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Scattering of flexural wave in thin plate with multiple holes2

by using the null-field integral equation approach3
Wei-Ming Lee1, Jeng-Tzong Chen24

Abstract: In this paper, a semi-analytical approach is proposed to solve the scat-5
tering problem of flexural waves and to determine dynamic moment concentration6
factors (DMCFs) in an infinite thin plate with multiple circular holes. The null-field7
integral formulation is employed in conjunction with degenerate kernels, tensor8
transformation and Fourier series. In the proposed direct formulation, all dynamic9
kernels of plate are expanded into degenerate forms and further the rotated degen-10
erate kernels have been derived for the general exterior problem. By uniformly11
collocating points on the real boundary, a linear algebraic system is constructed.12
The results of dynamic moment concentration factors for the plate with one hole13
are compared with the analytical solution to verify the validity of the proposed14
method. For the cases of small wave number, the quasi-static results of a plate with15
one or multiple circular holes are compared with the static data of finite element16
method (FEM) using ABAQUS. Numerical results indicate that the DMCF of two17
holes is apparently larger than that of one hole when two holes are close to each18
other. Fictitious frequency appeared in the external problem can be suppressed by19
using the more number of Fourier series terms. The effect of distance between the20
centers of holes on dynamic moment concentration factors is also investigated by21
using the proposed method.22
Keywords: scattering, flexural wave, dynamic moment concentration, biHelmholtz23
equation, null-field boundary integral equation, degenerate kernel, Fourier series24
1 Introduction25
Thin plates with multiple circular holes are widely used in engineering structures,26
e.g. missiles, aircraft, etc., either to reduce the weight of the whole structure or27
to increase the range of inspection. Geometric discontinuities due to these holes28
result in the stress concentration, which reduce the load carrying capacity. The29
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deformation and corresponding stresses produced by the dynamic force are prop-30
agated through the structure in the way of waves. At the irregular interface of31
different media, stress wave reflects in all directions; this phenomenon is the scat-32
tering. It turns out that the scattering of the stress wave results in the dynamic stress33
concentration [Pao and Chao (1972)].34
Nishimura et al. [Nishimura and Jimbo (1955)] were two of the early investigators35
for the analytical study of the dynamic stress concentration and they determined the36
stresses in the vicinity of a spherical inclusion in the elastic solid under a harmonic37
force. Pao [Pao (1962)] studied the scattering of flexural waves and dynamic stress38
concentrations around a circular hole, and proposed an analytical solution. Since39
then, most research work has focused on the scattering of elastic wave and the re-40
sulted dynamic stress concentration and has led to a rapid development of analyti-41
cal or numerical approach such as the method of wave function expansion, complex42
variable method, boundary integral equation method and boundary element method43
[Pao and Chao (1972)].44
Kung [Kung (1964)] studied dynamic stress concentrations resulting from the scat-45
tering of flexural waves on the thin plate with one circular hole and gave the calcu-46
lations of moment and shear forces as a function of frequency. Liu et al. [Lin, Ga47
and Tao (1982)] extended the complex variable function approach for statics to the48
case of dynamic loading. The dynamic stress concentration factors were given for49
circular and elliptical cavities in an infinite plane by incident plane compressional50
waves. By using the flux conservation relation and optical theorem, Norris et al.51
[Norris and Vemula (1995)] considered the scattering of flexural waves by circular52
inclusions with different plate properties and obtained numerical results. The com-53
plex variable function approach and conformal mapping technique were employed54
to solve diffraction problem of flexural waves by two cutouts [Hu, Ma and Huang55
(1998)] and dynamic concentration factors of plates with two circular holes were56
presented under various boundary conditions. Squire and Dixon [Squire and Dixon57
(2000)] applied the wave function expansion method to study the scattering proper-58
ties of a single coated cylindrical anomaly located in a thin plate on which flexural59
waves propagate. Gao et al. [Gao, Wang and Ma (2001)] dealt with theoretical and60
numerical analysis of scattering of elastic wave and dynamic stress concentrations61
in an infinite plate with a circular hole using boundary element method. Hayir et al.62
[Hayir and Bakirtas (2004)] applied the image method to analyze the scattering and63
dynamic stress concentrations of elastic waves in plates with a circular hole subject64
to plane harmonic SH wave. Gao et al. [Gao, Wang, Zhang and Ma (2005)] stud-65
ied the scattering of flexural waves and calculated the dynamic stress concentration66
in the thin plate with the cutout by using the dual reciprocity boundary element67
method. Hu et al. [Hu, Fang and Huang (2007)] applied the image method and the68
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wave function expansion method to study the multiple scattering of flexural waves69
in semi-infinite plates with a circular cutout. Recently, one monograph is devoted70
to discussing the multiple scattering in acoustics, electromagnetism, seismology71
and hydrodynamics [Martin (2006)].72
From literature reviews stated previously, few papers except Hu et al. [Hu, Ma73
and Huang (1998)] have been published to date reporting the scattering of flex-74
ural wave in plate with more than one cutout. Furthermore, as Kobayashi et al.75
[Kobayashi and Nishimura (1981)] pointed out that the integral equation method76
seems to be most effective for two-dimensional steady-state flexural wave [Chen,77
Fu and Zhang (2007); Chandrasekhar, Rao (2007); Chandrasekhar (2008)]. In the78
paper, the boundary integral method is devoted to solving the multiple scattering79
of flexural wave and dynamic stress concentrations in plate with multiple circular80
holes.81
It is noted that improper integrals on the boundary should be handled particularly82
when the BEM or BIEM is used. In the past, many researchers proposed several83
regularization techniques to deal with the singularity and hypersingularity. The de-84
termination of the Cauchy principal value (CPV) and the Hadamard principal value85
(HPV) in the singular and hypersingular integrals are critical issues in BEM/BIEM86
[Chen and Hong (1999); Tanaka, Sladek and Sladek (1994)]. For the plate problem,87
it is more difficult to calculate the principal values since the kernels are involved88
with transcendental functions and their higher-order gradients. Readers can consult89
with the review article by Beskos [Beskos (1997)]. In this paper, instead of using90
the previous concepts, the kernel function is recast into the degenerate kernel which91
is expanded into a series form on each side (interior and exterior) of the boundary92
by employing the addition theorem since the double layer potential is discontin-93
uous across the boundary. In reality, addition theorems are expansion formulae94
for the special functions (e.g. Bessel function, spherical harmonics, etc.) in a se-95
lected coordinate system [Gradshteyn and Ryzhik (1996)]. Therefore, degenerate96
kernel, namely separable kernel, is a vital tool to study the perforated plate. Based97
on the direct boundary integral formulation, Chen et al. [Chen, Shen and Chen98
(2006a); Chen, Hsiao and Leu (2006b)] recently proposed null-field integral equa-99
tions in conjunction with degenerate kernels and Fourier series to solve boundary100
value problems with circular boundaries. By introducing the degenerate (separa-101
ble) kernel, BIE involves nothing more than the linear algebra. Some applications102
were done in the plate problems [Chen, Hsiao and Leu (2006b)] and the derivation103
of anti-plane dynamic green’s function [Chen and Ke (2008)]. The introduction of104
degenerate kernel in companion with Fourier series was proved to yield the expo-105
nential convergence [Kress (1989)] instead of the linear algebraic convergence in106
BEM.107
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This paper presents a semi-analytical approach to solve scattering of flexural waves108
and dynamic moment concentration factors in a thin plate with multiple circu-109
lar holes. A linear algebraic system will be constructed by taking finite terms of110
Fourier series after uniformly collocating points on the boundary. After determin-111
ing the Fourier coefficients of unknown boundary density, the displacement and112
corresponding section force produced by the incident flexural wave are determined113
by using the boundary integral equations for the domain point. For the plate prob-114
lem, the slope (bending angle) and moment in the normal and tangential directions115
for the multiply-connected domain problem are determined with care under the116
adaptive observer system. Therefore, the operator of transformation matrix for the117
slope and moment is adopted to deal with this problem. Finally, the obtained result118
for an infinite plate with one circular hole is compared with the analytical solu-119
tion [Kung (1964)] to verify the validity of the present method. For the cases of120
small wave number, the results for more than one hole will be compared with those121
of FEM using ABAQUS to demonstrate the generality of the proposed method.122
Finally the effect of central distance between holes on dynamic moment concentra-123
tion factors is also investigated by the proposed method.124
2 Problem statement and boundary integral formulation125
2.1 Problem statement126
The governing equation of the flexural wave for a uniform infinite thin plate with

randomly distributed circular holes as shown in Figure 1 is written as follows:

∇4u(x) = k4u(x), x ∈ Ω (1)

where ∇4 is the biharmonic operator, u is the out-of-plane elastic displacement,127
k4 = ω2ρ0h/D, k (2π/wave length) is the wave number of elastic wave, ω is the128
circular frequency, ρ0 is the volume density, D = Eh3/12(1 − v2) is the flexural129
rigidity, E denotes the Young’s modulus, v is the Poisson ratio, h is the plate thick-130
ness and Ω is the domain of the thin plate..131
2.2 Boundary integral equation for the collocation point in the domain132
The integral representation for the plate problem can be derived from the Rayleigh-

Green identity [Kitahara (1985)] as follows:

u(x) =
∫

B

U(s,x)v(s)dB(s)−
∫

B

Θ(s,x)m(s)dB(s) +
∫

B

M(s,x)θ(s)dB(s)

−
∫

B

V (s,x)u(s)dB(s), x ∈ Ω (2)
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Figure 1: Problem statement for an infinite plate with multiple circular holes subject

to an incident flexural wave

θ(x) =

∫

B

Uθ (s,x)v(s)dB(s)−

∫

B

Θθ (s,x)m(s)dB(s) +

∫

B

Mθ (s,x)θ(s)dB(s)

−
∫

B

Vθ (s,x)u(s)dB(s), x ∈ Ω (3)

m(x) =

∫

B

Um(s,x)v(s)dB(s)−

∫

B

Θm(s,x)m(s)dB(s) +

∫

B

Mm(s,x)θ(s)dB(s)

−
∫

B

Vm(s,x)u(s)dB(s), x ∈ Ω (4)

v(x) =

∫

B

Uv(s,x)v(s)dB(s)−

∫

B

Θv(s,x)m(s)dB(s) +

∫

B

Mv(s,x)θ(s)dB(s)

−
∫

B

Vv(s,x)u(s)dB(s), x ∈ Ω (5)

where B is the boundary of the domain Ω; u(x), θ(x), m(x) and v(x) are the

displacement, slope, moment and shear force; U(s,x), Θ(s,x), M(s,x), V (s,x),
Uθ (s,x), Θθ (s,x), Mθ (s,x), Vθ (s,x), Um(s,x), Θm(s,x), Mm(s,x), Vm(s,x), Uv(s,x),
Θv(s,x), Mv(s,x) and Vv(s,x) are kernel functions; s and x mean the source and field

points, respectively. It is noted that the null field points do not include the boundary
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in the conventional BIEM. But it can be done when the kernel functions in Eqs.(2)-

(5) are expanded to degenerate kernels, which will be described in section 2.4. The

kernel function U(s,x) in Eq.(2) is the fundamental solution which satisfies

∇4U(s,x) − k4U(s,x) = δ (s− x) (6)

where δ (s− x) is the Dirac-delta function, respectively. Considering the two sin-

gular solutions (Y0(kr) and K0(kr), which are the zeroth-order of the second-kind

Bessel and modified Bessel functions, respectively) [Hutchinson (1991)] and one

regular solution (J0(kr) is the zeroth-order of the first-kind Bessel) in the funda-

mental solution, we have the complex-valued kernel,

U(s,x) =
1

8k2D

[
Y0(kr)− iJ0(kr)+

2

π
K0(kr)

]
, (7)

where r ≡ |s− x| and i2 = −1, which ensures the outgoing wave in companion

with e−iωt . The other three kernels, Θ(s,x), M(s,x) and V (s,x), in Eq.(2) can be

obtained by applying the following slope, moment and effective shear operators

defined by

KΘ =
∂ (·)

∂n
(8)

KM = −D

[
ν∇2 (·)+ (1−ν)

∂ 2 (·)

∂ n2

]
(9)

KV = −D

[
∂

∂ n
∇2 (·)+ (1−ν)

∂

∂ t

(
∂

∂ n

(
∂

∂ t
(·)

))]
(10)

to the kernel U(s,x) with respect to the source point, where ∂/∂n and ∂/∂ t are the

normal and tangential derivatives, respectively, ∇2 means the Laplacian operator.

In the polar coordinate of (R,θ ), the normal and tangential derivatives can be ex-

pressed by ∂/∂R and (1/R)∂/∂θ , respectively, and then the three kernel functions

can be expressed as:

Θ(s,x) = KΘ,s(U(s,x)) =
∂ U(s,x)

∂R
(11)

M(s,x) = KM,s(U(s,x)) = −D

[
ν∇2

sU(s,x)+ (1−ν)
∂ 2U(s,x)

∂R2

]
(12)

V (s,x) = KV,s(U(s,x))

= −D

[
∂

∂R

(
∇2

sU(s,x)
)
+(1−ν)

(
1

R

)
∂

∂θ

(
∂

∂R

(
1

R

∂U(s,x)

∂θ

))]
(13)
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The expressions for θ(x), m(x) and v(x) in Eqs.(3)-(5), which can be obtained by

applying the operators in Eqs.(8)-(10) to u(x) in Eq. (2) with respect to the field

point x(ρ ,φ ), are

θ(x) = KΘ,x(u(x)) =
∂ u(x)

∂ρ
(14)

m(x) = KM,x(u(x)) = −D

[
ν∇2u(x)+ (1−ν)

∂ 2u(x)

∂ρ2

]
(15)

v(x) = KV,x(u(x))

= −D

[
∂

∂ρ

(
∇2

s u(x)
)
+(1−ν)

(
1

ρ

)
∂

∂ϕ

[
∂

∂ρ

(
1

ρ

∂u(x)

∂ϕ

)]]
. (16)

By this way, the kernel functions Uθ (s,x), Θθ (s,x), Mθ (s,x), Vθ (s,x), Um(s,x),133
Θms,x), Mm(s,x), Vm(s,x), Uv(s,x), Θv(s,x), Mv(s,x) and Vv(s,x) can be obtained134
by applying the operators in Eqs.(8)-(10) to U(s,x), Θ(s,x), M(s,x) and V (s,x)135
with respect to the field point x(ρ ,φ ).136
2.3 Null-field integral equations137
The null-field integral equations derived by collocating the field point outside the

domain (including the boundary point if exterior degenerate kernels are properly

adopted) are shown as follows:

0 =

∫

B

U(s,x)v(s)dB(s)−

∫

B

Θ(s,x)m(s)dB(s) +

∫

B

M(s,x)θ(s)dB(s)

−
∫

B

V (s,x)u(s)dB(s), x ∈ ΩC ∪B, (17)

0 =

∫

B

Uθ (s,x)v(s)dB(s)−

∫

B

Θθ (s,x)m(s)dB(s)+

∫

B

Mθ (s,x)θ(s)dB(s)

−

∫

B

Vθ (s,x)u(s)dB(s), x ∈ ΩC ∪B, (18)

0 =
∫

B

Um(s,x)v(s)dB(s)−
∫

B

Θm(s,x)m(s)dB(s) +
∫

B

Mm(s,x)θ(s)dB(s)

−
∫

B

Vm(s,x)u(s)dB(s), x ∈ ΩC ∪B, (19)
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0 =

∫

B

Uv(s,x)v(s)dB(s)−

∫

B

Θv(s,x)m(s)dB(s) +

∫

B

Mv(s,x)θ(s)dB(s)

−

∫

B

Vv(s,x)u(s)dB(s), x ∈ ΩC ∪B, (20)

where ΩC is the complementary domain of Ω. Once kernel functions are expressed138
in proper degenerate forms, which will be described in the next subsection, the139
collocation points can be exactly located on the real boundary, that is x ∈ ΩC ∪B.140
Since the four equations of Eqs.(17)-(20) in the plate formulation are provided,141
there are 6 (C4

2) options for choosing any two equations to solve the problems.142
2.4 Degenerate kernels and Fourier series for boundary densities143
In the plane polar coordinate, the field point and source point can be expressed as

(ρ ,φ ) and (R,θ ), respectively. By applying the addition theorem [Gradshteyn and

Ryzhik (1996)] to Eq. (7), the degenerated form for the kernel function U(s,x) can

be expressed in the series form as follows

U :





U I(s,x) = 1
8k2D

∞

∑
m=0

εm{Jm(kρ)[Ym(kR)− iJm(kR)]

+ 2
π Im(kρ)Km(kR)}cos [m(θ −φ)] , ρ < R

UE(s,x) = 1
8k2D

∞

∑
m=0

εm{Jm(kR)[Ym(kρ)− iJm(kρ)]

+ 2
π Im(kR)Km(kρ)}cos [m(θ −φ)] , ρ ≥ R

(21)

where εm is the Neumann factor (εm=1, m=0; εm=2, m=1,2,· · · ,∞) and the super-144
scripts “I” and “E” denote the interior and exterior cases for U(s,x) degenerate145
kernels to distinguish ρ < R and ρ > R, respectively as shown in Figure 2. The146
degenerate kernels Θ(s,x), M(s,x) and V (s,x) in the null-field boundary integral147
equations can be obtained by applying the operators of Eqs.(8)-(10) to the degen-148
erate kernel U(s,x), given by Eq.(21), with respect to the source point s. The149
other degenerate kernels Uθ (s,x), Θθ (s,x), Mθ (s,x), Vθ (s,x), Um(s,x), Θm(s,x),150
Mm(s,x), Vm(s,x), Uv(s,x), Θv(s,x), Mv(s,x) and Vv(s,x) can be obtained by apply-151
ing the operators of Eqs.(8)-(10) to the degenerate kernel U(s,x), Θ(s,x), M(s,x)152
and V (s,x) with respect to the field point x. The expressions of these degenerate153
kernels are listed in the Appendix6 c1.154
In order to fully utilize the geometry of circular boundary, the displacement u(s),
slope θ(s), moment m(s) and shear force v(s) along the circular boundaries in

the null-field integral equations are represented by using Fourier series expansion,
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respectively, as shown below:

u(s) = uc0 +
M

∑
n=1

(ucn cos nθ + usn sinnθ), s ∈ B, (22)

θ(s) = θc0 +
M

∑
n=1

(θcn cosnθ + θsn sinnθ), s ∈ B, (23)

m(s) = mc0 +
M

∑
n=1

(mcn cosnθ + msn sinnθ), s ∈ B, (24)

v(s) = vc0 +
M

∑
n=1

(vcn cosnθ + vsn sinnθ), s ∈ B, (25)

where uc0, ucn, usn, θc0, θcn, θsn, mc0, mcn, msn, vc0, vcn and vsn are the Fourier155
coefficients and M is the truncated number of Fourier series terms. The number of156
terms M in the Fourier series for circular boundaries can be, in general, different for157
each boundary circle. For simplicity, we used the same number of Fourier terms for158
each circular boundary. By using degenerated kernels, Fourier series and orthogo-159
nal property, all the improper integrals in Eqs.(17)-(20) can be transformed to series160
sum and then be calculated easily, since the potential across the boundary can be161
described by using the degenerate kernel with series form in each side. Successful162
experiences on Laplace problems [Chen, Shen and Chen (2006a)], Helmholtz prob-163
lems [Chen ×4 (2007)] and biharmonic problems [Chen, Hsiao and Leu (2006b)]164
can be found.165
3 Adaptive observer system and transformation of tensor components166
3.1 Adaptive observer system167
For the direct boundary integral equations being frame indifferent (i.e. rule of ob-168
jectivity), the origin of the observer system can be adaptively located on the center169
of the corresponding boundary contour under integration. Adaptive observer sys-170
tem is chosen to fully employ the circular property, which takes the full advantage171
of both Fourier series to represent boundary variables and degenerate-kernel ex-172
pressions in the polar coordinate. Figure 3 shows the boundary integration for the173
circular boundaries in the adaptive observer system. The dummy variable in the174
circular contour integration is only the angle θ . By using the adaptive system, all175
the boundary integrals can be determined analytically free of calculating principal176
value.177
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Figure 2: Degenerate kernel for U (s,x)

Figure 3: Collocation point and boundary contour integration in the boundary inte-

gral equation by using the adaptive observer system

3.2 Transformation of tensor components178
For the slope, moment and effective shear force being calculated in the plate prob-

lem, special treatment for the potential gradient or higher-order gradient should be
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taken care as the source and field points locate on different circular boundaries.

As shown in Figure 4, the angle φi is polar coordinate of the collocation point xi

centered at oi which locate the center of the circle under integration and the angle

φc is that centered at o j being the center of the circle on which collocation point

is located. According to the transformation law for the components of tensor, we

have
[
(·)n

(·)t

]
=

[
cos(δ ) sin(δ )
−sin(δ ) cos(δ )

] [
(·)r

(·)θ

]
(26)




(·)nn

(·)tt

(·)nt


 =




cos2(δ ) sin2(δ ) 2sin(δ )cos(δ )

sin2(δ ) sin2(δ ) −2sin(δ )cos(δ )

−sin(δ )cos(δ ) sin(δ )cos(δ ) cos2(δ )− sin2(δ )







(·)rr

(·)θ θ

(·)rθ


 . (27)

Based on Eqs. (26) and (27), the general rotated slope, normal bending and tangen-

tial bending moment kernels can be obtained by following operators:

KR
Θ = cos (δ )

∂ (·)

∂n
+ sin(δ )

∂ (·)

∂ t
(28)

KR
N = −D

{[
v+(1−ν)sin2(δ )

]
∇2 (·)

+cos(2δ )(1−ν)
∂ 2 (·)

∂ n2
+ sin(2δ )(1−ν)

∂

∂ n

(
∂ (·)

∂ t

)}
(29)

KR
T = −D

{[
v+(1−ν)cos2(δ )

]
∇2 (·)

+cos(2δ )(v−1)
∂ 2 (·)

∂ n2
− sin(2δ )(1−ν)

∂

∂ n

(
∂ (·)

∂ t

)}
(30)

where δ = φc − φi. When the angle φc equals to the angle φi or two circles co-179
incide, the angle difference δ equals to zero and Eqs.(28) and (29) are simplified180
to Eqs.(8) and (9), respectively. The expressions of rotated degenerate kernels,181
Uθ (s,x), Θθ (s,x), Mθ (s,x), Vθ s,x), Um(s,x), Θm(s,x), Mm(s,x), Vm(s,x), Ut(s,x),182
Θt(s,x), Mt(s,x) and Vt(s,x), can be obtained by applying the operators of Eqs.(28),183
(29) and (30) to the degenerate kernel U(s,x), Θ(s,x), M(s,x) and V (s,x) with re-184
spect to the field point x and are listed in the Appendix 6 co.185
4 Linear algebraic systems186
Consider an infinite plate containing H nonoverlapping circular holes centered at

the position vector o j ( j=1, 2, · · · , H), as shown in Fig. 3 in which R j denotes
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Figure 4: Transformation of tensor components

the radius of the jth circular region, x
˜j is the collocation point on the jth circular

boundary and B j is the boundary of the jth circular hole. Kernels of Eqs. (19) and

(20) involve higher-order derivatives, which may decrease both the convergence

rate and computational efficiency. For the purpose of computational efficiency,

Eqs. (17) and (18) are used to analyze the plate problem. By uniformly collocating

N (=2M+1) points on each circular boundary in Eqs. (17) and (18), we have

0 =
H

∑
j=1

∫

B j

{U(s,x)v(s)−Θ(s,x)m(s) +M(s,x)θ(s)−V (s,x)u(s)}dB j(s),

x ∈ ΩC, (31)

0 =
H

∑
j=1

∫

B j

{Uθ (s,x)v(s)−Θθ (s,x)m(s) +Mθ(s,x)θ(s)−Vθ (s,x)u(s)}dB j(s),

x ∈ ΩC. (32)

For the B j circular boundary integrals, the degenerate kernels of U(s,x), Θ(s,x),
M(s,x), V (s,x), Uθ (s,x), Θθ (s,x), Mθ(s,x) and Vθ (s,x) are utilized and boundary

densities u(s), θ (s), m(s) and v(s) along the circular boundary are represented by

using the Fourier series of Eqs.(22)-(25), respectively. By using the conventional

boundary integral equations to solve a problem, the determination of the Cauchy

principal value (CPV) and the Hadamard principal value (HPV) for boundary in-

tegrals of various kernel functions are inevitable. By using the addition theorem,

the kernel functions in our method are expanded in the series form and the bound-

ary integrals can be easily calculated using the series sum free of facing principal

values. The selection of interior or exterior degenerate kernel depends on ρ < R
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or ρ > R, respectively, according to the observer system. In the B j integration, the

origin of the observer system is adaptively set to collocate at the center o j from

which the degenerate kernels and Fourier series are described. By using orthogonal

property, a linear algebraic system can be written as follows:




U11 −Θ11 U12 −Θ12 · · · U1H −Θ1H

U11
θ −Θ11

θ U12
θ −Θ12

θ · · · U1H
θ −Θ1H

θ

U21 −Θ21 U22 −Θ22 · · · U2H −Θ2H

U21
θ −Θ21

θ U22
θ −Θ22

θ · · · U2H
θ −Θ2H

θ
...

...
...

...
. . .

...
...

UH1 −ΘH1 UH2
θ −ΘH2 · · · UHH −ΘHH

UH1
θ −ΘH1

θ UH2
θ −ΘH2

θ · · · UHH
θ −ΘHH

θ








v1

m1

v2

m2

...

vH

mH





=




−M11 V 11 −M12 V 12 · · · −M1H V 1H

−M11
θ V 11

θ −M12
θ V 12

θ · · · −M1H
θ V 1H

θ

−M21 V 21 −M22 V 22 · · · −M2H V 2H

−M21
θ V 21

θ −M22
θ V 22

θ · · · −M2H
θ V 2H

θ
...

...
...

...
. . .

...
...

−MH1 V H1 −MH2
θ V H2 · · · −MHH V HH

−MH1
θ V H1

θ −MH2
θ V H2

θ · · · −MHH
θ V HH

θ








θ1

u1

θ2

u2

...

θH

uH





(33)

where H denotes the number of circular boundaries. For brevity, a unified form

[U i j] (i = 1,2,3, · · · ,H and j = 1,2,3, · · · ,H) denote the response of U(s,x) kernel

at the ith circle point due to the source at the jth circle. Otherwise, the same

definition is for [Θi j], [Mi j], [V i j], [U
i j
θ ], [Θ

i j
θ ], [M

i j
θ ] and [V

i j
θ ] kernels. The explicit

expressions for sub-vectors [ui], [θ i], [mi] and [vi] can be described as follows:

ui =





ui
c0

ui
c1

ui
s1
...

ui
cM

ui
sM





, θ i =





θ i
c0

θ i
c1

θ i
s1
...

θ i
cM

θ i
sM





, mi =





mi
c0

mi
c1

mi
s1
...

mi
cM

mi
sM





, vi =





vi
c0

vi
c1

vi
s1
...

vi
cM

vi
sM





. (34)

The explicit expressions for the sub-matrices of [U i j], [Θi j], [Mi j], [V i j], [U
i j
θ ],
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[Θ
i j
θ ], [M

i j
θ ] and [V

i j
θ ] can be written as shown below

Ki j =




K
i j
0C(ρ1,φ1) K

i j
1C(ρ1,φ1) K

i j
1S(ρ1,φ1) · · · K

i j
MS(ρ1,φ1)

K
i j
0C(ρ2,φ2) K

i j
1C(ρ2,φ2) K

i j
1S(ρ2,φ2) · · · K

i j
MS(ρ2,φ2)

...
...

...
...

...
...

...
...

K
i j
0C(ρN ,φN) K

i j
1C(ρN ,φN) K

i j
1S(ρN ,φN) · · · K

i j
MS(ρN ,φN)




N×N

(35)

where K can be either one of U(s,x), Θ(s,x), M(s,x), V (s,x), Uθ (s,x), Θθ (s,x),
Mθ (s,x) and Vθ (s,x). The notations φk and ρk (k = 1,2,3, · · · ,N) shown in Fig. 3

are the angle and radius of the k-th collocation point on the i-th circular boundary

with respect to the center of the j-th circular boundary (the origin of the observer

system) and the element of the sub-matrices can be determined by

K
i j
nC(ρk,ϕk) =

∫ 2π

0
K(R j,θ j;ρk,ϕk) cos(nθ j)(R jdθ j), n = 0,1,2, · · · ,M, (36)

K
i j
nS(ρk,ϕk) =

∫ 2π

0
K(R j,θ j;ρk,ϕk) sin(nθ j)(R jdθ j), n = 1,2, · · · ,M (37)

in which the selection of interior or exterior degenerate kernel depends on the po-187
sition of collocation point with respective to the center of circle under integration188
as shown in Fig. 3.189
5 Dynamic moment concentration factor and techniques for solving scatter-190

ing problems191
Considering an infinite thin plate with multiple holes subject to incident flexural192
wave, the boundary conditions of the hole are free. For this scattering problem, it193
can be decomposed into two parts, (a) incident wave field and (b) radiation field,194
as shown in Fig. 5. For matching the boundary conditions, the radiation boundary195
condition in part (b) is obtained as the minus quantity of incident wave function,196
e.g. mR = −mI;vR = −vI for the free edge where the superscripts R and I denote197
radiation and incidence, respectively. By substituting the known radiation boundary198
conditions, −mI and −vI , into the left hand side of Eq. (33), the unknown boundary199
data, u and θ , can be solved. After calculating the displacement, slope, moment200
and effective shear force along the boundary, the radiation field can be solved by201
employing the boundary integral equation for the domain point of Eqs. (2)-(5). The202
scattering field is determined by superimposing radiation field and incident field.203
The tangential bending moment Mt(x) can be determined by applying the operator204
in Eq.(30) to Eq.(2) with respective to the field point.205
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Figure 5: The decompositon of scattering problem into (a) incident wave field and

(b) radition field

An incident flexural wave is represented by

u
(i)
0 eik(xcos(φ0)+ysin(φ0)) (38)

where u
(i)
0 is the amplitude of incident wave, k is the wave number and φ0 is the

incident angle. Under the polar coordinate, the bending moment and effective shear

force induced by the incident wave can be determined by substituting Eq. (38) into

Eqs.(15) and (16). By setting the amplitude of incident wave u
(i)
0 = 1, the amplitude

of moment produced by the incident wave is

M0 = Dk2 (39)

The dynamic moment concentration factor (DMCF) at any field point x can be

determined as

DMCF(x) = Mt(x)/M0 (40)

6 Numerical results and discussions206
Scattering problems of flexural wave in thin plate with multiple holes are solved207
and dynamic moment concentration factors (DMCFs) around the circular holes are208
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determined by using the present method. For the cases of small wave number, the209
same plate problem is independently solved by using FEM (the ABAQUS software)210
for comparison. In all cases, the inner boundary is subject to the free boundary211
condition and the thickness of plate is 0.002m. The triangular general-purpose212
shell element, S3, of ABAQUS was used to model the plate problem. Although the213
thickness of the plate is 0.002 m, these elements do not suffer from transverse shear214
locking according to the theoretical manual of ABAQUS.215
Case 1: An infinite plate with one hole [Pao and Mow (1972); Kung (1964); Norris216
and Vemula (1995); Gao, Wang and Ma (2001); Gao, Wang, Zhang and Ma (2005)]217
An infinite plate with one hole (radius a = 1m) subject to the incident flexural218
wave with φ0 = 0 is considered as shown in Figure 6. Since the analytical solution219
of this problem is available, convergence analysis is firstly conducted. Figure 7220
shows the DMCF on the circular boundary, at π/2, versus the dimensionless wave221
number by using different number of terms of Fourier series. From the convergence222
analysis, the required number of terms to approach the analytical solution increase223
as the incident wave number becomes larger. Results of the present method match224
well with those of analytical solution when the number of terms of Fourier series225
amounts to M = 10. The convergence analysis indicates that results using Fourier226
series with M = 2 match well with the analytical solution when the wave number is227
0.005. For the case of the higher wave number k = 3.0, more number of terms are228
required to the same extent of convergence, which shows the consistency with the229
results presented by Figure 7.230
In the limit of zero wave number [Pao and Mow (1972); Kung (1964)] like k231
= 0.005, the excitation of incident wave is equivalent to the loading with static232
moment Mxx = M0 and Myy = vM0 at the four sides of a plate. Accordingly, a233
16m×16m plate with one hole subject to static bending moments, Mxx = 1.0 and234
Myy = 0.3 at the four sides was considered. For this equivalent static case, 25567235
triangle elements were used to generate the FEM model and Figure 8(a) shows the236
corresponding result of the normalized tangential bending moment around the hole.237
By using the present method, the unknown boundary densities of the plate are ex-238
pressed in terms of Fourier series and the numerical result of DMCF around the239
hole using Fourier series terms (M = 10) is shown in Figure 8(b). The analytical240
solution [Pao and Mow (1972); Kung (1964)] is also shown in Figure 8(c) and good241
agreements are made after comparing with three different approaches stated above.242
Figure 9 shows that the real and imaginary parts of DMCF on the circular bound-243
ary at π/2 versus the dimensionless wave number for various Poisson ratios by244
using the present method and the analytical solution [Pao and Mow (1972); Kung245
(1964)]. It indicates that both results match well and DMCF depends on the Pois-246
son ratio of the plate as well as the incident wave number. For dimensionless wave247
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number ka=3.0, the real and imaginary parts of DMCF along the circular boundary248
is shown in Figures 10, which agrees with the result reported in Gao et al. [Gao,249
Wang, Zhang and Ma (2005)]. The value of DMCF is symmetrical to x-axis due250
to the incident wave withφ0 = 0. Table 1 lists dynamic moment concentration fac-251
tors on the circular boundary (θ = π/2) by using four approaches, dual reciprocity252
boundary element method [Gao, Wang, Zhang and Ma (2005)], boundary element253
method based on dynamic fundamental solution [Gao, Wang and Ma (2001)], the254
present method and the analytical solution [Pao and Mow (1972); Kung (1964)],255
respectively. In addition to the required number of Fourier series terms to conver-256
gence, results of the present method are the same as the analytical solutions up to257
four digits. The present method is obviously superior to the BEM thanks to the258
semi-analytical procedure.259
For the most part of scattering applications, it is interesting to measure the scattered

field far away from the scatter. On the other hand, the asymptotic behavior or

uniqueness of fundamental solutions or kernel functions is an important issue for

the numerical computation. Therefore, we examine the behavior of the scattered

response in the far field. The scattered far field amplitude f (θ) [Norris and Vemula

(1995)] in our approach is defined as

f (θ) = lim
ρ→∞

√
2ρ ·u(r)(ρ) (41)

where u(r) is the out-of-plane elastic displacement of radiation field and ρ is the260
radius of the field point. In the computation, the radius of the field point is taken261
90m because f (θ) converges a steady value when this radius is more than about262
90m. Figure 11 shows a polar plot of the far field scattering amplitude for a circular263
hole in a 0.025m steel plate, solid line for ka = 1.0, dash line for ka = 0.5. Figure264
12 presents the far field backscattered amplitude versus the dimensionless wave265
number for an incident wave of unit amplitude, solid line for the hole, dash line266
for the rigid inclusion. The rigid inclusion means the clamped boundary condition267
around the circular boundary. As the dimensionless wave number becomes large,268
results of both cases approach the same value of one. The results for the hole269
show a local maximum near the small wave number and then increase with the270
wave number, which consists with with the results shown in Figure 11. The results271
match well with those of Norris and Vemula [Norris and Vemula (1995)]. It can be272
found that the amplitude for the radiation (or scattering) response in the far field is273
O(ρ−1/2), which satisfy the radiation condition.274
Case 2: An infinite plate with two holes [Hu, Ma and Huang (1998)]275
An infinite plate with two holes (radius a = 1m) subject to the incident flexural wave276
with φ0 = 0 is considered as shown in Figure 13, where L is the central distance277
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Figure 6: An infinite plate with one hole subject to an incident flexural wave

0 1 2 3 4

1.5

1.6

1.7

1.8

1.9

M=4

M=6

M=8

M=10

M=20

Analytical solution

M=4 

M=6 

M=8, 10 and 20 

Analytical solution 

ka 

T

o

M

M

Figure 7: Dynamic moment concentration factor on the circular boundary (θ =
π/2) versus the dimensionless wave number by using different number of terms of

Fourier series

of two holes. For the case of L = 2.1m, Figure 14 shows the DMCF on the upper278
circular boundary, at −π/2, versus the dimensionless wave number by using dif-279
ferent number of Fourier series terms. From this convergence analysis, the results280
using fewer Fourier series terms show some peaks at ka=3.2, 4.6. Even so, the con-281
vergence is fast achieved when the number of Fourier series terms M amounts to282
twenty. Values of wave number corresponding to those peaks are found to be equal283
to the true eigenvalues of the clamped circular plate with a radius equaling to that of284
the hole, i.e. 3.196, 4.610 [Leissa (1969)]. Actually they are the so-called fictitious285
frequencies of the external problem. It demonstrates that the increasing number of286
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Figure 9: The real and imaginary parts of DMCF on the circular boundary (θ =
π/2) versus the dimensionless wave number for different Poisson ratios

Fourier series terms can suppress the appearance of fictitious frequencies.287
For comparison with the proposed method, we consider a 16m×22m plate with288
two holes (L = 2.1m) subject to static bending moments, Mxx = 1.0 and Myy = 0.3289
at the four sides. For this case, 49024 triangle elements were used to generate290
the FEM model and the corresponding result of the normalized tangential bending291
moment around the hole is shown in Figure 15(a). The result of the present method292
for k = 0.005 is also shown in Figure 15(b) and good agreements are made after293
comparison. It indicates that the maximum DMCF is larger than that of one hole294
shown in Figure (8) due to two close holes in this case.295
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Figure 10: Distribution of DMCF (MT /M0) on the circular boundary, solid line
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0.025m steel plate, solid line for ka = 1.0, dash line for ka = 0.5
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Figure 12: The magnitude of the backscattered far field flexural response for an

incident wave of unit amplitude. The surrounding plate is steel of thickness 0.025m,

solid line for hole, dash line for rigid inclusion

Table 1: Dynamic moment concentration factor on the circular boundary (θ = π/2)

k f = 1+ r∗ f = 1− r− r∗ Ref ∗∗ Present Analytical

method solution

0.1 1.8285 1.8301 1.8360 1.8353(4) 1.8353(4)

0.5 1.6681 1.6692 1.6710 1.6616(6) 1.6616(6)

1.0 1.6452 1.6437 1.6420 1.5109(6) 1.5109(6)

2.0 1.6439 1.6458 1.6550 1.5894(8) 1.5894(8)

3.0 1.6475 1.6483 1.6500 1.5868(12) 1.5868(12)

5.0 1.6503 1.6509 1.6520 1.6305(14) 1.6305(14)

( ) denotes the required number of terms to converge the steady result

within four digits.

* refer to the results [Gao, Wang, Zhang and Ma (2005)]

** refer to the results [Gao, Wang and Ma (2001)]

For the case of L = 4.0m, Figure 16 shows the DMCF on the upper circular bound-296
ary, at −π/2, versus the dimensionless wave number by using different number of297
terms of Fourier series. Instead of peak appeared in Figure 14, the result of con-298
vergence is similar to that of the case with one hole shown in Figure 7 due to two299
holes separated apparently.300
For dimensionless incident wave number ka=0.2 with the central distance between301
two holes L=2.1a, Figure 17 shows the distribution of the amplitude of DMCF on302
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the circular boundary, solid line for one hole and dash line for the upper one of two303
holes. The DMCF of two holes is apparently larger than that of one hole when two304
holes are close each other.305
Figure 18 shows the DMCF at the upper circular edge (−π/2) versus the dimen-306
sionless central distance under different incident wave number, where the dot line307
denotes the corresponding results for one hole case. It indicates that when the cen-308
tral distance between two holes gradually increases, the results for the case of two309
holes approach that of the case with one hole. For the case of k= 2.0, oscillation310
behavior of DMCF is observed as the central distance of two holes varies. It is311
not found for the cases with the small wave number such as ka=0.1, 0.2 and 0.5.312
Furthermore, we zoom in the data of ka=0.1 at upper right corner (in the range of313
1.834 to 1.838 for |MT /M0|). Then, it is refound that the oscillation behavior of314
DMCF with a period 2π/k versus L/a for all wave numbers appears, which was315
not found in Hu et al. [Hu, Ma and Huang (1998)]

Figure 13: An infinite plate with two holes subject to an incident flexural wave with

an incident angle φ0316
7 Conclusions317
A semi-analytical approach to solve the scattering problem of flexural waves and318
to determine dynamic moment concentration factors in an infinite thin plate with319
multiple circular holes was proposed. The radiation field was determined by em-320
ploying the null-field integral formulation in conjunction with degenerate kernels,321
tensor transformation and Fourier series. All the improper integrals in the null-322
field integral formulation were avoided by using the degenerate kernels and were323
easily calculated through the series sum. For the general exterior case, the rotated324
degenerate kernels have been derived in the adaptive observer system. Once the325
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Figure 15: Distribution of DMCF on the upper circular boundary by using different

methods, the present method and FEM ( L/a= 2.1)

Fourier coefficients of boundary densities have been determined, the flexural wave326
scattering field and dynamic moment concentrations can be obtained by using the327
boundary integral equations for domain points in conjunction with general rotated328
degenerate kernels. For an infinite plate with one hole, good agreement between329
the results of the present method and those of analytical solution is observed. For330
the cases of small wave number, the present results for a plate with one or multi-331
ple circular holes are well compared with the static case of finite element method332
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Figure 16: DMCF on the upper circular boundary (θ = −π/2) versus the dimen-

sionless wave number by using different number of terms of Fourier series ( L/a=

4.0)
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Figure 17: Distribution of DMCF |MT /M0| on the circular boundary, solid line for

one hole and dash line for the upper one of two holes (L = 2.1a, ka = 0.2)

(FEM) using ABAQUS. Convergence rate depends on two parameters of the inci-333
dent wave number and the central distance between two holes. Numerical results334
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Figure 18: DMSF |MT /M0| on the circular boundary (θ =−π/2) versus the dimen-

sionless central distance of two holes for different wave number under the incident

wave with φ0 = 0

indicate that the DMCF of two holes is apparently larger than that of one hole when335
two holes are close to each other. Fictitious frequency of external problem can be336
suppressed by using the more number of Fourier series terms. The effect of the cen-337
tral distance on DMCF has been studied by using the present method and indicates338
a regular variation of DMCF as the central distance of two holes increasing. As can339
be seen from the numerical results, the present method provides a semi-analytical340
solution for dynamic moment concentration factors in infinite thin plates with mul-341
tiple circular holes subject to the incident flexural wave, since its analytical solution342
is not yet available.343
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Appendix I: Degenerate kernels418
U j(x,s) =

∞

∑
m=0

f jcos(m(θ −ϕi)), j = 1,2

where

f1 =
1

8k2D
εm{Jm(kρ)[Ym(kR)− iJm(kR)]+

2

π
Im(kρ)Km(kR)}

f2 =
1

8k2D
εm{Jm(kR)[Ym(kρ)− iJm(kρ)]+

2

π
Im(kR)Km(kρ)}
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Θ j(x,s) =
∂U j(x,s)

∂R
=

∞

∑
m=0

g jcos(m(θ −ϕ)), j = 1,2

where

g1 =
1

8kD
εm{Jm(kρ)[Y ′

m(kR)− iJ′m(kR)]+
2

π
Im(kρ)K′

m(kR)}

g2 =
1

8kD
εm{J′m(kR)[Ym(kρ)− iJm(kρ)]+

2

π
I′m(kR)Km(kρ)}

where

εm =

{
1 m = 0

2 m 6= 0
,

the superscript j(1 or 2) denotes the interior domain (i.e. ρ < R, j =1) and exterior

domain (i.e. ρ > R, j =2), respectively.

M j(x,s) =
∞

∑
m=0

p jcos(m(θ −φi)), j = 1,2

where

p1 = −
1

8k2
εm{Jm(kρ)[αY

m(kR)− iαJ
m(kR)]+

2

π
Im(kρ)αK

m (kR)}

p2 = −
1

8k2
εm{αJ

m(kR)[Ym(kρ)− iJm(kρ)]+
2

π
α I

m(kR)Km(kρ)}

αY
m(kR) = k2Y ′′

m(kR)+ ν

[
k

R
Y ′

m(kR)−
m2

R2
Ym(kR)

]

αJ
m(kR) = k2J′′m(kR)+ ν

[
k

R
J′m(kR)−

m2

R2
Jm(kR)

]

αK
m (kR) = k2K′′

m(kR)+ ν

[
k

R
K′

m(kR)−
m2

R2
Km(kR)

]

α I
m(kR) = k2I′′m(kR)+ ν

[
k

R
I′m(kR)−

m2

R2
Im(kR)

]

V j(x,s) =
∞

∑
m=0

q jcos(m(θ −φi)), j = 1,2
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where

q1 = −
1

8k2
εm{Jm(kρ)[βY

m(kR)− iβ J
m(kR)]+

2

π
Im(kρ)β K

m (kR)}

q2 = −
1

8k2
εm{β J

m(kR)[Ym(kρ)− iJm(kρ)]+
2

π
β I

m(kR)Km(kρ)}

βY
m(kR) = k3Y ′′′

m (kR)+
k2

R
Y ′′

m(kR)

−
k

R2

[
1+(2−ν)m2

]
Y ′

m(kR)+

[
(3−ν)m2

R3

]
Ym(kR)

β J
m(kR) = k3J′′′m (kR)+

k2

R
J′′m(kR)

−
k

R2

[
1+(2−ν)m2

]
J′m(kR)+

[
(3−ν)m2

R3

]
Jm(kR)

β K
m (kR) = k3K′′′

m (kR)+
k2

R
K′′

m(kR)

−
k

R2

[
1+(2−ν)m2

]
K′

m(kR)+

[
(3−ν)m2

R3

]
Km(kR)

β I
m(kR) = k3I′′′m (kR)+

k2

R
I′′m(kR)

−
k

R2

[
1+(2−ν)m2

]
I′m(kR)+

[
(3−ν)m2

R3

]
Im(kR)

where

εm =

{
1 m = 0

2 m 6= 0
,

the superscript j(1 or 2) denotes the interior domain (i.e. ρ < R, j =1) and exterior419
domain (i.e. ρ > R, j =2), respectively.420
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Appendix II: Degenerate kernels with respect to the adaptive observer system421
The expressions for Uθ , Θθ , Mθ and Vθ can be obtained by replacing L in Eq.(A1)

by U , Θ, M and V , and replacing hin Eq.(A1) by f ,g, p and q, respectively. The

definition of U , Θ, M, V , f ,g, p and qcan be seen in the Appendix I.

L
j
θ (x,s) =

∞

∑
m=0

c1h′j cos(m(θ −ϕi))+ s0h jsin(m(θ −ϕi)), j = 1,2 (A1)

where c1 = cos(δi), s0 =
(

m
ρi

)
sin(δi) and δi = φc − φi. The expressions for Um,

Θm, Mm and Vm can be obtained by replacing L in Eq.(A2) by U , Θ, M and V , and

replacing h in Eq.(A2) by f ,g, p and q, respectively

L j
m(x,s) =

∞

∑
m=0

[mc0h j + mc1h′j + mc2h′′j ]cos(m(θ −ϕi))

+ [ms0h j + ms1h′j]sin(m(θ −ϕi)), j = 1,2 (A2)

where

mc0 = −

(
m2

2ρ2
i

)
(1+ ν +(−1+ ν)cos(2δi)) ,

mc1 =

(
1

2ρi

)
(1+ ν +(−1+ ν)cos(2δi)) ,

mc2 =

(
1

2

)
(1+ ν +(1−ν)cos(2δi)) ,

ms0 =

(
m

ρ2
i

)
(−1+ ν)sin(2δi),

ms1 =

(
m

ρi

)
(1−ν)sin(2δi),

the superscript j (1 or 2) denotes the interior domain (i.e. ρ < R, j =1) and exterior422
domain (i.e. ρ > R, j =2), respectively.423


