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The relation between the multiple reciprocity method and the complex-valued
formulation for the Helmholtz equation is re-examined in this paper. Both the singular
and hypersingular integral equations derived from the conventional multiple
reciprocity method are identical to the real parts of the complex-valued singular
and hypersingular integral equations, provided that the fundamental solution chosen in
the multiple reciprocity method is proper. The problem of spurious eigenvalues occurs
when we use either a singular or hypersingular equation only in the multiple
reciprocity method because information contributed by the imaginary part of the
complex-valued formulation is lost. To filter out the spurious eigenvalues in the
conventional multiple reciprocity method, singular and hypersingular equations are
combined together to provide sufficient constraint equations. Several one-dimensional
examples are used to examine the relation between the conventional multiple
reciprocity method and the complex-valued formulation. Also, a new complete
multiple reciprocity method in one-dimensional cases, which involves real and
imaginary parts, is proposed by introducing the imaginary part in the undetermined
coefficient in the zeroth-order fundamental solution. Based on this complete multiple
reciprocity method, it is shown that the kernels derived from the multiple reciprocity
method are exactly the same as those obtained in the complex-valued formulation.

© 1998 Elsevier Science Ltd.

1 INTRODUCTION

To study the eigenvalue problem of the scalar-valued
Helmholtz equation in a bounded area, boundary element
methods that are based on the integral equation have been
employed. Comparing with the finite element method, the
boundary element method seems to be very efficient since it
requires discretization on the boundary only. When the fun-
damental solution of the Helmholtz equation is used, the
unknown wave number & is included in the fundamental
solution.'? This is the reason why the boundary element
method is, sometimes, thought to be unsuitable for eigen-
value analysis despite its advantage in sole boundary
discretization. Use of this kind of integral equation to deal
with eigenvalue problems has been studied by many
researchers.”™®

Another category is the integral equation formulation,

* Author to whom all correspondence should be addressed.

which employs fundamental solution of the Laplace
operator. However, this kind of integral equation inevitably
produces an additional domain integral. To compute the
domain integral, three methods are available:

1. the internal cell method;
2. the dual reciprocity method (DRM);
3. the multiple reciprocity method (MRM).

The first method requires discretization of the domain
and, therefore, is less efficient compared with the others.
Also, this method loses the spirit of the boundary element
method, which uses discretization on the boundary only.
The DRM is devised to transform the domain integral into
the corresponding boundary integral with the help of addi-
tional application of Green’s identity.” This method requires
a special influence type interpolation function to approxi-
mate the unknown function inside the domain and some
internal points besides the boundary nodes. The resulting
formulation is domain discretization free.** MRM uses a
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series of higher-order fundamental solutions derived from
the Laplace operator (real-valued higher order fundamental
solutions). This formulation is convenient during recompu-
tation at different values of k because & is left outside the
integrals. Many publications have focused on use of MRM
to deal with eigenvalue problems of the Helmholtz
equation.’®~ > For solving the diffusion problem, the
complex-valued fundamental solutions derived from the
Helmholtz operator has been used.!” Without misleading
the readers, the term ‘MRM’ cited in this paper only means
the method based on the Laplace-type fundamental solutions
which is intended for solving the Helmholtz equation.

Chen and Wong'* found that MRM encounters the
spurious eigenvalue problem in the one-dimensional case,
provided that either a singular or hypersingular equation for
MRM is used only, and they proposed a method for com-
bining both singular and hypersingular equations for MRM
to solve such a problem. The same problem appears in the
two-dimensional case found by Wong.'> However, the
mechanism for spurious eigenvalues in the MRM formula-
tion is not explained in their work.'*'> Kamiya et al.'®
derived the complex-valued formulation for the scalar-
valued Helmholtz equation, and they found that the MRM
formulation only obtains one part of their complex-valued
formulation in two-dimensional cases. They did not provide
a general proof of their statement for any dimensional cases.
The principal objectives of this paper are:

1. to obtain a general derivation of the relation between
the complex-valued formulation and MRM for one-
dimensional, two-dimensional and three-dimensional
cases;

2. to give the reason for the occurrence of spurious
eigenvalues in MRM and to explain how to deal
with this kind of problem;

3. to propose a complete MRM that is fully equivalent to
the complex-valued formulation.

2 FORMULATIONS AND RELATION BETWEEN
THE CONVENTIONAL MRM AND
COMPLEX-VALUED FORMULATION

The problem considered here is a scalar-valued Helmholtz
differential equation of the potential u in a domain Q
bounded by the boundary TI':

V2u(x) + K*u(x) =0 (for x in ), 5}

where V2 is the Laplacian operator with respect to point x, k

is the wave number, which is unknown for the eigenvalue

problem, and u(x) is the unknown eigenmode. Eqn (1) is
reduced to the singular integral equation as

cu(§) + JFT(x, £u(x)dT'(x) ~ LU(x, Eux)dl'(x) =0,
@

a“(") is the normal derivative of the unknown

where t(x) =

potential with n, representing the outnormal direction at x
point on the boundary, U(x,£) is the fundamental solution
that satisfies both (V,% + kz)U(x, £) =08(x — £) and the radia-
tion condition, T(x, £) = BU" 9 and the value of ¢ depends
on where £ is located.

Taking the normal derivative of eqn (2) with respect to n,
the hypersingular equation can be obtained as

ct(§) + LM(x, §u(x)dl'(x) — LL(x,E)t(X)dF(x)=0

(3)
aU(x,
where L(x, §) = 6(nE 2 and M(x, §) = z U(" E) Eqns (2) and

(3) together were called the dual mtegral equatlons by Chen
and Hong."”

Another set of dual integral equations for an interior pro-
blem based on MRM can be also derived as:"*

cu(§) + J-FTT(X» Su(x)dl'(x) — LUE(L Otx)dl'(x) =0
(C))

ct(€)+ L.Mf(x, §u(x)dl'(x) — LLf(x,E)t(X)dT'(X)=0

&)
In the above equations, Up(x, £) = Z-O(_ k* )’UL)(x £),
where VIU[™! (x,£)=UP(x,§) and ViU =6(x—%),
T = a&n , Ly =% and M{ = ‘9 U Z°L_ These kernel func-
tions are all real funcnons since they ére derived from the
Laplace differential operator. The subscript ‘L’ in these
kernels denotes that they are all derived from the Laplace
type operator and the superscript ‘=’ means all the kernels
are obtained from summing the infinite series.

For the eigenvalue problem of an interior domain, it is of
great interest to determine whether these two formulations
(one based on the complex-valued formulation and the other
based on the real-valued MRM formulation) can yield the
same result. To answer this question, we will first look at the
relationship between them. Kamiya et al.'® found by
providing a two-dimensional example that the MRM
formulation is identical to the real part of the complex-
valued formulation. Their finding is conditionally true for
general cases and will be discussed in the following.

Define that U*(x, £) = U (x, £) — U(x, £), one finds

VIU'(x, §) = VUL (x, £) — VUG, §). ©)
Recalling that

V2U(x, §) = 8(x — §) - K U(x, ) ™
and

VUL )=, ol — Y VIUP(x, £) ®)

@

= > (=YD (x, ) + VUL (x, §)

= > (—KYU D, B+ 8 — §),

j=1
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substituting eqns (7) and (8) into eqn (6), one obtains

ViU 8) =D (— YUV, 5+ UL E) - 9)

=(=K) Y (—KYUL(x, £) + KU, £)
j=0

=(—=k)[U{(x,§) - U(x, §)]

= — KU (x, £).

Therefore, it can be concluded that
ViU (x,§) + KU (x, £) =0. (10)

This means that U™ can be any potential field satisfying
the Helmholtz equation. Since the fundamental solutions
Uy and U are both functions of distance, it is required that

U'(x, §)=U"(r), (11

where r is defined as the distance between position x and £.
Therefore, eqn (10) can be modified as

VU (R + U (r) =0 (12)

where V2 is the Laplacian operator in the radial part.
Kamiya er al.'® claimed that the kernel derived from the
real-valued MRM is identical to the real part of the
complex-valued formulation. From the above discussion,
it is clearly seen that the difference between the kernels of
the single layer potential derived from the conventional
MRM and the complex-valued formulation can be any

potential field satisfying the Helmholtz equation, eqn (12).
Therefore, Kamiya’s finding is true when one specifies that
U* = — im(U).

Furthermore, we should discuss whether the difference
potential, U”, should be embedded in U_* or U. Assuming
that U" appears in U, U= U - U" is also a fundamental
solution of the Helmholtz equation. However, although U
can satisfy the governing eqn (1), it cannot satisfy the radia-
tion condition at infinity. Therefore, U" can only appear in
UL”. This means that Uf = U, +U" is also a representa-
tion of a kernel in the MRM formulation. Since the kernel in
MRM is simply derived from the Laplace differential opera-
tor, there is no constraint boundary condition at infinity.
Remember that U] was originally written in series form,
in which every term is derived from the recursive formula;
it would be interesting to know if U” can be also derived
from the recursive formula. The answer is yes, and this will
be demonstrated in the next section using one dimensional
cases. If one requires that the fundamental solution derived
from MRM must satisfy the radiation condition, a new com-
plete MRM formulation can be derived, which is fully equiva-
lent to the complex-valued formulation. This will also be
demonstrated by means of one-dimensional examples.

3 ONE-DIMENSIONAL EXAMPLES
(CONVENTIONAL MRM, COMPLETE MRM AND
COMPLEX-VALUED FORMULATION)

For a one-dimensional example, the domain is defined to be
0 = x = 1 without loss of generality. Then, the governing

Table 1. Kernels of the conventional MRM and the complex-valued formulation for one-dimensional cases

Conventional MRM

Complex-valued formulation

Governing equations

VZU(J"‘" ) ___Ug) j= 1,2,

(VZ+ kHU = 8(n

L
VU =8()
o 1 '_2j+ i eikr
1 = — ] = e U =
Fundamental solutions L XeTENNY j=0,1,2, K
- w (__k2)i r2j+] ~~€ik_r
U kemel U =20 Tz @+ U=
. o (~kY A _cos(kr) | sin(kr)
T kernel T, :zj=0——(—2ﬁforx>£ T= > +Tforx>£
. o (=K Y —costkr)  sin(kr)
To ~_——Z}-=0——~(~2ﬁforx<$ T:——Z—— -—i—forx<§
® ® (= kz)j al _ —cos(kr) sin(kr)
L kernel Ly =—Z=0——-®forx>£ L—~—2———+—2i—forx>£
. (=K%Y ¥ cos(kr)  sin(kr)
= : —_— = —f —— <
L = —0 @) forx<§¢ L 3 2% forx< ¢
x — kz)j+ <A k sin(kr)  k cos(kr)
T ) — =l T >
M kernel M j=0 PRI M 3 5 forx £
M= k sin(kr) N k cos(kr) for x< £

2 2i
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equation for this one-dimensional eigenproblem is
formulated as

2
ddl;c(2X)+k2u(x)=0 O=x=1). (13

The kemnel functions used in the conventional MRM and
the complex-valued formulation are given in Table 1.'*!® It
is easily found that the real parts of the kernels derived
using both methods are exactly the same since the zeroth
order fundamental solution used in MRM is /2.

Three examples with different bourdary conditions are
selected as the benchmark problems'® and are listed as
follows:

1. Case 1: u(0) = u(1) = 0 (Dirichlet problem);
2. Case 2: t(0) = t(1) = 0 (Neumann problem);
3. Case 3: u(0) = t(1) = 0 (Mixed problem).

To calculate the eigenvalues, several techniques are
available.”*'® The results of eigenvalue analysis for the
first three modes using the conventiona! MRM and the com-
plex-valued formulation are shown in Table 2. It can be seen
in Table 2 that the same results are obtained for case (1) and
case (2) using the conventional MRM and the complex-
valued formulation. However, the conventional MRM
encounters the spurious eigenvalue problem for case (3)
when either the singular or hypersingular formulation is
used only. On the other hand, the complex-valued formula-
tion has no difficulty. Examining eqns (2) and (4) for the
singular formulation (or eqns (3) and (5) for the hyper-
singular formulation), the only difference between them is
that the complex-valued formulation has the imaginary part
in the kernel, but the MRM formulation does not (see Table

1). Therefore, an eigenmode which satisfies eqn (2) (or eqn
(3)) is, of course, the solution of eqn (4) (or eqn (5)). For the
reverse statement, a solution of eqn (4) (or eqn (5)) is not
necessarily a solution of eqn (2) (or eqn (3)). This means
that a solution of eqn (4) (or eqn (5)) is not necessarily the
real eigenmode. Since the conventional MRM only repre-
sents the real part in the complex-valued formulation, it
loses information contributed by the imaginary part in the
complex-valued formulation. Consequently, the spurious
eigenvalue phenomenon appears in the conventional
MRM formulation. It has been reported that the spurious
eigenvalues are caused by the lack of imaginary part of
the boundary integral equation.'®?

Since the spurious eigenvalue problem results from losing
the imaginary part in MRM, it is natural to seek another
constraint condition. Chen and Wong'* proposed a techni-
que for combining the singular and hypersingular formula-
tions (eqn (4) and eqn (5)) together in the MRM to filter out
the spurious eigenvalue by examining the eigenmode corre-
sponding to the spurious eigenvalue. From Table 2, it can be
found that their method can filter out the spurious eigenva-
lues. Based on the results of our research and the work by
Tai and Shaw,'® their idea can be implemented to find
another constraint equation which can reconstruct informa-
tion lost in the imaginary part of the complex-valued for-
mulation.

The spurious eigenvalue problem in MRM can be solved
in another way by constructing the complex-valued series
form in MRM. From the above section, we know that the
difference function between the kernels derived from MRM
and from the complex-valued formulation can be any poten-
tial field satisfying eqn (12). This means that the zeroth

Table 2. Eigenvalue analysis by means of the conventional MRM and the complex-valued formulation

Case (1) Case (2) Case(3)
Conventional MRM 3.14 3.14 1.57
UT equation used only
6.28 6.28 3.14%*
942 9.42 4.71
6.28*
7.85
9.42*
Conventional MRM 3.14 3.14 1.57
LM equation used only
6.28 6.28 3.14*
9.42 9.42 4.71
6.28*
7.85
9.42%
Conventional MRM UT equation  3.14 3.14 1.57
combined with LM equation
6.28 6.28 471
9.42 9.42 7.85
A complete MRM 3.14 3.14 1.57
(Complex-valued formulation)
6.28 6.28 4.71
9.42 9.42 7.85

"The spurious eigenvalues.
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order fundamental solution can be another function other
than r/2. Choose the zeroth fundamental scolution as

00 =2+ 07" (). (14)

This new zeroth order fundamental solutior: needs to satisfy
Vfo) = 8(r), which means VEUfD) =0. Two homogeneous
solutions can satisfy the above equation: r and 1. However,
r = 0 may be encountered in the formulation, and r
cannot be chosen since it produces a Dirac delta function
at r = 0. Therefore, only a constant can be selected. This
means that

0O =+, (15)

where ¢ is an arbitrary constant.
For higher order fundamental solutions, we can apply the
recursive formula in the above section. Finally, we obtain

sin(kr)
2k

Comparing the kernel in eqn (16) to the kernel in the
complex-valued formulation, we find tha: they are exactly
the same if we choose ¢ = ﬁ One interesting thing should
be pointed out here: this assignment makes the kernel of the
single layer potential derived from MRM satisfy the

U= + c-cos(kr). (16)

Table 3. The complete MRM and complex-valued formulations

radiation condition. Physically speaking, the conventional
MRM which has only the real part kernels cannot be true
for the eigenproblem since the phase angle behavior only
appears in the imaginary part. Therefore, the conventional
MRM is an incomplete formulation for the eigenproblem.
On the other hand, the new derivation of MRM presented in
this paper is a complete formulation. Since the kernel in
this new formulation is exactly the same as that in the
complex-valued formulation, the spurious eigenvalue will
not occur here.

In the complete MRM formulation, we can derive the
formulation by finding the higher-order fundamental solu-
tions step by step as shown in this paper. However, the final
series form of the kemels in MRM simply converge to
corresponding kernels in the complex-valued formulation.
For the eigenproblem, it is much easier to obtain the series
forms of the kernels in MRM simply by expanding the
kernels of the complex-valued formulation in a series.

Following the same method as shown for one-
dimensional cases, the complete MRM formulation can
be obtained by superposing an imaginary constant on the
original zeroth order fundamental solution in the con-
ventional MRM in two and three dimensional cases. The
results are summarized in Table 3. In two dimensjonal

Dimension The The zeroth-order The higher-order U kernel in the
zeroth- fundamental fundamental solution complex-valued
order solution used in the used in the complete formulation
fundamental complete MRM MRM ( = 1)
solution used
in the
conventional
MRM
One- r ro1 1 A N 1 er
dimensional 2 FRT YIRS T AGTY 20k
case
Two- 1 1 2 i
dimensional —In(r) —In(r) =F;(Inr - S)) ~(Jokr) — iYo(kr))
* 2w 2T w 4
case 1 s ¢
! Ky 1 4) + SF(y+n3)
— In=) ~ — J
+21r<7+ “2) 4 +,’; 2
i
with / -
i ( i1 lnj> ?
Y=o =1 5 i N2
jo 1
Sj = ZI:I 7
Three- —1 ~1 1 —1 r2j~l ) r2} —e” ikr
dimensional  ar b am =l aar

"The real part of the zeroth-order fundamental solution used in the conventional MRM and the complete MRM is different by a constant

! +lnE
e\ T )
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cases, the zeroth-order fundamental solution of the Laplace
equation is usually set to be %h\r. However, for con-
structing the complete MRM in which the real part of the
single layer potential is equivalent to the real part of
complex-valued formulation, the zeroth-order fundamental

solution should be chosen in the way stated in Table 3.

4 CONCLUSIONS

MRM has been proved to be identical to one part of the
complex-valued formulation for one, two and three
dimensional cases, provided that the zeroth-order funda-
mental solutions used in MRM are chosen properly.
Following this treatment, it is concluded that one can find
the series representation of the kernels used in MRM by
simply expanding the real part of the fundamental solution
of the corresponding eigenvalue problem into the series
form. The spurious eigenvalue phenomenon encountered
in MRM using the singular formulation or the hypersingular
formulation only has been explained. To deal with the
spurious eigenvalue problem, another constraint equation
is required. It has been suggested that either the complex-
valued formulation or a combination of the singular and
hypersingular equations in MRM can avoid the spurious
eigenvalue problem. A new complete MRM formulation
has also been proposed, which is fully equivalent to the
complex-valued formulation.
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