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Abstract

In this paper, the general formulation for the static stiffness is analytically derived using the dual integral formu-
lations. It is found that the same stiffness matrix is derived by using the integral equation no matter what the rigid body
mode and the complementary solutions are superimposed in the fundamental solution. For the Laplace problem with a
circular domain, the circulant was employed to derive the stiffness analytically in the discrete system. In deriving the
static stiffness, the degenerate scale problem occurs when the singular influence matrix can not be inverted. The
Fredholm alternative theorem and the SVD updating technique are employed to study the degenerate scale problem
mathematically and numerically. The direct treatment in the matrix level is achieved to deal with the degenerate scale
problems instead of using a modified fundamental solution. The addition of a rigid body term in the fundamental

solution is found to shift the zero singular value for the singular matrix without disturbing the stiffness.

© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The concept of rigid body mode (RBM) has been
used in the boundary element method (BEM) for de-
termining the diagonal elements of the influence matrix
[12]. For a half-plane problem, the displacements are
referred to a fixed point where displacements are zero
and this point is usually unknown. Later, Vable [23]
described that the issue of RBM made the BEM less
sensitive to errors or changes in the input data and arose
as a consequence of implementing an algorithm. He also
described the importance of RBM which affects the
BEM analysis by using the direct and indirect methods
[24]. The role of rigid body mode was also discussed in
constructing the free—free flexibility matrix [16,17]. It is
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well-known that the Neumann problem leads to a sin-
gular matrices in boundary element implementation.
The common remedy for such problems is to apply
sufficient restraint on the body by prescribing displace-
ments or temperatures at suitable points on its boundary
[22]. How to remove the RBM from the discretized
linear system has been published [1,22]. Also, Dumont
[15] demonstrated the correct boundary element for-
mulation in respect to the rigid body displacements that
are presented in any fundamental solution. The nont-
rival solution for the singular matrix is found to be a
rigid body term for the interior Neumann problem. This
is both physically and mathematically realizable since
rigid body modes are imbedded in the zero-eigenvalue
matrix. However, in some special cases, the influence
matrix of the weakly singular matrix (U) may be sin-
gular for the Dirichlet problem [9] when the geometry is
special. The nonunique solution is physically unrealiz-
able but stems from the zero eigenvalue of the influence
matrix in the integral formulation mathematically [6].
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For the Dirichlet problem of potential problems [19],
plate problems [10,11], and elasticity [4,19,20], the non-
unique solution occurs in case of degenerate scale [5,19].
Also, the singular problem is embedded in the integral
formulation for the problem with a degenerate scale.
Recently, the RBM was added in the fundamental so-
lution to overcome the degenerate scale problem in the
BEM [6]. Also, a hypersingular equation can avoid the
zero eigenvalues. Numerically speaking, the domain
which results in a nonunique solution for the Dirichlet
problem using the BEM is called a degenerate scale.
Actually, the RBM removes the original degenerate
scale to another one instead of completely eliminating it.

In the mathematical bibliography, the nonunique
solution of BEM is related to Fredholm alternative
theorem. Researchers have paid attention to the degen-
erate scale [19,20] or critical value [10,11] in the integral
formulation and BEM algorithm. Zero eignvalue em-
bedded in the influence matrix not only hinders the di-
rect calculation of stiffness but also results in the rigid
body mode. The singular matrix plays the negative role
in determining the stiffness; however, the associated rigid
body mode provides an alternative by adding it in the
fundamental solution to avoid the zero eigenvalue. Fe-
lippa et al. [17] have constructed the free—free flexibility
matrix as generalized stiffness inverse. A direct flexibility
method developed in Felippa and Park [16] appears to
be advantageous in the use of underintegrated elements
without spurious-mode stabilization. Besides, the im-
portance and use of RBM in BEM can improve the
accuracy for the Neumann or traction problem when the
equilibrium condition is not totally satisfied in the nu-
merical manner [24]. The relation between global equi-
librium and solvability of BEM was discussed by
Blazquez et al. [1]. Although many related works on
RBM and spurious mode have been done, the unifi-
cation seems too loose. This is the main focus of this
paper.

In this paper, the role of RBM and complementary
solutions in deriving stiffness and degenerate scale will
be examined. To overcome the degenerate scale prob-
lem, the relations between RBM and degenerate scale
will be discussed. The stiffness matrices for a general
structure will be derived by using the dual BEM. Three
cases, rod, beam and membrane will be worked out for
demonstration. The Fredholm alternative theorem and
SVD updating technique will be employed to study the
degenerate scale mathematically and numerically. Based
on the unitary vectors in the SVD, a direct treatment in
the influence matrix to deal with the degenerate scale
problems in the linear algebra will be investigated. The
relation between rigid body mode and spurious mode
will be constructed in the linear algebra. Their roles will
be examined. It is found that the addition of a rigid body
mode can shift the zero singular value and make the
stiffness easily determined.

2. Derivation of stiffness matrix for general structures
using the dual BEM

Consider a homogeneous, isotropic, linear, elastic
continuum with finite domain D bounded by boundary
B, the governing equation for the displacement u(x) can
be written as

L{u(x)} =0, xeD, (1)
where the operator % is

V2u, membrane,
2
P{uy =4 —&4, rod, (2)

*u
—+4, beam.

Based on the dual formulation, we can construct the
boundary integral equations

nu(x) = CPV/B T(s,x)u(s)dB(s)
a;‘}is) dB(s), x€B (3)

—RPV/B: Uls,x)

nit(x) = HPV/B M (s, x)u(s)dB(s)

ag(s) dB(s), x€B (4)

X

fCPV/BL(s,x)

where #(x) = Ou(x)/0On,, U(s,x) is the fundamental so-
lution, T'(s,x) = 0U(s,x)/0n,, L(s,x) = 0U(s,x)/0On, and
M (s,x) = Q*U(s,x)/0n0n,, U, T, L and M are the four
kernels as shown in Table 1 for U kernel, and RPV, CPV
and HPV denote the Riemann principal value, Cauchy
principal value and Hadamard or Mangler principal
value, respectively. After discretizing Egs. (3) and (4), we
have

[UN#} = [T{u}, (5)
[L{e} = [M{u}. (6)

If [U] and [L] are invertible, the static stiffness can be
obtained by

{t} = [K]yr{u}, (7)
{t} = K]y {u}, ®)

where [K],, and [K],,, are the stiffness matrices obtained
by the UT and LM equations, respectively, and

Table 1
The U kernels

Rod Beam Membrane

U(s,x) r 5 In(r)

=
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[K]or = [U]'(7], ©)
(K] = (L] [M]. (10)

It is well known that the conventional BEM en-
counter the degenerate scale when the [U] matrix is
singular. In such case, the direct calculation for the
stiffness matrix is not straightforward. In the following
two sections, we will discuss the singular case in a special
case of 2-D circular membrane.

3. Derivation of stiffness matrix for a circular mem-
brane—special case

The governing equation for the two-dimensional
Laplace equation is:
Viu(x),x) =0, (x,x) €D, (11)
where V? is the Laplacian operator, and D is the do-
main. Based on the dual formulation [2], the unified

null-field integral formulation for the Laplace equation
using the direct method can be written as

0:/8T(xx)u(s)dB(s)—/BU(s,x)t(s)dB(s), (12)

0= /BM(s,x)u(s)dB(s) —/BL(s,x)t(s)dB(s), (13)

where #(s) = Ou(s)/0n, and B denotes the boundary
enclosing D. For the exterior problem, we have

U(s,x) = Ul(s,x), T(s,x) = T'(s,x), L(s,x) = Li(s,x) and
M(s,x) = M'(s,x). In case of interior problem, we have
U(s,x) = Ue(s,x), T(s,x)=T¢(s,x), L(s,x)=L(s,x)
and M (s,x) = M¢(s,x). The selected kernels are designed

to have the null-field equation without the jump terms.
The eight kernels of U', U®, T, T¢, L', L¢, M' and M® can
be obtained by using the degenerate kernels which will
be elaborated on later. If the rigid body mode (c), and
the linear terms (pR cos(0) and gRsin(0)), are superim-
posed in the fundamental solution, we have U.(s,x) =
U(s,x) + pRcos(0) + gRsin(0) + ¢, where p, g and ¢ are
arbitrary constants. Based on the separable properties
for the kernels, the kernel functions in the dual BEM can
be expanded into degenerate forms as follows [3,21]:

U.(s,x) =

Ul(R,0;p,¢) =InR + pRcos(0) + gRsin(0) + ¢

- ;#(%)m cos(m(0 — ¢)), R>p,
US(R,0;p,¢) =Inp+ pRcos(0) + gRsin(6) + ¢

S LW eosm®-4).  R<p.

(14)

T\(R,0;p,¢) =% +pcos(9) + gsin(0)
+3° F cos(m(0 = ). R>p.
O = 12(0,0:p,6) = pos(®) + gsin(0)
_ZR;"‘ COS(m(()—(ﬁ)L R<p7
(15)
Li(R,0;p,¢) = =3 & cos(m(0— ¢)),  R>p,
L.(s,x) = m=l
LE(R,0;p, ) = i mZ:lp{f,H cos(m(0 — ¢)), R<p,
(16)
Mi(R,0;p,¢) = 3 2 cos(m(0— §)), R > p,
M.(s,x) = "
M{(R,0;p,¢) = > nRr cos(m(0 — ¢)), R <p,
(17)
where “i”” and “¢”” denotes the interior point (R > p) and

the exterior point (R < p), respectively, x = (p,¢) and
s = (R, 0) in the polar coordinate as shown in Fig. 1. For
a problem with a circular boundary, the boundary can
be discretized into 2N constant elements with equal
length. The linear algebraic dual equations can be
obtained as shown below:

Uelonson {thavsa = [Teloyon {ttt ot (18)

Lelaywon it ansr = [Mclayson {t} ansr s (19)

where [U.], [I.], [L.] and [M,] are the four influence
matrices, {u} and {¢} are the boundary data for the
primary and the secondary fields, respectively. Based on
the circular symmetry, the influence matrices for the
discrete system are found to be circulants with the fol-
lowing forms [3,13,18,21],

x(p.4)p >R

[ )
x(p.$), p <R

Fig. 1. Symbols in the degenerate kernels for the two-dimen-
sional Laplace equation.
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U 231 Uy -+ UN—]|
UsN—1 Up u - Un—2
[UC] = |Uon—2 UN-1 Uo v UN-3 | (20)
up Uy 2 U
[ % 14 h -+ hy-
fn-1 fo 0 by
[T.] = bv—2 fw-1 o o fnes | (21)
L 4 L 3o fo
D I L - DLy
vt by Lo Dy
[LC} = | lov—2 Dot Ly -+ lys , (22)
L L L L -
my m my - MaN-]
moy -1 mo my - Moy_3
[M] = | Mov—2 Moy-1 Mo - Mn-3 | (23)
m my my o my

where u,,, t,, l,,, and m,, are shown below,

(m+h)A0
t = / US(R, 0; p, 0)pdo0
(mf%)AU )

~ US(R,0,;p,0)pA0, m=0,1,2,...,2N — 1,

(24)
(m+})a0
ty = Tce(R7 H’PaO)PdQ
(mf%)A()
~T:(R,0,;p,0)pA0, m=0,1,2,...,2N —1, (25)
(m+5)a0
Iy = Li(R,0;p,0)pd0
(m—%)AH
~ LR, 0,;0,0)pA0, m=0,1,2,...,2N -1, (26)

(m+%)AU
mo= [ MR 05p,0)pd0
J(m-L)ao
~M:(R,0,;p,0)pA0, m=0,1,2,...,2N — 1,
(27)

in which A0 = 2rn/2N and 0,, = mA0 and setting ¢ =0
without loss of generality. The four matrices in Egs. (20)-
(23) have only N + 1 different elements since rotation
symmetry with circulant property is reserved. By intro-
ducing the following bases for circulants, I, (CZN)17
(C)’, ..., (Coy)™ ', we can expand matrix [U,] into

(U] = uol + ul(CZN)l + MZ(CZN)Z +- uZNfl(CZN)2N717

(28)
where
010 0
o0 1 --- 0
Coy = o0 0 --- 0 i (29)
1 oo - 0 2N X2N

Based on the similar properties for the matrices of
[U.] and [Cyy], we have

2 IN-1
=up +uoy +ux0y + -+ uav-1 0,

=0,41,42,...,£N — 1, £N, (30)

Ue
2

where /%) and «, are the eigenvalues for [U,] and [Cay].
It is easily found that the eigenvalues for the circulants
[Cy], are the roots for o®¥ = 1 as shown below:

a, = e@™/CN) -y — 0,41, 42,..., 4N — 1, %N,

or n=0,1,2,....2N — 1. (31)

The eigenvectors are

1
o

=4 4 & (32)

%

The transformation matrix [@] is composed of the ei-
genvectors as

1
P =—oc[1 v, ¥ --- NI
[ ] \/2—]\7[ ! / / ]
1 1 1 e 1
1 0o o [2%] s don-
2 2 2 2
- | % o |
V2N
(33)
Substituting Eq. (31) into Eq. (30), we have
" N-1 w-1
/{E ] _ Z Mm(al)m _ Z umelml(Zn)/(ZN)
m=0 m=0
N-1 _
= US(R, 0; R,0)RAQe™A?
m=0
N-1 .
=R) US(R,0;R,0)e"*"AQ. (34)
m=0

When N approaches infinity, the Riemann sum in Eq.
(34) can be transformed to the following integral,
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2n
W =R / U¢(R, 0; R,0)e"" 0. (35)
0

By substituting U? kernel of Eq. (14) into Eq. (35), we
have

2n
),EU“] = R/ ((InR + pRcos(0) + gRsin(6) + ¢)
0

00 1 )
- Z — cos(m0)> ¢’’do
m=1 m
27R(InR +¢), 1=0,
- -k, [=+1,42,...,4(N —1),N.
(36)

Also, we have

/«LETC] — /‘zn ((pcos(ﬁ) + ¢sin(0)) — i % cos(m@))eim do

m=1
7{0, 1=0,
\-m, I=41,42,...,£(N —1),N.
(37)

Similarly, we can obtain the eigenvalues for the other
influence matrices,

L) _ J2=n, [=0,
4 *{n, = +1,42,...,+(N = 1),N, (38)

) J0, =0,
A *{n%‘, I==41,42,..., (N —1),N. (39)

By employing the SVD technique for a circular case with
& = ¥, we can transform the dual equations in Eq. (18)
and Eq. (19) into,

DOIPT{t} = dXP"{u}, (40)

PIP {1} = dXP"{u}, (41)

where @ and ¥ are the left and right unitary vector,
respectively, the superscript “T” denotes the transpose
and

2R(nR+¢) 0 o e 0
0 —nR 0 .
Sy = : 0o . 0 : ,
0 77r(%) 0
0 o - 0 _“(Aﬂ/) INX2N
(42)
0 0 0
0 —n O
= 0 0 ; (43)
v 00— 0
0 0 0 —7]onon

2 0 0
0 n O
I, = 0 0 , (44)
0 7 0
0 0 0 7 lovean
o0 --- 0
0% 0
2y, = 0 . 0 : : (45)
S0 w(%) 0
00 - 0 T[(%) ONX2N
The static stiffness matrix can be expressed as
K] = (U] [T = [L] 7 M), (46)

where {t} = [K]{u} in Egs. (40) and (41) can be rewrit-
ten as,

{t} = 03! 27, 0" {u}, (47)
{1} = 02,2y, @ {u}. (48)
The diagonal matrix, X, can be determined by

Tk =255 = I Iy, (49)

Based on the inverse for the matrices of 2, and X, , we
have

e B . 0
1
0 — 0
)= 0 :
0 —(= 0
0 0 0 _(71EV_R) 2N x2N
(50)
Lo ... 0
01 o
o= 0 0 (51)
o0 10
0 0 - 0 % INX2N

It is interesting to find that the static stiffness matrix for
the circular case is shown below,

K] = ¢z d", (52)
where
o o0 --- 0
0 % 0 .
Ty = 0 0 (53)
. g
0 0 0 % 2N x2N
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Table 2

The stiffness matrices and degenerate scales for a rod, a beam and a circular membrane

The fundamental solution

Stiffness matrix

Degenerate scale

1-D rod

—2

1-D beam U.(s,x) =

Sl —s +as+ b2 +ds’ +c

Uc(s,x) =1x—s| +as+c K] =£

-1 1

12 6 —-12 6/
6/ 4P —61 2P
—-12 -6/ 12 -6/
6/ 2 —6I 4P

(K] =&

*1} (14 2a)] = —4e

(1+ 12d)1P — 24al = 48¢

0 - 0
Lo
2-D circular U.(s,x) = K=o 0 . 0 " InR = —c
membrane InR + pRcos(0) + gRsin(0) + ¢ S S
R
0 - 0 % 2NX2N
We obtain the stiffness matrix analytically no matter [H{u} = {0} (54)

that the values of p, ¢ and ¢ are specified. However, the
[U.] matrix may be singular once InR +c¢ =0 in Eq.
(50). In this case, the stiffness matrix can only be ob-
tained analytically. If the numerical instability can be
suppressed, we can determine the stiffness numerically.
This indicates that the rigid body mode and the com-
plementary solutions result in a degenerate scale such
that InR = —c. In the conventional BEM (¢ = 0), the
radius of a circular membrane equal to 1 is a degenerate
scale problem. To deal with this problem, the truncated
singular value decomposition (TSVD) technique in
conjunction with the concept of pseudo-inverse [6,8]
have been employed to calculate the stiffness matrix [7].
It is found that the same stiffness matrix can be obtained
from the auxiliary system by superimposing pR cos(0) +
gRsin(0) + ¢ in the dual integral formulation. All the
above results are summarized in Table 2. Instead of
using UT formulation, it is found that LM formulation
can determine the stiffness for any case as shown in Eq.
(51). Another alternative to deal with the degenerate
scale problem is CHEEF method [5].

4. Discussions of the rigid body mode and spurious mode
in case of degenerate scale using the Fredholm alternative
theorem and SVD updating technique

In the above analysis, we find that the degenerate
scale stems from a singular influence matrix. The rela-
tions between the rigid body mode and the degenerate
scale will be studied mathematically and numerically in
this section.

Fredholm alternative theorem:

The equation [H]{u} = {f} has a unique solution if
and only if the only continuous solution to the homo-
geneous equation

is {u} = {0}. Alternatively, the homogeneous equation
has at least one solution if the homogeneous adjoint
equation

[H]'{¢} = {0} (55)

has a nontrivial solution {¢}, where [H]" is the transpose
conjugate matrix of [H] and {¢} must satisfy the con-
straint ({f}'{¢} = 0). If the matrix [H] is real, the
transpose conjugate of a matrix is equal to transpose
only [14], i.e., [H]' = [H]". By using the UT formulation,
we have

UT formulation :

(Ut} = [THu} = {/}- (56)

According to the Fredholm alternative theorem, Eq.
(56) has at least one solution for {¢} if the homogeneous
adjoint equation

[U]'{¢,} = {0} (57)

has a nontrivial solution {¢,}, in which the constraint
(fT¢, = 0) must be satisfied. By substituting Eq. (54) to
{£}"{$,} = 0, we obtain

{1 {91} =0. (58)

Since {u} is an arbitrary vector for the Dirichlet
problem, we have

[T {¢:} = {0}. (59)
Based on Eqgs. (57) and (59), we have

s

B {01} =10} or {¢}'[[U] [T]]={0}. (60)

Eq. (60) indicates that the two matrices have the same
spurious mode {¢,} corresponding to the same zero
singular value when a degenerate scale problem occurs.
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By using the SVD technique for the [U]" and [T]
matrices, we have

[U]" =¥, 2,00,

7" = ¥, 2,05 (61)

By substituting Eq. (61) into Eq. (60), we have
> He Y ey

= {O}W-:éf;a,(w{w;w} = {0}, (i no sum),
ST A e {0l

= {O}Wt‘ff‘n{lﬁ;n} = {0}, (i no sum),
(62)

where the superscripts (7) and (U) denotes the [7] and

[U] matrix, respectively, {¢;} and {y,} are the ortho-

U T .
normal bases, ¢\”) and 6" are the zero singular values

of [U] and [T] matrices, respectively. We can easily ex-
tract the eigensolutions since there exists the same spu-
rious mode {¢;} corresponding to the zero singular
values (O'SU) = a,m =0).
Rod and beam cases:

The [U] matrix for a rod is singular when
(14 2a)l = —4c. This results in the degenerate scale
problem. Without loss of generality of / =1, we can
reconstruct the UT formulation as shown below,

S OREiE

— 2
I+4¢  —a-—c (1)

According to the Fredholm alternative theorem, the
degenerate scale depends on the rigid body term. A
special case of a =0 and ¢ = —% results in a degenerate
scale. By employing the SVD technique, we have

1 _l]
2
1

2

L

[

2
1
2
_ L
— V2 \{i
v

%0:|\}5_\/iT (65)
0 o)L |-

The spurious mode {¢, }to satisfy Eq. (60) for [U] and
[T] in Eqgs. (64) and (65), respectively, is found to be

w=2{1} (66)

where
U} = o{y("}, Uy} = 0{¢\"}. (67)

It is interesting to find that the rigid body mode is shown
below,

iy, _ L [1
{lpl }7\/2{1}2><]7 (68)
where
[T1{yi"} = {0}. (69)

The spurious mode {llfiU)} and the rigid body mode
{w(lT)} are shown in Fig. 2.

Similarly, the spurious mode {¢(1U)} and the two rigid
body modes {l//(lT)} and {lp;”} are determined and are
shown in Table 3 and Fig. 2 for the beam case.

Circular membrane case:

The [U] matrix for the 2-D circular membrane is
singular when InR 4 ¢ = 0. This results in the degener-
ate scale problem. Using the degenerate kernels and
circulants for a circular membrane, we can reconstruct
the UT formulation as shown below,

Dy 2y, (I’IT/( {t} =& 2y ‘p{,{“}v (70)

where 2, and 27, can be found in Egs. (42) and (43).
According to the Fredholm alternative theorem in con-
junction with SVD updating technique, we have the
spurious mode {¢, }

1

1
{¢1} = \/%N ! : (71)
i 2N x1
where {¢,} satisfies
(]! —
W] = o0 (1)

After we obtain the spurious mode {¢,}, we can
extract {z//(lw} by

[U1{v}”} = {0}. (73)

It is interesting to find that the rigid body mode is
shown below,

1
{lpl } \/2*]\7 : ( )
1 2N x1
Although we have solved the singular problem by
superimposing a rigid body mode (¢) in the fundamental
solution, this can be done in the matrix level by using
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Rod Beam Membrane
0 0 0
Uy =0=T4: Uy =0=T4: Uy =0=T4:
: 0 : 0 0
g | -1 1 0316 Null field 0316
B | = Null field —_— /
R e ——C =1
§ 10632 + *).632 1
= =1 oL J:
i -1 ~0.632 “"l”’mﬂ
= 1
R V2 )= 0316
' s ' 0.632
V2 0316
0 0 0
Ty =0=U: Ty =0=U{: Ty =0=U1
- 0 0 . 0
undeformed
~0.774 o r
undeform 0.258 Q| uw=-ost6
[ 7 ] w"})= WO =074 N
-0516 w'(0)=0.258
° 0258
= 1 1
=} [ A ey
u(0) =— u(l)=—4
E |07 N
=]
=5
: u'(1) = 0.577
g il 0
J2 0.577 u() = 0.577
@y )y
") o Wa"1=10 577
'\/E 0577 u(0)=0 ¥
undeformed
Fig. 2. The rigid body mode and spurious mode for a beam and a rod in BEM.
Table 3

The rigid body mode and spurious mode for a rod, a beam and a circular membrane in case of degenerate scale

Degenerate  Spurious mode (Di- Special case Rigid body mode
scale richlet problem) (Neumann problem)
I-Drod (1+42a)l= ur 7T
_4¢ |:TT:| {1} a:O,c:—}‘,llz 11 |:MT:|
= =35{1}
=0 : ! Va1 2x1 {1} = {0}
1-D (1+12d)P a=0,b=0,c=4%d=0,1=1
beam —24al = 48¢
—0.632 —0.774
uT —0.632 0.258 [ 77 ]
|:TT:| {1} a1 <={¢}= 0316 W} = 0,516 MT
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U+ HY {0} = 71w}, (75)

where o = 2Ncl;, [; is the element length. The « is a
nonzero constant which can be understood as the rigid
body motion. Eq. (75) can be rewritten as

[ MY + a{ Hu Y] (e}
= [> a1y ] uh. (76)
To demonstrate that the solution is reserved in the

modified form of Eq. (76) in comparison with Eq. (70),
the proof is shown below.

Proof. To prove that the solution for Egs. (70) and (75)
are the same no matter what the value o is. By expressing
the boundary data {u} and {¢} in terms of generalized
coordinates {p} and {¢} for unitary vectors, we have

{u} = ¥riq}, (77)

{t} = Yu{p}. (78)
Substituting Eqs. (77) and (78) into Egs. (70) and
(75), we have
Opi{} +oapr{y”} + -+ owpn{dy}
=0q1{¢:} +q2{¢”} + - Fovan{oy'},  (79)

opi {1} + o (¢} + -+ oy {dN}
= 0q1{¢)} + Grqo{} + - +anan sy}, (80)

where ¢; and &; are the singular values of U and T
matrices, {¢\")} and {¢\"'} are the left unitary vectors in
@, and @7 as shown below:

[@0] = [{p} {0} {68} ], (81)

[@7] = [{$)} {8} {o0}]- (82)

By taking the inner product for Egs. (79) and (80)
with respect to {¢,}", we have

0'])1:0'6]1, (83)

opr =0-q;. (84)

The degenerate scale results in a indefinite form Eq.
(83) where p; can not be determined. After the shifting
process in Eq. (80), p; is found to be zero in Eq. (84).
By taking the inner product of Egs. (79) and (80) with
respect to {qu-u)} (j =2), both equations reduce to
the same one,

N
pi= Z@%C}h (85)
=

where
Ci =\ - ¢ (86)

This indicates that the shifting process in Eq. (70)
does not perturb the solution for the original Eq.
(75. O

5. Conclusions

Based on the dual BEM, we have derived analytically
the same stiffness no matter that the rigid body mode
and the complementary solutions are superimposed in
the fundamental solution for general structures. It is
found that degenerate scale depends on the fundamental
solution which is superimposed by the rigid body mode
and the complementary solution. Also, it is interesting to
find that the linear term can not change the position of
degenerate scale for a circular membrane. Based on the
Fredholm theorem and the SVD updating technique, the
spurious mode was derived for the degenerate scale
problem. By shifting the zero singular value using the
rigid body mode and spurious mode in the matrix level,
the singular matrix can be desingularized which is found
to be equivalent by adding a rigid body term in the
fundamental solution. The relations between the rigid
body mode and the degenerate scale were also examined.
Illustrative numerical examples including rod, beam and
membrane were demonstrated to show the validity of
the formulation.
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