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Abstract

In this paper, the dual boundary integral formulation is used to determine the stiffness and flexibility matrices for rods and beams

by using the direct and indirect methods. Since any two boundary integral equations can be chosen for the beam problem, six options

by choosing two from the four equations in dual formulation can be considered. It is found that only two options, either displacement-

slope (single- and double-layer) or displacement-moment (single- and triple-layer) formulations in the direct (indirect) method can

yield the stiffness matrix except the degenerate scale and a special fundamental solution. Not only rigid body mode in physics but

also spurious mode in numerical implementation are found in the formulation by using SVD updating term and document, respectively.

Both the rigid body mode and spurious mode can be extracted out from the right and left unitary vectors of the influence matrices by

using SVD.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Concept of stiffness and flexibility in mechanics of
material is well-known for undergraduate students [1]. For
graduate students, they revisited the stiffness and flexibility
matrices in the finite element course [2]. Rigid body modes
occur for free–free bodies in physics as well as spurious
modes appear for degenerate scales in numerical imple-
mentation [3]. Felippa et al. [4] constructed the free–free
flexibility matrices by using the generalized inverse of
stiffness through the concept of finite element method
(FEM). Besides, Dumont [5] also studied the stiffness by
using generalized inverse of matrices through variational
boundary element formulation. A note to construct the
relationship of the stiffness matrix between the FEM and
boundary element method (BEM) was published by
Pozrikidis in 2006 [6]. An unified formulation to derive
the stiffness and flexibility matrices is not trivial and is the
main concern of the present paper.
e front matter r 2007 Elsevier Ltd. All rights reserved.
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Applications of direct and indirect BEMs to solve rod
and beam problems were reported in the textbook of
Banerjee and Butterfield [7] and Hartmann [8]. For the free
vibration and forced flexural vibrations of beams are
numerically studied by using the direct BEM [9]. The
flexural–torsion coupling vibration problem of Euler–
Bernoulli beams of arbitrarily shaped cross section was
also solved by BEM [10]. Shearing stresses of two-material
curved beams were solved by using integral equations [11].
The beam problems subject to the transverse shear loading
were investigated by using two-dimensional fundamental
solution [12,13]. However, only the conventional BEM
instead of the dual BEM was used in the direct method.
Besides, only single- and double-layer potentials were
adopted instead of higher-order layer potentials in the
indirect method. Here, we will complete the possible
alternatives to solve rod and beam problems.
DBIEs were developed by Hong and Chen [14] for 2-D

and 3-D elasticity problems. This formulation can be
employed to formulate the one-dimensional problem of rod
and beam. Since DBIEs provide more equations than the
conventional one, we may wonder the role of additional
y for rods and beams by using dual integral equations. Eng Anal Bound
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Table 1

Degenerate kernels for rod problems

Domain Kernels

Uðx; sÞ Tðx; sÞ Lðx; sÞ Mðx; sÞ

x4s 1
2
ðx� sÞ 1

2
�1

2
0

xos 1
2
ðs� xÞ �1

2
1
2

0
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equations in mathematical aspects. Regarding to the role of
dual formulation in computational mechanics, readers can
consult with the review article [15].

In the recent years, SVD technique has been applied to
solve problems of continuum mechanics [16], fictitious-
frequency problems [17], and spurious eigenvalues [18]. Based
on these successful experiences, SVD updating technique will
be employed to study the mathematical structure of the
influence matrices derived by using dual formulation.

In this paper, rank deficiency for the influence matrices is
also our concern. The rigid body mode and spurious mode
in the dual formulation will be examined through SVD
technique. The relation between zero singular values of
updating matrices (updating terms and updating docu-
ment) and nontrivial modes (rigid body mode and spurious
mode) will be constructed. Both the rod and beam
structures are considered as illustrative examples.

2. Dual boundary integral formulation for rod problems

Let us consider the rod problem as shown in Fig. 1(a)
and (b). The governing equation for a rod is

d2uðxÞ

dx2
¼ 0; x 2 D, (1)

where u(x) is the axial displacement of the rod, D is the
domain between of 0oxoL. By introducing the auxiliary
system of the fundamental solution, we have

q2Uðx; sÞ
qx2

¼ dðx� sÞ; �1oxo1, (2)

where d is the Dirac-delta function, x is the field point, and
s is the source point. For simplicity, the fundamental
solution is selected as

Uðx; sÞ ¼ 1
2jx� sj (3)

and can be expressed in terms of degenerate kernel in
Table 1 as

Uðx; sÞ ¼
1
2
ðx� sÞ; x4s;

1
2
ðs� xÞ; xos:

(
(4)

By multiplying the auxiliary system in Eq. (3) with
respect to the governing equation and integrating by parts,
we have the boundary integral equation as

uðsÞ ¼ uðxÞ
qUðx; sÞ

qx
� u0ðxÞUðx; sÞ

� �����
x¼L

x¼0

. (5)

By differentiating with respect to the source point s, in
Eq. (5), the dual boundary integral equations are shown below:

uðsÞ ¼ Tðx; sÞuðxÞ �Uðx; sÞtðxÞ½ �
��x¼L

x¼0
, (6)
Fig. 1. (a) Generalized displacem
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tðsÞ ¼ Mðx; sÞuðxÞ � Lðx; sÞtðxÞ½ �
��x¼L

x¼0
, (7)

where tðsÞ ¼ duðsÞ
ds

and the kernels are defined as

Tðx; sÞ ¼
qUðx; sÞ

qnx

, (8)

Lðx; sÞ ¼
qUðx; sÞ

qns

, (9)

Mðx; sÞ ¼
qUðx; sÞ

qnx qns

. (10)

By approaching s to 0+ and L� into Eq. (6), we have

1

2
uð0Þ �

1

2
uðLÞ

� �
¼ �

L

2
tðLÞ, (11)

1

2
uðLÞ �

1

2
uðLÞ

� �
¼

L

2
tð0Þ. (12)

By assembling Eqs. (11) and (12) into matrix form, we have

1
2
� 1

2

� 1
2

1
2

" #
uð0Þ

uðLÞ

" #
¼ L

0 � 1
2

1
2

0

" #
tð0Þ

tðLÞ

" #
. (13)

By approaching s to 0+ and L� into Eq. (7), we have

1
2
tð0Þ � 1

2
tðLÞ ¼ 0, (14)

�1
2
tð0Þ þ 1

2
tðLÞ ¼ 0. (15)

Similarly, Eqs. (14) and (15) can be written as

0 0

0 0

� �
uð0Þ

uðLÞ

" #
¼

1
2
�1

2

�1
2

1
2

" #
tð0Þ

tðLÞ

" #
. (16)

Eqs. (13) and (16) are denoted as

½A�
uð0Þ

uðLÞ

" #
¼ ½B�

tð0Þ

tðLÞ

" #
, (17)

where [A] and [B] are arranged in Table 2. Also, the ranks of
influence matrices are calculated.
ent and (b) generalized force.
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Table 2

Stiffness matrix for rod problems using dual BEM

Equation [A] [B] [KB] [KF]

(11) and (12) 1
2
�1

2

�1
2

1
2

" #
RankðAÞ ¼ 1

0 �1
2
L

1
2
L 0

" #
RankðBÞ ¼ 2

1
L

�1 1

�1 1

� �
RankðKBÞ ¼ 1 EA

L

1 �1

�1 1

� �
RankðKF Þ ¼ 1

(14) and (15) 0 0

0 0

� �
RankðAÞ ¼ 0

1
2
�1

2

�1
2

1
2

" #
RankðBÞ ¼ 1

NA NA

Fig. 2. Notations of generalized displacements and generalized forces in a

simple structure.
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2.1. The stiffness matrix of rods

We utilize the simple structure in Fig. 2 to define the
notations of generalized displacement and generalized
force to connect the FEM notations.

For the degree of freedom (DOF) of generalized
displacements, we have

uð0Þ

uðLÞ

" #
¼

1 0

0 1

� �
u0

uL

" #
¼ ½Tru�

u0

uL

" #
, (18)

also, we can obtain

tð0Þ

tðLÞ

" #
¼

1

EA

�1 0

0 1

� �
p0

pL

" #
¼ ½Trt�

p0

pL

" #
, (19)

for the DOF of generalized forces.
By substituting Eqs. (18) and (19) into Eq. (17), we have

½A� Tru½ �
u0

uL

" #
¼ ½B�½Trt�

p0

pL

" #
, (20)

in which

½A�½Tru� ¼ ½AT �, (21)

½B�½Trt� ¼ ½BT �. (22)

The relation between the generalized displacement and
the generalized force is shown below

½AT �
u0

uL

" #
¼ ½BT �

p0

pL

" #
. (23)

The stiffness matrices are defined as

tð0Þ

tðLÞ

" #
¼ ½KB�

uð0Þ

uðLÞ

" #
, (24)

p0

pL

" #
¼ KF½ �

u0

uL

" #
. (25)

It is found that Eqs. (14) and (15) fail in constructing the
stiffness matrix due to the rank deficiency of [B], and the
Please cite this article as: Chen J-T, et al. Derivation of stiffness and flexibilit
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stiffness matrix can be expressed as the same form of that
derived by FEM as shown in Table 2.

2.2. The flexibility matrix of rods

The flexibility matrix cannot be obtained, because the [A]
matrix is singular in Table 2. We utilize the SVD technique
to calculate [A]�1 and try to get the flexibility matrix of the
rod. By employing SVD technique, we have

½A� ¼ ½F�½S�½C�T, (26)

where [F] and [C] are the right and left unitary matrices,
and [S] is a diagonal matrix composed of singular value. It
is found that

½F� ¼

1ffiffi
2
p 1ffiffi

2
p

1ffiffi
2
p �1ffiffi

2
p

2
4

3
5, (27)

S½ � ¼
0 0

0 1

� �
, (28)

½C� ¼

1ffiffi
2
p 1ffiffi

2
p

1ffiffi
2
p �1ffiffi

2
p

2
4

3
5. (29)

The matrix [A] can be expressed as

½A� ¼
Xr

i¼1

½ui�½si�½vi�
T, (30)

where si is the singular value, [ui] and [vi] are the left and
right unitary vectors, respectively. The inverse of the [A]
y for rods and beams by using dual integral equations. Eng Anal Bound
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Table 3

Flexibility matrix for rod problems using the dual BEM

Equation [A] [B] [FB] [FF]

(11), (12) 1
2
�1

2

�1
2

1
2

" #
RankðAÞ ¼ 1

0 �1
2
L

1
2
L 0

" #
RankðBÞ ¼ 2

L
4

�1 �1

1 1

� �
RankðF BÞ ¼ 1 L

4EA

1 �1

�1 1

� �
RankðFF Þ ¼ 1

(14), (15) 0 0

0 0

� �
RankðAÞ ¼ 0

1
2
�1

2

�1
2

1
2

" #
RankðBÞ ¼ 1

NA NA

Fig. 3. (a) Generalized displacement DOF (u, y) and (b) generalized force

DOF (m, v).
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matrix is

½A��1 ¼
Xr

i¼1

½vi�½si�
�1½ui�

T

¼

1ffiffi
2
p

�1ffiffi
2
p

2
4

3
5
2�1

1

1

� �
1�1

1ffiffi
2
p �1ffiffi

2
p

h i
1�2

¼

1
2

�1
2

�1
2

1
2

2
4

3
5. ð31Þ

The flexibility matrices are defined as

uð0Þ

uðLÞ

" #
¼ ½FB�

tð0Þ

tðLÞ

" #
, (32)

u0

uL

" #
¼ ½F F �

p0

pL

" #
. (33)

It is found that Eqs. (14) and (15) fail in constructing the
flexibility matrix due to rank deficiency of [B], and the
flexibility matrix can be expressed as the same form of that
derived by FEM as shown in Table 3.

3. Dual boundary integral formulation for beam problems

Following the successful experience of deriving the
stiffness for a rod using BEM, we extend the one-
dimensional Laplace equation to biharmonic equation for
a beam. Let us consider the Euler beam problems as shown
in Fig. 3(a) and (b).

The governing equation for the Euler beam is

d4uðxÞ

dx4
¼ 0; x 2 D, (34)

where L is the length of the beam, u(x) is the lateral
displacement, D is the domain between 0oxoL. By
introducing one auxiliary system of the fundamental
solution

q4Uðx; sÞ
qx4

¼ dðx� sÞ; �1oxo1, (35)

where d is the Dirac-delta function, x is field point, and s is
the source point. For simplicity, the fundamental solution
Please cite this article as: Chen J-T, et al. Derivation of stiffness and flexibilit
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is selected as

Uðx; sÞ ¼
1

12
jx� sj3 (36)

and can be expressed in terms of degenerate kernel as

Uðx; sÞ ¼

1
12
ðx� sÞ3; x4s;

1
12
ðs� xÞ3; xos:

(
(37)

By multiplying the auxiliary system in Eq. (36) with
respect to the governing equation and integrating by parts,
we have the boundary integral equation as

uðsÞ ¼

Z L

0

uðxÞ
q4Uðx; sÞ

qx4
�Uðx; sÞ

q4uðxÞ

qx4

� �
dx. (38)

The boundary integral equation is derived as

uðsÞ ¼ uðxÞ
q3Uðx; sÞ

qx3
� u0ðxÞ

q2Uðx; sÞ
qx2

�

þu00ðxÞ
qUðx; sÞ

qx
� u000ðxÞUðx; sÞ

�����
x¼L

x¼0

. ð39Þ

3.1. Direct method

By rewriting the displacement field, we have

uðsÞ ¼ �Uðx; sÞu000ðxÞ þYðx; sÞu00ðxÞ½

�Mðx; sÞu0ðxÞ þ V ðx; sÞuðxÞ�
��x¼L

x¼0
. ð40Þ

By differentiating Eq. (40) with respect to x, the
displacement, the slope, moment and shear force fields
can be obtained

u0ðsÞ ¼ �Uyðx; sÞu
000ðxÞ þYyðx; sÞu

00ðxÞ½

�Myðx; sÞu
0ðxÞ þ V yðx; sÞuðxÞ�

��x¼L

x¼0
, ð41Þ

u00ðsÞ ¼ �Umðx; sÞu
000ðxÞ þYmðx; sÞu

00ðxÞ½

�Mmðx; sÞu
0ðxÞ þ Vmðx; sÞuðxÞ�

��x¼L

x¼0
, ð42Þ
y for rods and beams by using dual integral equations. Eng Anal Bound
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u000ðsÞ ¼ �Uvðx; sÞu
000ðxÞ þYvðx; sÞu

00ðxÞ½

�Mvðx; sÞu
0ðxÞ þ V vðx; sÞuðxÞ�

��x¼L

x¼0
, ð43Þ

where u(s) is the deflection, y(s) is the slope, m(s) is the
moment and v(s) is the shear force, respectively, and the
Fig. 4. Differential operators for the 16 kernels of the Euler beam.

Table 4

Degenerate kernels for beam problems (U)

Domain Kernels

Uðx; sÞ Uyðx; sÞ Umðx; sÞ Uvðx; sÞ

x4s ðx�sÞ3

12
�
ðx�sÞ2

4

x�s
2 �1

2

xos �
ðx�sÞ3

12
ðx�sÞ2

4

s�x
2

1
2

Table 5

Degenerate kernels for beam problems (Y)

Domain Kernels

Yðx; sÞ Yyðx; sÞ Ymðx; sÞ Yvðx; sÞ

x4s ðx�sÞ2

4

s�x
2

1
2

0

xos �
ðx�sÞ2

4

x�s
2 �1

2
0

Table 6

Degenerate kernels for beam problems (M)

Domain Kernels

Mðx; sÞ Myðx; sÞ Mmðx; sÞ Mvðx; sÞ

x4s x�s
2 �1

2
0 0

xos s�x
2

1
2

0 0

Table 7

Degenerate kernels for beam problems (V)

Domain Kernels

V ðx; sÞ Vyðx; sÞ Vmðx; sÞ Vvðx; sÞ

x4s 1
2

0 0 0

xos �1
2

0 0 0

Please cite this article as: Chen J-T, et al. Derivation of stiffness and flexibilit
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relations of the 16 kernels are shown in Fig. 4. Degenerate
kernels of the 16 kernels in a one-dimensional biharmonic
problem are shown in Tables 4–7.
By approaching s to 0+ and L� into Eq. (40), we have

1

2
uð0Þ �

1

2
uðLÞ þ

L

2
u0ðLÞ ¼

L2

4
u00ðLÞ �

L3

12
u000ðLÞ, (44)

�
1

2
uð0Þ þ

1

2
uðLÞ �

L

2
u0ð0Þ ¼

L2

4
u00ð0Þ þ

L3

12
u000ð0Þ. (45)

By approaching s to 0+ and L� into Eq. (41), we have

1

2
u0ð0Þ �

1

2
u0ðLÞ ¼ �

L

2
u00ðLÞ þ

L2

4
u000ðLÞ, (46)

�
1

2
u0ð0Þ þ

1

2
u0ðLÞ ¼

L

2
u00ð0Þ þ

L2

4
u000ð0Þ. (47)

By approaching s to 0+ and L� into Eq. (42), we have

�
1

2
u00ð0Þ þ

1

2
u00ðLÞ �

L

2
u000ðLÞ ¼ 0, (48)

1

2
u00ð0Þ �

1

2
u00ðLÞ þ

L

2
u000ð0Þ ¼ 0. (49)

By approaching s to 0+ and L� into Eq. (43), we have

�1
2
u000ð0Þ þ 1

2
u000ðLÞ ¼ 0, (50)

1
2
u000ð0Þ � 1

2
u000ðLÞ ¼ 0. (51)

Any two boundary integral equations can be chosen, six
options can be considered. We utilize the degenerate kernel
expansion in Tables 4–7 and substitute them into the two
boundary integral equations which are chosen. By
approaching s to 0+ and L�, we have the matrix form as
follows:

½A�

uð0Þ

u0ð0Þ

uðLÞ

u0ðLÞ

2
66664

3
77775 ¼ ½B�

u000ð0Þ

u00ð0Þ

u000ðLÞ

u00ðLÞ

2
66664

3
77775, (52)

where [A] and [B] are obtained through the six formula-
tions (u�y, u�m, u�v, y�m, y�v, m�v) as shown in
Table 8. Also, the ranks of influence matrices are calculated.

3.1.1. The stiffness matrix of the Euler beam

We utilize a simple structure in Fig. 5 to define the
notations of generalized displacement and generalized
force to connect the FEM notations.
For the DOF of generalized displacements, we have

uð0Þ

u0ð0Þ

uðLÞ

u0ðLÞ

2
66664

3
77775 ¼

�1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

2
6664

3
7775

u0

y0
uL

yL

2
6664

3
7775 ¼ ½Tbu�

u0

y0
uL

yL

2
6664

3
7775,

(53)

since u(x) is defined downward.
y for rods and beams by using dual integral equations. Eng Anal Bound
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T
a
b
le

8

S
ti
ff
n
es
s
m
a
tr
ix

fo
r
th
e
E
u
le
r
b
ea
m

b
y
u
si
n
g
th
e
d
ir
ec
t
m
et
h
o
d

E
q
s.

[A
]

[B
]

[K
B
]

[K
F
]

u
�
y
(E
q
s.
(4
0
)

a
n
d
(4
1
))

1 2
0
�

1 2
L 2

�
1 2
�

L 2
1 2

0

0
1 2

0
�

1 2

0
�

1 2
0

1 2

2 6 6 6 6 4

3 7 7 7 7 5R
a

n
k
ðA
Þ
¼

2
L
3

0
0
�

1 1
2

1 4
L

1 1
2

1 4
L

0
0

0
0

1 4
L
�

1
2
L
2

1 4
L

1
2
L
2

0
0

2 6 6 6 6 4

3 7 7 7 7 5R
a

n
k
ðB
Þ
¼

4
1 L
3

1
2

6
L

�
1
2

6
L

�
6
L
�
4
L
2

6
L
�
2

L
2

1
2

6
L

�
1
2

6
L

6
L

2
L
2
�
6
L

4
L
2

2 6 6 6 4
3 7 7 7 5R

a
n

k
ðK

B
Þ
¼

2
E

I
L
3

1
2

6
L
�
1
2

6
L

6
L

4
L
2
�
6
L

2
L
2

�
1
2
�
6
L

1
2
�
6
L

6
L

2
L
2
�
6
L

4
L
2

2 6 6 6 4
3 7 7 7 5R

a
n

k
ðK

F
Þ
¼

2

u
�

m
(E
q
s.
(4
0
)

a
n
d
(4
2
))

1 2
0
�

1 2
L 2

�
1 2
�

L 2
1 2

0

0
0

0
0

0
0

0
0

2 6 6 6 4
3 7 7 7 5R

a
n

k
ðA
Þ
¼

2
L
3

0
0
�

1 1
2

1 4
L

1 1
2

1 4
L

0
0

0
�
1

2
L
3

�
1

2
L
2

1
2
L
3

1
2
L
2

1
2
L
3

0
�
1

2
L
3

2 6 6 6 6 4

3 7 7 7 7 5R
a

n
k
ðB
Þ
¼

4
1 L
3

1
2

6
L

�
1
2

6
L

�
6
L
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Fig. 5. Notations of generalized displacements and generalized forces in

simple structure.
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Also, we can obtain
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u00ð0Þ

u000ðLÞ

u00ðLÞ

2
66664

3
77775 ¼

1

EI

�1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 �1

2
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3
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v0

m0

vL

mL

2
6664

3
7775 ¼ ½Tbt�

v0

m0

vL

mL

2
6664

3
7775
(54)

for the DOF of generalized forces.
By substituting Eqs. (53) and (54) into Eq. (52), we have

½A�Tbu

u0

y0
uL

yL

2
6664

3
7775 ¼ ½B�½Tbt�

v0

m0

vL

mL

2
6664

3
7775 (55)

in which

½A�½Tbu� ¼ ½A
T�, (56)

½B�½Tbt� ¼ ½B
T�. (57)
½A��1 ¼

2ð�4þ L2Þ

ð4þ L2Þ
2

2ð�4þ L2Þ

ð4þ L2Þ
2

2Lð�6þ L

3ð4þ L2

�ð12þ 4L2Þ

4Lþ L3

4ð12þ 5L2 þ L4Þ

Lð4þ L2Þ
2

�2ð24þ 15L2

3ð4þ L2

�2ð�4þ L2Þ

ð4þ L2Þ
2

�2ð�4þ L2Þ

ð4þ L2Þ
2

�2Lð�6þ

3ð4þ L2

4ð12þ 5L2 þ L4Þ

Lð4þ L2Þ
2

�ð12þ 4L2Þ

4Lþ L3

2ð24þ 9L2 þ

3ð4þ L2

2
666666666666664

Please cite this article as: Chen J-T, et al. Derivation of stiffness and flexibilit

Elem (2007), doi:10.1016/j.enganabound.2007.07.007
The relation between generalized displacement and
generalized force is shown below as

½AT�
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yL

2
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3
7775 ¼ ½BT�

v0

m0

vL

mL

2
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3
7775. (58)

where the stiffness matrices are defined as

u000ð0Þ
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u000ðLÞ

u00ðLÞ

2
66664

3
77775 ¼ ½KB�

uð0Þ
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u0ðLÞ

2
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3
77775, (59)

v0

m0

vL

mL

2
6664

3
7775 ¼ ½KF �

u0

y0
uL

yL

2
6664

3
7775. (60)

It is found that only two combinations of Eqs. (40)
and (41) and Eqs. (40) and (42) can construct the stiffness
matrix, and the stiffness matrix can be expressed as the
same form of that derived by FEM as shown in Table 8.
Other approaches fail to obtain the stiffness matrix due to
the rank deficiency of matrix [B].

3.1.2. The flexibility matrix of the Euler beam

The flexibility matrix cannot be obtained, because
the [A] matrix is singular in Table 8. We utilize the
SVD method to calculate [A]�1 and get the flexibility
matrix of the beam. By employing SVD technique,
we have the Eq. (26). The [A] matrix can be expressed as
Eq. (30).
The inverse of the [A] matrix is expressed as Eq. (31). For

the u�y formulation, we obtain
2Þ

Þ
2

�2Lð�6þ L2Þ

3ð4þ L2Þ
2

þ 2L4Þ

Þ
2

�2ð24þ 9L2 þ 2L4Þ

3ð4þ L2Þ
2

L2Þ

Þ
2

2Lð�6þ L2Þ

3ð4þ L2Þ
2

2L4Þ

Þ
2

2ð24þ 15L2 þ 2L4Þ

3ð4þ L2Þ
2

3
777777777777775

. (61)

y for rods and beams by using dual integral equations. Eng Anal Bound

dx.doi.org/10.1016/j.enganabound.2007.07.007


ARTICLE IN PRESS
J.-T. Chen et al. / Engineering Analysis with Boundary Elements ] (]]]]) ]]]–]]]8
The flexibility matrices are defined as
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7775 ¼ ½F F �

v0

m0

vL

mL

2
6664

3
7775. (63)

It is found that only two combinations Eqs. (40) and (41)
and Eqs. (40) and (42) can construct the flexibility matrix,
and the flexibility matrix can be expressed as the same form
of that derived by FEM as shown in Table 8.

3.2. Indirect method

Instead of choosing two equations from the dual
formulation in the direct BEM, we can also adopt two
potentials from single, double, triple and quadruple
potentials as denoted by U�Y, U�M, U�V, Y�M,
Y�V, and M�V formulations.

(1) Single and double-layer approach (U�Y)

uðsÞ ¼ Uð0; sÞf0 þUðL; sÞfL þYð0; sÞc0 þYðL; sÞcL,

(64)

where f0, fL, c0 and cL are fictitious densities.
By approaching s to L� and to 0+, we have
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(2) Single and triple-layer approach (U�M)

uðsÞ ¼ Uð0; sÞf0 þUðL; sÞfL þMð0; sÞc0

þMðL; sÞcL. ð67Þ

By approaching s to L� and to 0+, we have the matrix
form as shown below
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(3) Single and quadruple layer approach (U�V)

uðsÞ ¼ Uð0; sÞf0 þUðL; sÞfL þ V ð0; sÞc0 þ V ðL; sÞcL.

(70)

By approaching s to L� and to 0+, we have
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(4) Double and triple-layer approach (Y�M)

uðsÞ ¼ Yð0; sÞf0 þYðL; sÞfL þMð0; sÞc0

þMðL; sÞcL. ð73Þ

By approaching s to L� and to 0+, we have
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(5) Double and quadruple layer approach (Y�V)

uðsÞ ¼ Yð0; sÞf0 þYðL; sÞfL þ V ð0; sÞc0

þ V ðL; sÞcL. ð76Þ

By approaching s to L- and to 0+, we have

0 L2

4
1
2

1
2

0 �L
2 0 0

L2

4
0 1

2
1
2

L
2

0 0 0

2
666664

3
777775

f0

fL

c0

cL

2
66664

3
77775 ¼

uð0Þ

yð0Þ

uðLÞ

yðLÞ

2
66664

3
77775, (77)
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Table 9

Stiffness matrix for the Euler beam by using the indirect method

Portential [A] [B] [K] ¼ [B][A]�1
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0 0

2
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2
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3
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(6) Triple and quadruple layer approach (M�V)

uðsÞ ¼Mð0; sÞf0 þMðL; sÞfL þ V ð0; sÞc0

þ V ðL; sÞcL. ð79Þ

By approaching s to L� and to 0+, we have
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The unknown fictitious densities (f, c) can be obtained by

½A�
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2
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77775. (83)

It is found that the stiffness matrix can be obtained by
selecting U�Y and U�M formulations and the other
combinations fail, due to the rank deficiency of [A]. All the
above results are collected in Table 9.

4. Discussion of the rigid body mode and spurious mode in

case of degenerate scale using the SVD updating technique

for rods and beams

If the rigid body term, c, and the linear term, ax,
are superimposed in the fundamental solution, we have
y for rods and beams by using dual integral equations. Eng Anal Bound
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Ur(x, s) ¼ U(x, s)+ax+c. By substituting the auxiliary
system U(x, s) into Eq. (5), and setting EA ¼ 1, L ¼ 1,
we have

1
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( )
. ð84Þ

The matrix [B1] for a rod is singular when (1+2a) ¼
�4c. This results in the degenerate scale problem. Accord-
ing to the Fredholm alternative theorem, the degenerate
scale depends on the rigid body term. When a ¼ 0 and
c ¼ �1/4, [B1] matrix is not invertible and results in a
degenerate scale. By employing the SVD technique, we can
decompose [A1] and [B1] into
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The spurious mode [f] satisfies

½A�T

½B�T

" #
½f� ¼ 0, (87)

where the spurious mode [f] is

½f� ¼
1ffiffiffi
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1
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� �
(88)
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0:587 0:234 0:316 0:707

2
666664

3
777775

1:118 0 0

0 1:118 0

0 0 0

0 0 0

2
666664
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and the rigid body mode [c] is

½c� ¼
1ffiffiffi
2
p

1

1

� �
. (89)

The spurious mode [f] and the rigid body mode [c] are
shown in Table 10.
If the rigid body term, c, and the linear, quadratic and

cubic terms, ax, bx2 and dx3 are superimposed in the
fundamental solution, we have Ubðx; sÞ ¼ Uðx; sÞ þ axþ

bx2 þ dx3 þ c. By substituting the auxiliary system Ub(x, s)
into Eqs. (39) for the u�y formulation, and setting EI ¼ 1,
L ¼ 1, we have

1
2
þ 6d �2b �1

2
� 6d 1

2
þ 2bþ 6d

�1
2þ 6d �1

2� 2b 1
2� 6d 2bþ 6d

0 1
2

0 �1
2

0 �1
2

0 1
2

2
666664

3
777775

uð0Þ

u0ð0Þ

uð1Þ

u0ð1Þ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

¼

c �a � 1
12
� c� a� b� d 1

4
þ aþ 2bþ 3d

1
12þ c 1

4� a �c� a� b� d aþ 2bþ 3d

0 0 1
4

�1
2

1
4

1
2

0 0

2
666664

3
777775

u000ð0Þ

u00ð0Þ

u000ð1Þ

u00ð1Þ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
. ð90Þ

The matrix [B1] for a beam is singular when
(1+12d)�24a ¼ 48c. This results in the degenerate scale
problem. When a ¼ 0, b ¼ 0, c ¼ 1/48 and d ¼ 0, [B1]
matrix is not invertible and results in a degenerate scale. By
employing the SVD technique with respect to the influence
matrix in the u�y formulation, for [A1], [A2] and [B1]
matrices, we have
0

0

0

0

3
777775

0:234 �0:587 �0:774 0

�0:539 �0:556 0:258 0:577

�0:234 0:587 �0:516 0:577

0:774 �0:031 0:258 0:577

2
666664

3
777775

T

ð91Þ
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Table 10

Spurious modes and the rigid body modes for a rod and a beam in BEM
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½B1� ¼

1

48
0
�5

48

1

4

5

48

1

48

�1

48
0

0 0
1

4

�1

2

1

4

1

2
0 0

2
6666666666664

3
7777777777775

¼

0:316 0:299 �0:640 �0:632

0:316 �0:299 0:640 �0:632

�0:632 �0:640 �0:299 �0:316

0:632 �0:640 �0:299 0:316

2
666664

3
777775

0:625 0 0 0

0 0:617 0 0

0 0 0:033 0

0 0 0 0

2
666664

3
777775

0:316 �0:299 �0:640 �0:632

0:632 �0:640 0:299 0:316

�0:316 �0:299 �0:640 0:632

0:632 0:640 �0:299 0:316

2
666664

3
777775

T

ð92Þ
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½A2� ¼

1

2
0
�1

2

1

2

�1

2

�1

2

1

2
0

0 0 0 0

0 0 0 0

2
666666664

3
777777775

¼

�0:707 0:707 0 0

0:707 0:707 0 0

0 0 0 1

0 0 1 0

2
666664

3
777775

1:118 0 0 0

0 0:5 0 0

0 0 0 0

0 0 0 0

2
666664

3
777775

�0:632 0 �0:774 0

�0:316 �0:707 0:258 0:577

0:632 0 �0:516 0:577

�0:316 0:707 0:258 0:577

2
666664

3
777775

T

ð93Þ
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According to the Fredholm alternative theorem [11], the
spurious mode [f] satisfies

½A�T

½B�T

" #
½f� ¼ 0, (94)

where the spurious mode is found to be imbedded in the
Eqs. (91) and (92) by using the bold face, as shown below

½f� ¼

�0:632

�0:632

�0:316

0:316

2
6664

3
7775 (95)

and the rigid body mode [c] satisfies

½A1�

½A2�

" #
½c� ¼ 0. (96)

It is found that the two rigid body modes are shown
below

½c� ¼

�0:774

0:258

�0:516

0:258

2
6664

3
7775;

0

0:577

0:577

0:577

2
6664

3
7775. (97)

The spurious mode [f] and the rigid body mode [c] are
shown in Table 10. By substituting the auxiliary system
Ub(x, s) into Eq. (39) for the u�m formulation, and setting
EI ¼ 1, L ¼ 1, we have

1
2
þ 6d �2b �1

2
� 6d 1

2
þ 2bþ 6d

�1
2
þ 6d �1

2
� 2b 1

2
� 6d 2bþ 6d

0 0 0 0

0 0 0 0

2
666664

3
777775

uð0Þ

u0ð0Þ

uð1Þ

u0ð1Þ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

¼

c �a � 1
12
� c� a� b� d 1

4
þ aþ 2bþ 3d

1
12
þ c 1

4
� a �c� a� b� d aþ 2bþ 3d

0 �1
2

�1
2

1
2

1
2

1
2

0 �1
2

2
666664

3
777775

u000ð0Þ

u00ð0Þ

u000ð1Þ

u00ð1Þ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
. ð98Þ

The [B2] matrix for a beam is singular when (1+12d)�
24a ¼ 48c. This results in the nonuniqueness problem.
When a ¼ 0, b ¼ 0, c ¼ 0 and d ¼ �1/12, [B2] matrix
is not invertible and results in a degenerate scale. By
employing the SVD technique with respect to the influence
matrix in the u�y formulation, for [A2] and [B2] matrix,
Please cite this article as: Chen J-T, et al. Derivation of stiffness and flexibilit

Elem (2007), doi:10.1016/j.enganabound.2007.07.007
we have

½A2� ¼

0 0 0 0

�1
�1

2
1
�1

2

0 0 0 0

0 0 0 0

2
6666664

3
7777775

¼

0 0 0 1

1 0 0 0

0 0 1 0

0 1 0 0

2
666664

3
777775

1:58114 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

2
666664

3
777775

0:632 �0:447 0 �0:774

0:316 0 0:577 0:258

�0:632 0 0:577 �0:516

0:316 0:894 0:577 0:258

2
666664

3
777775

T

, ð99Þ

½B2� ¼

0 0 0 0

1
12

1
4

1
12
� 1

4

0 � 1
2
� 1

2
1
2

1
2

1
2

0 � 1
2

2
666664

3
777775

¼

0 0 0 1

0:313 0 �0:949 0

�0:671 0:707 �0:221 0

0:671 0:707 0:221 0

2
666664

3
777775

1:17748 0 0 0

0 0:500 0 0

0 0 0:050 0

0 0 0 0

2
666664

3
777775

�0:307 �0:707 0:636 0

�0:636 0 �0:307 0:707

�0:307 0:707 0:636 0

0:636 0 0:307 0:707

2
666664

3
777775

T

. ð100Þ

The spurious mode [f] satisfies Eq. (94), and the
spurious mode is found to be imbedded in Eqs. (99) and
(100) by using the bold face as shown below

½f� ¼

1

0

0

0

2
6664
3
7775. (101)
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Fig. 6. Mathematical SVD structures of the influence matrices using updating techniques.
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It is found that the rigid body modes is shown below

½c� ¼

0

0:577

0:577

0:577

2
6664

3
7775;

�0:774

0:258

�0:516

0:258

2
6664

3
7775. (102)

The mathematical framework of [A] and [B] are shown in
Fig. 6.
5. Conclusions

Dual boundary integral equations were employed to
derive the stiffness and flexibility of the rod and beam
which match well with those of FEM. Not only the direct
method but also the indirect method were used. It is found
that displacement-slope (u�y) and displacement-moment
(u�m) formulations in the direct method can construct the
stiffness matrix. Similarly, the single–double-layer ap-
proach (U�Y) and single–triple-layer approach (U�M)
work for the constructing of stiffness matrix in the indirect
method. For choosing a special fundamental solution, the
stiffness matrix cannot be obtained for the degenerate
scale. Rigid body mode and spurious mode were studied by
using the SVD updating term and document technique. It
is found that rigid body mode and spurious mode are
imbedded in the right and left unitary vectors of the
influence matrices through SVD. Flexibility is also derived
Please cite this article as: Chen J-T, et al. Derivation of stiffness and flexibilit
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from the inversion of singular stiffness matrix by using the
SVD technique.
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