to distinguish

whether the eigenvalue is degenerate or not. Two examples, a square cavity with

Dirichlet and Neumann boundary conditions, have been given to show the validity

of the present method. The present results have been compared with those of the

analytical solution and of FEM using ABAQUS. Good agreement has been

obtained.
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Fig. 10. Contour plot of the exact solution of the degenerate modes of the fourth eigenvalue 537.6 Hz for

the Dirichlet problem.
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Fig. 11. (a) Contour plot of the degenerate modes of the fourth eigenvalue for the Dirichlete problem

using the UT method.
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Fig. 11. (b) Contour plot of the degenerate modes of the fourth eigenvalue for the Dirichlet problem

using the LM method.
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