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A dual integral formulation for the Laplace equation problem with a corner is
derived by using the contour approach surrounding the singularity. It is found
that using the contour approach the jurmp term comes half and half from the free
terms in the L and M kernel integrations, which is different from the limiting
process from an interior point to a boundary point where the jump term comes
from the I kernel only. Thus, the definition of the Hadamard principal value for
hypersingular integration at the collocation peint of a comer is extended to a
generalized sense for both the tangent and normal derivative of double layer
potentials in comparison with the conventional defipition. Two regularized
versions of dual boundary integral equations with corners are proposed to avoid
the boundary effect and are tested by an example. The numerical implementation
is incorporated in the BEPO2D program. Also, 2 numerical example with a
Dirichlet boundary condition on the corner is verified to determine the validily of
the dual integral formulation.

Key words: dual boundary integrul equations, dual boundary clement method,

corner, regularized method.

1 INTRODUCTION

A dual integral formulation for crack problems was
developed in 1986' and published in 1988% and was
extended to the Laplace equation with a degenerate
boundary.>* The numerical implementation has been
termed the dual boundary element method by Portela ez
al’ The formulations have been mainly applied to
problems with a smooth boundary. However, a
nonsmooth boundary frequently occurs in the descrip-
tion of many engineering problems, so the ahility to
handle this situation is mot trivial. The nonsmooth
boundary introduces a corner or edge, which makes the
normal vector and normal flux at a corner undefined.
How to accurately simulate the potential and potential
gradient near a corner has received much attention in
the boundary eiement method. For a commer problem,
the double node technique has been discussed by
Banerjee and Butterficld.® Alarcon er al.” used the
transformation of tangent flux and normal flux to
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establish the constraint equation to ensure a unique
solution. Walker and Fenner® pointed out that an error
will be present in computing the normal flux indepen-
dently of the BEM, so they provided a nonlinecar
relationship for the tangent and normal fluxes, How-
ever, if the interior angle is near 90°, the ill-condition
will occur. Therefore, the hypersingular equation has
been utilized to provide a constraint at a corner in an
analytical way. Gray and Manne’ have applied the
hypersingular equation as an additional constraint to
ensure a unique solution by a limiting process from an
interior point to a corner. The three dimensional case
was also extended by Gray and Lutz.'° From the
viewpoint of dual integral equations, singular and
hypersingular equations can provide sufficient con-
straints for a singular system with a corner. In the case
of a nonsmooth boundary, e.g. a corner point, the jump
terms of singular and hypersingular integral equations
are the same in the former derivations as reported by
Lutz et al" and Chen and Hong'? Since the
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Fig. 1. The considered boundary integration path.

hypersingular integral equation can provide an addi-
tional constraint for the corner problem with Dirichlet
boundary conditions, the jump term on the corner from
the interior domain to the exterior domain must be
examined and verified by example. This term will be
corrected in this paper as the point is collocated at the
corner with the normal vector before or after the corner
in comparison with the results of Lutz ez al'! To derive
the free terms in hypersingular equations, the bump-

contour approach around the singularity is considered
and is compared with the limiting process by using
an analytical integral. Therefore, the dual integral
equations for a corner can be derived and can be
applied to solve a corner problem with Dirichlet
boundary conditions by collocating the same geometry
point with different normal vectors before and after the
corners. Following the same symbols as in Ref. 3 of U,
L, T and M kernels for a single layer kernel and its
normal derivative, a double layer kernel and its normal
derivative, respectively, three alternatives for constraint
equations can be chosen: (1) by the U, T equation and
the L7, M~ equation with the collocation point hefore
the corner; (2) by the U, T equation and the L%, M~
equation with the collocation point after the corner; (3)
by the L=, M~ cquation and the L', M™ equation
with the collocation point using different normal
vectors before and after the corners. In order to
avoid the boundary effect, two regularization tech-
niques will be summarized. Numerical examples are
shown to demonstrate the validity of the present
formulations.

Table 1. Properties of different kinds of potentials across smooth boundary

Kernel

function

K{s,x) Uls, x) T(s,x) L{s,x) M(s,x) L's, x) M'(s,x)

dircet

method

Kernel

function

K(x,s) U{x,s) U*(x,s) T(x, ) T*(x,5) T'(x,8) T (x,5)

indirect

method

Singularity tD o(r) o o(l) &) o O(6(r))

Singularity 210 (In(r)) aQ(l/r a(l/r) (/) O(1/r) ol /r)

Singularity 3D o(1/r) 01/ o(1/r%) o(1/rY) o(1/r%) o(1/r)

Density

function —t u —t u —t u

pis)

Potential Single Double Normal Normal Tangent Tangent

type layer layer derivative derivative derivative derivative
of single of double of single of double

[ K (s, x)pis)ds layer layer layer layer
potential potential potential potential

Continuity Continuous Discontinuous Discontinuous Pseudo- Continuous Discontinuous

across conlinuous

boundary

Free term No jump T —t No jump No jump i’

method(1)"”

Free term No jump i -1 —-imt — fd’ —dm!

method(2}

Jump term No jump 2 —2mt No jump No jump pLaTy

method{1)

Jump term No jump Zu —mt —t mu’ '

method(2)

Principal RPV CPV CPV HPV CPV HPV

valug sense
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2 DUAL INTEGRAL FORMULATION OF BEM
WITH A CORNER

The dual boundary integral equations for the potential u
can be derived as

0= JB +E,{T(-s, x)u(s) — U(s, x)t(s)} dB(s) )
0= (M0 - L} aBs) Q)

0= L,,+B'{Ml(s’ x)u(s) — L'(s, x)1(s)} dB(s) 3)

where u(s} and #{x) denote the potential and its
normal flux on the boundary point s, respectively, B’
and B, arc the contour integration path not including
the singulanty inside the domain, D, as shown in Fig. 1,
and U, T,L, M, L' and M" are the six kernel functions*
in the dual integral equations with the properties shown
in Table 1. The U, M kemels are weakly singular and
hypersingular, respeclively, while the T, L kernels are
strongly singular. For the single and double layer
kernels, Aliabadi ez al.'*'* have employed a Taylor
expansion to reduce the singularity order. Equations (2)
and (3) are different in the direction of the derivative on
the collocation point x. The superscript ‘t” in eqn (3)
denotes the tangent vector. The B, integration path in
Fig. 1 denotes the contour integration around the
singularity with radius ¢, and B'+ B* + B is just (he
definition of the integration region of the Cauchy
principal value. The B' and B~ denote two of the
elements in the B’ boundary near singularity as shown in
Fig. 1. First of all, integrate the B, path integration to
obtain the free terms for the six kernel functions.

Based on Fig. 2 without loss of generality, there are
the foilowing notations:

x = (0,0) (4)
s = {ecos(f), — esin(@)) (5)
r=|x—s (6}
y1 = —ecos(f) (7)
y2 = csin(f) (8)
n(s) = (ny,nz) = (—cos(8), sin(6)) (9)

n(x) = (m,Az) = (0, 1) for normal derivative  (10)

§(x) = {A),A;) = {1,0) for tangent derivative  (11)

u(s) = u{x) + %ecos(ﬂ) - g—;csin(ﬂ) (12)
1s) = —%cos(&) + g—;sin(ﬁ) (13)

where #(x) in eqn (11) denotes the tangent vector on the
point x with components (1,0) as shown in Fig. 2. Since

x=(0,0)
£ = {fcos(B),—&sin{8)}

¥, = —Ecos(0)

¥y, =£sin(B)

n=(n,,n,) = (~cos(8).sin(8))

i = (#,,A,) =(0,1) for normal derivative
n = (i,,7,) = (1,0) for tangent derivative

. Bu du .
T =— eos(a)—— sin{a
W= ()6y (o)
du
- _du X
ax 1 &
s!

Boundary
Fig, 2. Notations of the integration path around a corner.

the corner is considered with two normal vectors before
and after the corners, define the following symbols:

-5 (14)
tt = —%sin(u) — gw;cas(a) (15)
u = % (16)
ut' = g—:cos(a) — g—;sin(a) (17)

where o is the interior angle of the corner, ¢~ and ¢ are
normal derivatives on the boundary point before a
corner and after a corner, respectively, and #~',u*' are
tangent derivatives along the boundary before and after
a Corner.

According to the related symbols in Fig. 3, the free
terms of the six kemmels will be derived as in the
following.

(1) Single layer potential due to U(s, x) = In(r):

L Uls, x)i(s) dB(s) = eln(e) (finite valug)  (18)

The free term is zero since e In(e} approaches zero as the
radius ¢ approaches zero.
(2) Double layer potential due to T{s, x) = —yn;/r*:

.La T(5, x)u(s) dB(s} = —au(x) + ¢ (finite value}
(19)

As € approaches zero, the free term is —au(x).
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Fig. 3. Related symbols around a corner.

(3) Normal derivative of single layer potential due to
L{s,x) = ya/r":

L L(s, x)(s)dB(s) = ct{x} + du'(x) (20)
where

)+ 20 -

d= @.5_(2:)__]) (22)

As ¢ approaches zero, the free term is ¢ t(x) + d u'(x).
(4) Normal derivative of double layer potential due to
M(s,x) = 2}=;yjn,-ﬁf/r4 — n;ﬁ,—/rz:

La M(s, x)u(s)dB(s) = —ct(x) — du'(x)

+ boundary term (23)

where the boundary term B(e) is

(x) (24)

It is interesting to find that the free terms from the L and
M kernels are the same except for the minus sign. The free
terms contain the boundary term, which is infinite as €
approaches zero. By combining with the Cauchy principal
value of the M kemnel integration over B including B
and B~ as shown in Fig. 1, the finite part can be extracted,
and the infinity can be cancelled out. Therefore, the
Hadamard principal valuc in the contour integration with
a corner for M kemel can be defined by

Ble) = 1 - cos{a) "

HPV JB M{s, x)u(s) dB(s)

— cos(a)

= CPVJBM(S, x)u(s)dB(s) + 1 u(x) (25)

, H-K. Hong

(5) Tangent derivative of single layer potential due to
L'(s,x) = y;ﬁi/rz:
Since the tangent derivative instead of the normal
derivative is considered,

n(x) — 5(x) (26)
L L' (s, x)1(s) dB(s) = ¢'u'(x) — d t{x) (27)
where

s (sin(22) + 2a)
N 4
As e approaches zero, the free term is ¢’u'(x) — d #(x).
(6) Tangent derivative of double layer potential due to
MI(S, x) = 2y;yjn;ﬁj/r4 — n,-r_i,-/rz:
Similar to eqn (26), only change the normal derivative
to tangent derivative as

n{x) — s{x) (28}
J M (s, %)u(s) dB(s)

Box

= —c'u'(x) + d ¢(x) + boundary term (29)

where the boundary term B(e) is

_sin{a)

Ble) = u(x) {30)

r

The free terms contain the boundary term, which is
infinite as ¢ approaches zero. By combining with the
Cauchy principal value of the M' kernel integration
over B including BT and B~, the finitc part can be
extracted, and the infinity can be cancelled out.
Therefore, the Hadamard principal value in the contour
integration with a corner for M" kernel can be defincd
by

HPV JB M's, x)u(s) dB(s}

sin{e)

=CPV L M5, x)u(s)dB(s) — u(x) (31)

Since the basic unknowns in the BEM are the potential
and the normal derivative of potential on the boundary,
the tangent derivative, «', in the present formulation
would be better transformed to the combination of the
normal derivative before and after the corners in Fig. 4
as follows:

u ' = 0] [t1 + cos{a)t ] (32)

Therefore, the free term of the L kerncl of ¢eqn (20} can
be expressed as

ct™{x) +du'(x) =Lar™ +§sin(a)r? (33)
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comer

Boundary

Fig. 4. Transformation of flux at a corner.

In the implementation of the BEM, it is suggested that
this transformation be considered since the state
variables are /' and ¢ instead of ' and ¢~ although
#' can be expressed in terms of the numerical derivative
of the nodal variables of w. For the free terms of the L'
and M' kernel, this transformation is not necessary
since the tangent derivative of potential can be expressed
in terms of the superposition of all the state variables,
which include the potential and the normal derivative of
potential on the boundary just solved by the U, 7 and
L, M equations. Therefore, one can derive the following
dual boundary integral equations using the transforma-
tion of eqn (32) and the expression for the tangential
flux along the boundary:

au(x) = CPV L T(s, x)u{s) dB(s)

— RPV L Uls, x)i(s) dB(s) (34)

ot~ {x) + sin{a)t ' (x} = HPV L M(s, x)u(s) dB(s)
- CPVJ Lis, x)u(s) dB(s)
B
(35)
2c'u'(x) =2d t {x) + HPV [3 M (s, x)u(s) dB(s)
- CPVJ L', x)e(s) dB(s) (36)
8
after using

-B Uls, x}t(s)dB(s) = RPV [ U(s, x)t(s) dB(s)
y] JB

(37)

-3’ T(y, x)u(s)dB(s) = CPV ‘s T{s, x)u(s) dB(s)

(38)

' L(s,x)t(s)dﬁ(s):CPVj L(s, x)e(s)dB(s) (39)
B B

of

L” M{s, x)u(s)dB{s) = HPV L M (s, x)u(s)dB(s)

1 — cos(a)

- ulx) (40}

L} L'(s,x)t{s)dB(s) = CPVL L(s, x)t(s) dB(s)
(41)
[ th(s, x)u(s)dB(s) = HPV JBM‘(S, xYu(s) dB(s)

+ sin(ex)

u(x) (42)

€

3 DISCUSSIONS ON THE DUAL BOUNDARY
INTEGRAL EQUATIONS AT A CORNER

1. It is interesting to find that the hypersingular
equation for the collocation point after the corner has
a similar expression in comparison with the equation
collocated at the pomnt before the corner except for the
change of ¢~ and ¢ as follows:

ot~ (x) +sin{a)i* (x) = HPV L M~ (s, x)ue(s) dB(s)

—CPV L L™ (s, x)t(s) dB(s)

(43)
ot {x) +sin(a)t " (x} = HPY L M7 (s, x)u(s) dB(s)

_cPv LL+(5, )1(s) dB(s)
(44)

where M and M T denote the M kernels with different
normal vectors collocated before and after the corner,
respectively. Similarly, the same meanings of L~ and L '
are used. Both equations can be used to solve the corner
problem with Dirichlet conditions since they are linearly
independent, as will be demonstrated in the following
example. In the literature, the sin{e)t ~{x) term is always
omitted by Lulz et /.'! and in the book by Chen and
Hong"z

2. It must be noted that the Cauchy principal value of
the L kernel integration at the corner, combining the
Hadamard principal value of the M kernel integration
including the two elements of 87 and B~ in Fig. 1, exists
under the request of €' continuity for u. The coefficients
of In{¢) due to the L and M kernels can be combined
and summed to zerc as shown below:

{—cos{a)u™ ' +sin(a)t” +u*"} In(e) =0 (45)

after using the definition of ¥’ from eqn (17).
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3. For the case of a smooth boundary, eqns (43) and
(44) reduce to

ru(x) = CPV L T(s, x)us) dB(s)
_ RPV L U(s, x)i(s) dB(s)

nit(x) = HPVL M(s, x)u(s) dB(s)
_cpy L Lis, x)i{s) dB(s)

The representation of the tangent derivative of the
boundary potential of eqn (36} is

wu'(x) = HPVJB M'Ys, x)u(s) dB(s)
— CPV L L'(s, x)t(s) dB(s)

by substituting o =a. At the tip of the degenerate
boundary, the dual houndary integral equations can be
reduced to

0= cpy L T(s, x)u(s) dB(s)
_rPY J  U(s, 91(s) dB()

0= HPV L M(s, x)u(s) AB(s)
- CPVL L(s, x)#(s) dB(s)

since ¢ =0. The two equations provide additional
constraints for the potential at the tip on the degenerate
boundary to be u” = «".

4. For a smooth boundary, the definition of the
Hadamard principal value for M kernel integration is
reduced to

HPV L M{s, x)u(s)dB(s}
= CPV L M (s, x)u{s)dB(s) + %u(x)

One can deem the classical definition of the Hadamard
principal value in the literature'® as a special case of the
present formulation by setting

o
(x —5)°

dB(s) = ds (47)

M(s, x) = {46)

Therefore, the Hadamard principal value of the M
kernel integration is reduced to the conventional one as

follows:

- —uly) B —u(s) 2
HPVJB o ds = CPVL —-—~(x 7 ds + - u(x)

(48)

5. If a smooth boundary is considered, the interior
angle « is 7, and the property of the free term and the
jump term can be reduced to the classical potential
theory as shown in Table 1. The singularity orders for
the six kernel functions in one, two and three
dimensional problems are shown in the third row. The
seventh row shows the free term derived by method (1)
shown in Fig. 5a by using a limiting process from the
interior point to the boundary point using an analytical
integration.*!” The eighth row denotes the free term by
contour integration around singularity by method (2) as
shown in Fig. 5b. Although the final results are the same
after combining the contributions from the L and M
kernels, the intermediate free terms are different.

6. Although the boundary B, will shrink to zero
radius in the derivation, the #«(s) field along B, can not
be represented by u(x); therefore, care should be taken
in using the contour approach around the singularity in
the following calculation:

J M(s,x)u(s)aa(s);eu(x)[ M(s, x) dB(s)
EBa J B

= —u(x)CPV L Ms, x)dB(s)
(49)

X, boundary point

4

oXx
interior
point
B
(a)
singular
Xz polnmt
=]
Bﬁ-
B B

(b}

Fig. 5. (a) Limiting process from an interior point to a
boundary point. (b) Contour around singularity.
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In the same way, the t(s) field along B, can not be
represented by #(x); so there is

La L{s,x)t(s) dB(s) # t(x) Lﬁ L{s,x)dB{s) (50)

The nonequal sign stems from the loss of free terms,
—c t(x) — du'(x). This finding will be very important to
the order analysis in the following derivations for
regularized versions.

4 TWO REGULARIZED VERSIONS OF DUAL
INTEGRAL EQUATIONS AT A CORNER

Although the dual integral equations have been derived,
the CP¥V and HPV concepts must be defined. In order to
reduce the order of singularity, two regularized versions
of dual integral equations derived by using order
analysis are provided. By combining the unrcgularized
version, three versions of dual boundary integral
formulations for & boundary corner point are summar-
ized as follows:

Version I (unregularized form):

au(x) = CPV L T (s, x)u(s) dB(s)
- RPVJ Uls, x)#(5) dB(s) (51}
¥
al ™ (x) + sin{a)t " (x) = HPV L M{s, x)u{s)dB(s)

_CPY L L{s, x)r(s) dB(s)

(52)

Tf the potential is subtracted by the constant potential at
the boundary point xg, the field of #(x) — u(xp)} also
satisfies the Laplace equation, and the functional
constraint is shown as follows:

Version II (regularized form with respect to u):.

0= RPV L T(s, x)[u(s) — u(x)] B(s)
— RPV JB U(s, £)t(s) dB(s) (53)

at ™ (x) + sin{a)t T (x)

— PV L M5, ){uls) — u(x)] dB(s)

_cpy L L{s, )1(s) dB(s) (54)

after x approaches xg and changing xg to x again for
consistency for comparison with eqns (51) and (52).
Similarly, if the potential is subtracted by the constant
and linear term of potential at the boundary peint xp,
the regularized solution also satisfies the Laplace

equation, and the functional constraint is shown as
follows:
Version IIT (regularized form with respect to ¢):

0= RPV L T{s, x)[u(s) — u(x) — u'(x}r.5;

— t(x)r:;]| dB(s) — RPV L U(s, x)[£(s) — u'{x)n;5;
- f(X)?l;ﬁ;] dB(S) (55)

0= RPV L Mis, 2)[uls) — ulx) — u'(x)rss;

— t(x)r;71i] dB(s) — RPV L L{s, x)[t(s) — v/ (x)n;5;

— ({x)n;7i;] dB(s) (56)

According to the three versions of the representations, it
is found that the lower the order of regulanzation
applied, the more free terms will be present. By using
eqn {49), version II can be reformulated as version . In
the three versions, no distinguishable difference is made
for the boundary point and the interior point in eqns
(53), (55) and (56) since only regular integration 1s
considered. Version HI is a nen-singular formulation
since higher order regularization is employed. Only the
Gaussian quadrature rule is nceded.

5 TREATMENT OF BOUNDARY EFFECT USING
REGULARIZED VERSIONS OF DUAL INTEGRAL
EQUATIONS

After obtaining all the boundary unknowns, the dual
boundary integral equations for an interior point near
boundary point xp are formulated as

Version 1 (unregularized form):

2mu(x) = RPV JB T(s, x)u{s)dB(s)
- RPVL U(s, x)i(s) dB(s) (57)
2ni(x) = RPV L M(s, x)u(s) dB(s)

- RPVJ L{s, x)t(s} d B(s) (58)
]
Version II (regularized form with u):

2mu(x) = RPV .B T(s, x)[u(s) — u(xp)] dB{s)

— RPV L Ufs, x)i(s) dB(s) + 2muixp} (59)

2mi(x) = RPV .8 M (s, x)[u(s) — u{xp)) dB(s)

— RPV L L(s,x)t(s)dB(s) (60)
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Version III (regularized form with ¢):

2mulx) = RPVL T(s, x)[u(s} — u(xp) — u'(xp)r;5;

— t{xg}riA;| dB(s) — RPVJ U(s, x)
8

x [t(s) — ' (xg)ns; — t{xg)nii) dB(5)

+ 27lu(xg) + ' (xp)r3; + 1{xp)r, (61)

27i{x) = RPV L M(s, x)[u(s) — u(xp) — ' (xp)r;5;

— t(xp)r;n;} dB(s) — RPV L L(s,x)

% [t(s) — ' (xg)m;5; — ¢(xp)m] dB(s)
+ 2w (xg)n;5; + t(xg)n;) (62)

where r, = 5; — (xg);, A; is the ith component of the
normal vector on xy, 5 is the ith component of the
tangent vector on xg, xp is the boundary point near
which the physical quantities on x are to be calculated.
Version I of eqns (57) and (58) often encounters the
boundary effect if the quantities near the boundary are
to be solved. From the computational point of view, eqn
(59) is suggested for the calculation of potential near
boundary point xp. The numerical experiment has been
tested by Kisu and Kawahara,'® and the Gibbs
phenomenon is avoided by the regularization tech-
nique. Equation (62) is recommended for the calculation
of the potential gradient near the boundary point x5. A
demonstrative example will be given helow,

6 ILLUSTRATIVE EXAMPLES

In order to check the validity of the present formulation,
two examples are tested in this section. The BEPO2D
program in Ref. 4 is extended to solve the corner
problem and include the two regularized versions of
dual boundary integral equations.

(1) Corner problem with Dirichlet boundary conditions
as shown in Fig. 6

Three choices of independent equations are provided as
follows:

{a} By the U,T equation and L~,M~ equation
before the corner.

(b) By the U, T equation and L™, M equation after
the corner.

{c) By the L™, M~ and L', M * equation before and
after the corner, respectively.

For simplicity, only three linear elements are considered.
All the three versions obtain the same results for the six
matrix. The matrices of [U], [T, [L™], [M 7], [L*] and
[M ']in linear algebraic equations are shown in Fig. 6. It
1s found that the (7], [M 7] and [M™] matrices pass the

constant potential test since the summation of cach row
is zero. After substituting the given boundary conditions
for {u} as

rO\
0
1
=1
0
iy
there is
f_\/z\
1
{r} =4 I
t
1
[ —V2 ]

All the three results by methods (a), (b) and (c) match
the exact solution very well for the three alternative
methods. According to all the known boundary data,
the interior potcntial and potential gradient can be
exactly obtained,

(2) Treatment of boundary effect using the regularized

version of the dual integral equations

Tn order to demonstrate the boundary effect, the
example with an exact solution, u{x,y) = 0-5(x — y), in
Fig. 7 is tested. Altogether 20 elements are considered in
the BEM model. The result using the unregulanized
version is shown in Fig. 8, The more the delerioration
resuit is present, the nearer the point approaches to the
boundary. After using the regularized version, the
boundary effect can be removed. It is found that the
resuits for the potential gradient near the boundary
approaches half the data on the boundary as Kisu and
Kawahara'® proposed for the potential near boundary.
This tendency can be understood from the abrupt
change from 2mu or 2@t to wu or «f in version 1 of the
dual boundary integral equations from the domain
point to the boundary point, respectively. By using
versions II and III, the abrupt change is zero since x
approaches xp so that the behavior across the boundary
is continuous. Using these two formulae, one can avoid
the boundary effect since the jump term is approximated
to zero due to the density function near zero, and the
Gibbs phenomenon can be avoided. Therefore, the
physical quantities near the boundary can be accurately
calculated.

7 CONCLUSIONS

Three versions of dual boundary integral equations at a



Dual boundary integral equations at a corner using contour approach around singularity
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Fig. 6. Comner problem with the Dirichlet boundary conditions.
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Fig. 7. THustrative example for the boundary effect. boundary.
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corner have been derived and implemented into the
BEPO2D program. In the first version, the HPV is

extended to a more general definition and can be.

reduced back to the conventional one. In the second
version, a nonhypersingular formulation is derived. The
third version provides a regular formulation. It is found
that the lower the order of regularization applied, the
more free terms will be present. The boundary effect of
the potential and potential gradient can be avoided by
using versions IT and IT1, respectively. The formulations
have been tested in two examples, and the results are
satisfactory.
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