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a b s t r a c t

In this paper, we employ the image method to solve boundary value problems in domains
containing circular or spherical shaped boundaries free of sources. two and threeD prob-
lems as well as symmetric and anti-symmetric cases are considered. By treating the image
method as a special case of method of fundamental solutions, only at most four unknown
strengths, distributed at the center, two locations of frozen images and one free constant,
need to be determined. Besides, the optimal locations of sources are determined. For the
symmetric and anti-symmetric cases, only two coefficients are required to match the
two boundary conditions. The convergence rate versus number of image group is numer-
ically performed. The differences of the image solutions between 2D and 3D problems are
addressed. It is found that the 2D solution in terms of the bipolar coordinates is mathemat-
ically equivalent to that of the simplest MFS with only two sources and one free constant.
Finally, several examples are demonstrated to see the validity of the image method for
boundary value problems.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The image method is a popular approach in the theoretical physics [1] and has commonly been used in multidisciplines
such as electro-magnetics, acoustics and optics. When solving problems by using the Green’s functions for a bounded do-
main, the reflection is described by one or successive image sources, and the position and sign of the image sources is chosen
so that the boundary conditions can be satisfied [2]. Green’s function for a part of domain bounded by planes, circles or
spherical surface in terms of the corresponding fundamental solution in the full space can be found in the literature [3].
In certain cases, it is possible to obtain the exact solution for a concentrated source in a domain through superimposing
the infinite plane or infinite space solution for the given source and its image sources. Although the scope of this method
is limited for special geometry, it yields a great deal of insight into the solution when it works [4,5]. As a result of the afore-
mentioned consideration, many theoretical studies concerning the Green’s function in circular and spherical boundaries
have appeared in the literature. For example, Green’s function for plane boundaries has been investigated [6]. The image
method was employed to solve edge dislocation in an anisotropic film-substrate system [7] and dielectric plate [8]. Chen
et al. [9,10] solved Green’s functions of annulus or concentric spheres by using the image method. It is found that almost
all the related works on the image method deal with the problem with a true source in the domain. Although Cheng’s book
[11] has employed the image method to solve the boundary value problems (BVPs) of an infinite space with two spherical
boundaries, the frozen image locations were not found to be the focuses of the bispherical coordinates. However, we may
wonder whether the image method may work for BVPs without sources in the domain. Bispherical and bipolar coordinates
. All rights reserved.
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were always used to derive the analytical solutions for problems containing boundaries of two spheres or circles [12],
respectively. The BVPs of eccentric annulus were solved in a unified way of conformal mapping [13]. Problems with several
circular boundaries were solved by using the null-field BIEM [14].

In this paper, we will illustrate several examples to demonstrate the possible use of image method in solving 2D and 3D
BVPs without sources. Symmetric, anti-symmetric and eccentric cases are considered. Based on the singularities distributed
outside the domain for the image method, it can be seen as a special method of fundamental solutions (MFS) with optimal
locations and strengths of sources. To verify our image idea, analytical solutions by using the bipolar and bispherical coor-
dinates are used to check the accuracy of our results. Besides, numerical results using the conventional MFS and null-field
BIEM are also given for comparison. An infinite space with two spherical cavities as well as an infinite plane with two circular
holes are both considered. Besides, an eccentric sphere is also given. Also, the static result for a limiting case of two-spheres
radiation to simulate Laplace problems is provided for comparison.

2. Derivation of the image solution for BVPs

2.1. 3D BVP

The problem of an infinite space with two spherical cavities is shown in Fig. 1(a) and the governing equation is
r2uðxÞ ¼ 0; x 2 D; ð1Þ
wherer2 is the Laplacian, u(x) is the potential function and D is the domain of interest. For a two-spheres case, the boundary
conditions are
uðxÞ ¼ V1; x 2 B1; ð2Þ
uðxÞ ¼ V2; x 2 B2; ð3Þ
where B1 and B2 are left and right spherical boundaries with constant boundary data of V1 and V2, respectively. In this case,
the analytical solution [12] was derived in terms of the bispherical coordinates as shown below:
uðn;gÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cosh g� 2 cos n

q X1
n¼0

V2 þ V1

2

� �
cosh nþ 1

2

� �
g

cosh nþ 1
2

� �
g0

þ V2 � V1

2

� �
sinh nþ 1

2

� �
g

sinh nþ 1
2

� �
g0

" #
e�ðnþ1=2Þg0 Pnðcos nÞ; ð4Þ
where n = constant is a family of spindle-shaped surfaces passing through the poles ð0;�c;0Þ;g0 is on the right spherical
boundary, g ¼constant shows a surface of lnðrc1=rc2Þ = constant, and Pnð�Þ is the Legendre polynomial. It contains both sym-
metric and anti-symmetric problems.

The problem of infinite space with two spherical cavities can be seen as a combination of symmetric and anti-symmetric
problems as shown in Fig. 1(b) and (c). The fundamental solution of the 3D Laplace equation is shown below:
Uðx; sÞ ¼ �1
r
; ð5Þ
where r is the distance between the source point s and the field point xðr � jx� sjÞ. For the symmetric case, we derive the
solution by using the image concept. To satisfy the nonhomogeneous boundary conditions (BCs) on the two spherical sur-
faces, both artificial sources at the two centers outside the domain are initiated in advance. However, the source at the left
(right) center also results a nonzero potential on the right (left) boundary. Therefore, successive images are required to con-
struct the solution as given below:
uðxÞ ¼ lim
N!1

qsðNÞ 1
ro1
þ 1

ro2

� �
þ
XN

i¼1

�w4i�3

jx� s4i�3j
� w4i�2

jx� s4i�2j
þ w4i�1

jx� s4i�1j
þ w4i

jx� s4ij

� �" #
þ cs

1ðNÞ
jx� sc1 j

þ cs
2ðNÞ
jx� sc2 j

( )
; ð6Þ
where three coefficients of symmetric case, qsðNÞ; cs
1ðNÞ and cs

2ðNÞ are required to be determined by matching the boundary
conditions, ro1 and ro2 are the distances between center and field point. Two frozen images, sc1 and sc2, are found after suc-
cessive images. The locations of two frozen images must simultaneously satisfy
d
2
þ Rc2 ¼

a2

d
2� Rc1
� � ; Rc1 ¼ Rc2; ð7Þ
where a, d, Rc1 and Rc2 are shown in Fig. 2. The distance between the two focuses is denoted by
jRc1 þ Rc2j ¼ 2c: ð8Þ
The parameter c is the half distance between the two focuses in the bispherical coordinates which can be obtained by:
c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 4a2

p
2

: ð9Þ



(a) An infinite space problem

(b) symmetric problem

(c) anti-symmetric problem

Fig. 1. (a) An infinite space problem with two spherical cavities composed of: (b) symmetric problem and (c) anti-symmetric problem.
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Fig. 2. Successive images for the: (a) symmetric and (b) anti-symmetric cases.
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The wk in Eq. (6) is the weighting of the kth image source that can be obtained by using the formula of image location
[9,10] as shown below:
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a
d
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aw4

d� R4
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d� R4i�4
;
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where Rk is the distance between the kth image source and the center of left cavity, and they are determined by the recur-
rence relation
R1 ¼ d� a2

d
; R5 ¼ d� a2

d� R4
; . . . ;R4i�3 ¼ d� a2

d� R4i�4
;
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a2

d
; R6 ¼
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Fig. 3. Images locations for the 2D anti-symmetric case.

Fig. 4. Problem sketch for the 3D symmetric problem.
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Here, the image solution for an anti-symmetric problem is shown below:
Fig.
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where the coefficients of the anti-symmetric case, qaðNÞ; ca
1ðNÞ and ca

2ðNÞ, are required to be determined by matching the
boundary conditions, qsðNÞ and qaðNÞ are the initial strengths for symmetric and anti-symmetric cases, respectively, which
can be determined later by matching the boundary conditions. Successive images for the symmetric and anti-symmetric
cases were shown in Fig. 2.
5. Coefficients of qsðNÞ; cs
1ðNÞ and cs

2ðNÞ versus N for an infinite space with two spherical cavities subject to the symmetric boundary condition.
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Potential contours: (a) an image solution, (b) an analytical solution using the bispherical coordinates and (c) a limiting case of static solution using
l-field BIEM [15] (x–y plane).
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2.2. 2D BVP

Let us consider an infinite plane with two circular holes subject to the anti-symmetric boundary condition. Similarly, the
2D anti-symmetric problem is solved by using the image method in a similar way of 3D case. The fundamental solution of
the 2D Laplace equation is given below:
Fig. 8.
Uðx; sÞ ¼ lnðrÞ: ð13Þ
Fig. 7. Problem sketch for the 3D anti-symmetric problem.

Coefficients of qaðNÞ; ca
1ðNÞ and ca

2ðNÞ versus N for an infinite space with two spherical cavities subject to the anti-symmetry boundary condition.
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For the anti-symmetric case, the boundary conditions are
Fig. 9.
the nul
uðxÞ ¼ V1 ¼ �V ; x 2 B1; ð14Þ
uðxÞ ¼ V2 ¼ V ; x 2 B2; ð15Þ
where B1 and B2 are left and right circular boundaries with boundary data of V1 and V2, respectively. Therefore, the image
solution for the 2D anti-symmetric problem in Fig. 3 can be constructed as
uðxÞ ¼ lim
N!1

qðNÞ � ln ro1 þ ln ro2ð Þ þ
XN

i¼1

ln jx� s4i�3j � ln jx� s4i�2j þ ln jx� s4i�1j � ln jx� s4ijð Þ
" #(

þc1ðNÞ ln jx� sc1 j þ c2ðNÞ ln jx� sc2 j þ eðNÞ
)
; ð16Þ
where q(N) is an initial strength at the two centers of circular hole which can be determined later by matching the boundary
conditions, sc1 and sc2 are two locations of final two frozen images which are similar to the 3D case, c1ðNÞ and c2ðNÞ are their
corresponding strengths, e(N) is the rigid body term, the iterative images and their locations are shown in Fig. 3. The exact
solution [12] in terms of the bipolar coordinates is given below:
uðn;gÞ ¼ V
ln jr1=r2j

g ¼ V
g0

g: ð17Þ
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Potential contours: (a) an image solution, (b) an analytical solution using the bispherical coordinates and (c) a limiting case of static solution using
l-field BIEM [15] (x–y plane).

Fig. 10. Sketch for the problem of non-concentric spheres.



Fig. 11. Image location for the problem of the non-concentric spheres.
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3. Illustrative examples and discussions

3.1. 3D problems

Case 1: an infinite space with two spherical cavities subject to symmetric boundary conditions (symmetric problem of
V1 ¼ V2 ¼ V ¼ 1

In the first case, the problem sketch for an infinite space with two spherical cavities is shown in Fig. 4. The centers of two
cavities are set at (0, �2.5, 0) and (0, 2.5, 0), and the radii are both 1. By matching the boundary conditions, the analytical
solution [12] can be simplified by using Eq. (4) as given below:
uðn;gÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cosh g� 2 cos n

q X1
n¼0

V
cosh nþ 1

2

� �
g

cosh nþ 1
2

� �
g0

" #
e� nþ1=2ð Þg0 Pnðcos nÞ: ð18Þ
By matching the boundary conditions, all the unknown coefficients in Eqs. (4)–(6), qsðNÞ; cs
1ðNÞ and cs

2ðNÞ, can be determined
as shown in Fig. 5. In the numerical experiment, we found that the coefficient of qsðNÞ is equal to 1, since the 3D fundamental
solution is �1/r where r is the distance between s and x ðr � jx� sjÞ; limN!1cs

1ðNÞ ¼ 0 and limN!1cs
2ðNÞ ¼ 0. Finally, we can

find that the final frozen image points terminate at the focuses of the bispherical coordinates. The contour plots by using Eq.
(6) of the image method and Eq. (18) in terms of the bispherical coordinates are shown in Fig. 6. It can be observed that our
results are compared well with the analytical solution. Also, the static result for limiting solution of two-spheres radiation by
using the null-field BIEM [15] is provided for comparison. Good agreement is also made.

Case 2: an infinite space with two spherical cavities subject to anti-symmetric boundary conditions (anti-symmetric problem of
V1 ¼ �V ¼ �1;V2 ¼ V ¼ 1Þ

Fig. 7 is a sketch of an infinite space with two spherical cavities subject to anti-symmetry boundary conditions instead
of the above symmetric case. The geometry data are the same as the case 1 and the analytical solution is obtained as
follows:
uðn;gÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cosh g� 2 cos n

q X1
n¼0

V
sinh nþ 1

2

� �
g

sinh nþ 1
2

� �
g0

" #
e�ðn�1=2Þg0 Pnðcos nÞ: ð19Þ
In a similar way of finding the successive images for matching the boundary conditions, the solution can be obtained by
using Eqs. (4)–(12). After locating boundary points to match the boundary conditions, all the unknown coefficients,
qaðNÞ; ca

1ðNÞ and ca
2ðNÞ, versus N can be determined as shown in Fig. 8. Similarly, we also found that the final frozen image



Fig. 12. Coefficients of qðNÞ; c1ðNÞ; c2ðNÞ and e(N) versus N for the non-concentric spherical problem.
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Fig. 13. Potential contours: (a) an image solution, (b) an analytical solution using the bispherical coordinates [12] and (c) a solution by using the MFS (x-y
plane).
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points happen to be the focuses of the bispherical coordinates. The contour plots by using Eq. (12) in the image method and
Eq. (19) of the analytical solution are shown in Fig. 9. The results of our approach are compared well with the analytical solu-
tion by using the bispherical coordinates. Also, the static result for limiting solution of two-spheres radiation using the null-
field BIEM [15] is provided for comparison. Good agreement is also made.

Case 3: a non-concentric sphere ðV1 ¼ 0;V2 ¼ 1Þ
In this case, the two radii of inner and outer spheres are a ¼ 1 and b ¼ 2:5, respectively. The distance d between the two

centers is equal to 1 as shown in Fig. 10. After successive images, the image solution can be obtained as shown below:
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Fig. 14. An infinite plane with two circular holes in the bipolar coordinate system.
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uðxÞ ¼ lim
N!1

qðNÞ �1
r
þ
XN

i¼1

�w2i�1

jx� s2i�1j
þ w2i

jx� s2ij

� �" #
þ c1ðNÞ
jx� sc1 j

þ c2ðNÞ
jx� sc2 j

þ eðNÞ
( )

: ð20Þ
Since the center of outer sphere is in the domain, we only put an artificial source at the center of inner sphere to satisfy the
governing equation. Similarly, two frozen images are found after successive images. The locations of two frozen images are
governed by
Rc1 ¼
b2

Rc2 � d
þ d; Rc2 ¼

a2

Rc1
; ð21Þ
where Rc1 and Rc2 are the y coordinates for the left and right focuses, respectively, as shown in Fig. 11. The distance between
the two focuses is denoted by
jRc1 � Rc2j ¼ 2c: ð22Þ



-10
-8

-6
-4

-2
0

2
4

6
8

-14

-12

-10 -8 -6 -4 -2 0 2 4 -10
-8

-6
-4

-2
0

2
4

6
8

-14

-12

-10 -8 -6 -4 -2 0 2 4 -10
-8

-6
-4

-2
0

2
4

6
8

-14

-12

-10 -8 -6 -4 -2 0 2 4

(a) an image solution (b) an analytical solution 
using the bipolar coordinates 

(c) a solution by using 
the null-field BIEM 

Fig. 16. Potential contours: (a) an image solution, (b) an analytical solution using the bipolar coordinates and (c) a solution by using the null-field BIEM
[14].

1=a
2 5= .b

1=d

y

x
1c 2c

u=V1=0 u=V2=1 

B1
B2

c c 

r1
r2

Fig. 17. Problem sketch for an eccentric annulus.

1464 J.-T. Chen et al. / Applied Mathematics and Computation 216 (2010) 1453–1468
The parameter c is the half distance between two focuses in the bispherical coordinates which can be obtained by:
c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 � 2a2b2 þ b4 � 2a2d2 � 2b2d2 þ d4

p
2d

: ð23Þ
After matching the boundary conditions, the unknown coefficients, qðNÞ; c1ðNÞ; c2ðNÞ and e(N), versus N are shown in Fig. 12.
The frozen images happen to be the two focuses in the bispherical coordinates. The analytical solution obtained by using the
bispherical coordinates is
uðn;gÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cosh g� 2 cos n

q X1
n¼0

V1ðe2 nþ1=2ð Þg � e2 nþ1=2ð Þg2 Þ � V2ðe2 nþ1=2ð Þg � e2 nþ1=2ð Þg1 Þ
e2 nþ1=2ð Þg1�e2 nþ1=2ð Þg2

� �
e� nþ1=2ð ÞgPnðcos nÞ: ð24Þ
Fig. 13(a)–(c) show the potential contours by using the image method, the bispherical coordinates and the method of fun-
damental solutions, respectively. It is found that the results of three approaches match well with each other.

3.2. 2D problems

Case 4: an infinite plane with two circular holes subject to anti-symmetric BCs ðV1 ¼ �V ¼ �1; V2 ¼ V ¼ 1Þ
It is interesting to find that q(N) for 3D case can be obtained in advance to fit the boundary condition. We may wonder

whether the q(N) of the 2D problem can be determined in the same way as 3D case. The problem sketch for an infinite plane
with two circular holes subject to anti-symmetric boundary conditions is shown in Fig. 14. The distance between the centers
of two circular holes is 10, and the radii of two holes are both 1. The frozen images happen to be the two focuses in the



Fig. 18. Coefficients of qðNÞ; c1ðNÞ; c2ðNÞ and e(N) versus N for the eccentric annulus.
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Fig. 19. Potential contours: (a) an image solution, (b) an analytical solution using the bipolar coordinates and (c) a solution by using the null-field BIEM
[13].
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bipolar coordinates. After matching the boundary conditions in Eqs. (14) and (15), the unknown coefficients of q(N),
c1ðNÞ; c2ðNÞ and e(N) versus N are shown in Fig. 15. It is interesting to find that the strengths of q(N) and e(N) are zero. Be-
sides, we also observe that c1ðNÞ ¼ �c2ðNÞ in numerical experiment and therefore the image solution of the anti-symmetrical
case can be written as
uðxÞ ¼ c1ðNÞ ln jx� sc1 j � ln jx� sc2 j
	 


; ð25Þ
where the coefficient c1(N) is determined by matching the boundary condition ðuðxÞjx2B2
¼ V ¼ 1Þ as given below:
c1ðNÞ ¼
V

ln jx� sc1 j � ln jx� sc2 j
; x 2 B2; ð26Þ



Table 1
Anti-symmetric problem of 2D and 3D.

Domain 2D problem 3D problem

Figure
sketch

Image solution
uðxÞ ¼ limN!1

�
qðNÞ � ln ro1 þ ln ro2ð Þ½

þ
PN

i¼1 ln jx� s4i�3j � ln jx� s4i�2j þ ln jx� s4i�1j � ln jx� s4ijð Þ�

þc1ðNÞ ln jx� sc1j þ c2ðNÞ ln jx� sc2j
�

uðxÞ ¼ limN!1

�
qaðNÞ �1

ro1
þ 1

ro2


 �h

þ
PN

i¼1
�w4i�3
jx�s4i�3 j þ

w4i�2
jx�s4i�2 j �

w4i�1
jx�s4i�1 j þ

w4i
jx�s4i j


 �
� þ ca

1ðNÞ
jx�sc1 j

þ ca
2ðNÞ
jx�sc2 j

�

Value of coefficient qðNÞ ¼ 0 qaðNÞ ¼ aV
c1ðNÞ ¼ c2ðNÞ– 0 limN!1ca

1ðNÞ ¼ limN!1ca
2ðNÞ ¼ 0

c1ðNÞ ¼ V
sinh�1 c

að Þ
; c2ðNÞ ¼ �V

sinh�1 c
að Þ

Key images Focus dominant Pole dominant
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in which c1ðNÞ is found to be a constant and is independent of N. It indicates that the analytical solution by using the bipolar
coordinates is the same as that of image method (special MFS) with only two sources as follows:
uðn;gÞ ¼ V

sinh�1 c
a

� �g: ð27Þ
Fig. 16(a)–(c) show the potential contours by using the image method, the bipolar coordinates and the null-field BIEM
[14], respectively. Good agreement of the three approaches is made.

Case 5: an eccentric annulus [12,16]
The problem sketch for an eccentric annulus is shown in Fig. 17 with V1 ¼ 0 and V2 ¼ 1. The radii of inner and outer cir-

cular holes are a ¼ 1 and b ¼ 2:5, respectively. The distance d between the two centers is equal to 1. This problem has been
solved by using several approaches and a unified point of view by using the conformal mapping was provided in [13]. By
putting successive images, the image solution can be obtained as below:
uðxÞ ¼ lim
N!1

qðNÞ ln r þ
XN

i¼1

� ln jx� s2i�1j þ ln jx� s2ijð Þ
" #

þ c1ðNÞ ln jx� sc1 j þ c2ðNÞ ln jx� sc2 j þ eðNÞ
( )

: ð28Þ
The coefficients of q(N), c1ðNÞ; c2ðNÞ and e(N) versus N are shown in Fig. 18. The analytical solution obtained by using the
bipolar coordinates is given below:
uðn;gÞ ¼ Agþ B; ð29Þ
where
A ¼ V1 � V2

sinh�1 c
a

� �
� sinh�1 c

b

� � ; ð30Þ

B ¼ V1 �
V1 � V2

sinh�1 c
a

� �
� sinh�1 c

b

� � sinh�1 c
a


 �
: ð31Þ
It is also found that the solution derived by the image method and the MFS with only two sources are the same as the
analytical solution derived by using bipolar coordinates. Fig. 19(a)–(c) show the potential contours by using the image meth-
od, the bipolar coordinates and the null-field BIEM, respectively. The frozen images happen to be the two focuses in the bipo-
lar coordinates. It is found that the results of three approaches match well. In this case, the optimal number of sources in the
MFS is only two and the two positions are found to be exactly located on the focuses in the bipolar coordinates. The image
method in this case can be seen as an optimal and simple MFS.

For the 3D case, the successive strengths become smaller and the final strengths at the two frozen points approach zero
for sufficiently large number of images. However, the 2D case is quite different, i.e., the strengths at the two centers are not
1/ln(a) which satisfies the boundary condition (u=ln(a)/ln(a)=1). Only two singularities at the two focuses are required. In the
cases of 4 and 5, we found the equivalence between the image solution and the analytical solution derived by using the sep-
aration of variables in the bipolar coordinates. Table 1 shows the comparison of the anti-symmetric problem between 2D and
3D cases. The image method can be seen as a simple MFS in the 2D case. For the five (2D and 3D) cases, all frozen images
merge at the focuses. The present method can be also exactly extended to problems with Neumann BC or non constant
boundary data. Since benchmark examples are not found, we do not provide more examples after five examples. Certainly,
this approach can be applied to a general boundary problem once it can be mapped to a circular boundary.

4. Conclusions

In this paper, five solutions for the 2 and 3D BVPs were obtained by using the image method. For the 3D case, we have
found the strengths of the two initial sources at the two centers that can be determined in advance to satisfy its own bound-
ary condition. The strengths of successive images are then calculated and their values become smaller and smaller. The final
strengths of frozen images approach zero for sufficiently large number of successive images. However, the finding in the 3D
case can not be directly applied to the 2D case. Nonzero strengths at the frozen images are found and the initial strengths of
sources at the centers are zero. The image method can provide optimal locations and specified weightings for the conven-
tional MFS. The dimension of the matrix in the linear algebraic equation is at most four by four in the all examples. Agree-
ment is made after comparing the image solution with those of the conventional MFS, the null-field BIEM, the analytical
solutions by using the bipolar (2D) and the bispherical (3D) coordinates and the static result for limiting case of two-spheres
radiation by using the null-field BIEM.
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