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Abstract

In this paper, true and spurious eigensolutions for a circular cavity using the dual multiple reciprocity method (MRM) are analytically

derived and numerically verified by the developed program. The roots of spurious eigenequation are found analytically by using symbolic

manipulation software. A more efficient method is proposed by choosing a fewer number of equations from the dual MRM instead of all of

the equations in the dual MRM. Numerical experiments are performed by using dual MRM program for comparison purposes. A circular

cavity of radius 1 m with Neumann boundary conditions is considered, and the results match very well between the theoretical prediction and

the numerical experiments for the first four true eigenvalues and the first two spurious eigenvalues. Also, a noncircular case of square cavity

is numerically implemented. The true eigensolutions can be easily solved by the dual MRM program in conjunction with the singular value

decomposition technique. At the same time, the boundary modes and the multiplicities of the true eigenvalues can also be determined.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The multiple reciprocity method (MRM) has been widely

used to transform domain integrals into boundary integrals

for the Helmholtz and the Poisson equations [1]. For the

Helmholtz equation, one advantage of using MRM is that

only real-variable computation is considered instead of

complex variable computation as used in the complex-

valued boundary element method. It is found that MRM is no

more than the real part of a complex-valued formulation

[2–5]. A simplified method using only a real-part or

imaginary-part kernel was also presented by De Mey [6].

However, one drawback of MRM has been found to be the

occurrence of spurious eigenvalues [8]. To deal with this

problem, the framework of dual MRM was constructed so as

to filter out spurious eigenvalues. A detailed review article

on the dual formulation, including 250 references, by Chen

and Hong [12,13] can be referred to. Spurious eigenvalues

occur in the MRM due to the loss of the imaginary part,

which was investigated in Ref. [15]. Also, the relation

between MRM and complex-valued BEM was discussed in a

keynote lecture by Chen [3]. The occurrence of spurious

eigensolutions can be avoided in three ways: one is the

complex-valued formulation [16], another is the dual

approach [8,17] and the other is the domain-partition method

[7]. By employing the dual MRM, spurious eigenvalues can

be filtered out by checking the residual between the singular

and hypersingular equations in the dual MRM. A two-

dimensional case was studied in Ref. [17]. However, the

boundary modes (including true and spurious cases) should

be determined in advance before finding the residue. Finding

a more efficient method to distinguish whether an eigenvalue

is true or not is not trivial. Therefore, the SVD technique was

employed to filter out spurious eigenvalues for two-

dimensional cavities [9–11] and one-dimensional problems

[18,19] with greater efficiency than using the residue method

presented in Ref. [17]. After finding the true eigenvalues,

determining their multiplicities is our concern. Furthermore,

predicting spurious solutions analytically is the main focus

of this research. In Ref. [20], sensitivity and failure in

determining boundary modes and interior modes were

discussed for the case where the normalized value is set to

one at the boundary point with exact solution of zero or near

zero. To avoid this problem, the SVD technique is also

employed here to determine the boundary modes even
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though a double root is available. This technique can be

applied to not only a circular-boundary problem, but also

general boundary problem. In the dual MRM [10] or real-

part BEM [9,11], all the equations in the dual formulation are

combined to filter out the spurious solutions since the rank

deficiency can be improved. It is found that only rank one or

two deficiency is present in the real UT or LM formulation

[9–11], a sufficient number of independent equations from

LM or UT formulation is required. Based on the concept of

CHIEF method, the sufficient number of independent

equations should be provided to improve the rank deficiency.

Therefore, a more efficient method by choosing a fewer

number of equations from dual formulation than all of them

in the dual MRM [9–11] is proposed.

In this paper, we employ dual MRM to solve for the

eigensolutions of a circular cavity analytically and numeri-

cally. For circular and noncircular cases, we select sufficient

number of equations from the dual MRM to filter out

spurious solutions more efficiently. After assembling the

sufficient equations in the dual MRM, the singular value

decomposition (SVD) technique presented in Ref. [19] is

extended to filter out spurious eigenvalues for two-dimen-

sional cavities with greater efficiency than can be obtained

using the residue method described in Ref. [17]. The

spurious eigensolutions (including eigenvalues and eigen-

functions) are investigated analytically and found numeri-

cally. Also, the boundary modes and the multiplicities of the

true eigenvalues are determined using the same method.

These two roles of the SVD technique in the dual MRM are

both examined. One example of a circular cavity subject to

the Neumann boundary condition is employed to check the

validity of the analytical method. A noncircular case of

square cavity is also considered numerically. Finally, the

solutions are compared with the exact solutions to check the

validity of the present formulation.

2. Dual integral formulation of MRM for

a two-dimensional acoustic cavity

The governing equation for an acoustic cavity is the

Helmholtz equation:

ð72 þ k2Þuðx1; x2Þ ¼ 0; ðx1; x2Þ [ D;

where 72 is the Laplacian operator, D is the domain of the

cavity and k is the wave number, which is the frequency

over the speed of sound. The boundary conditions can be

either of the Neumann or of the Dirichlet type.

Based on the dual multiple reciprocity method (MRM)

[1,10,17], the dual MRM equations for the boundary points

are

uðxÞ ¼CPV
ð

B
Tðs; xÞuðsÞdBðsÞ

2 RPV
ð

B
Uðs; xÞtðsÞdBðsÞ; x [ B; ð1Þ

tðxÞ ¼HPV
ð

B
Mðs; xÞuðsÞdBðsÞ

2 CPV
ð

B
Lðs; xÞtðsÞdBðsÞ; x [ B; ð2Þ

where CPV, RPV and HPV denote the Cauchy principal

value, the Riemann principal value and the Hadamard

principal value, tðsÞ ¼ ð›uðsÞ=›nsÞ; B denotes the boundary

enclosing D and the four kernels are series forms which can

be found in Ref. [17].

3. Dual MRM for an acoustic cavity using the constant

element scheme

By discretizing the boundary B into boundary elements

in Eqs. (1) and (2), we obtain the dual algebraic system as

follows

p{u} ¼ ½T�{u} 2 ½U�{t}; ð3Þ

p{t} ¼ ½M�{u} 2 ½L�{t}; ð4Þ

where the ½U�; ½T�; ½L� and ½M� matrices are the correspond-

ing influence coefficient matrices resulting from the 10-

terms of the U;T ;L and M series kernels, respectively. The

detailed derivation for the singular and hypersingular

integrals can be found in Refs. [10,17]. Eqs. (3) and (4)

can be rewritten as

½ �T�{u} ¼ ½U�{t}; ð5Þ

½M�{u} ¼ ½ �L�{t}; ð6Þ

where ½ �T� ¼ ½T�2 p½I� and ½ �L� ¼ ½L� þ p½I�: The compu-

tational issues for the dual MRM can be found in Refs. [10,

17]. The developed DUALMRM program was utilized here

in the numerical study.

4. Detection of spurious eigenvalues and determination

of the multiplicities of the true eigenvalues using the

singular value decomposition technique for dual MRM

According to Eqs. (5) and (6), we can obtain the

eigenvalues independently for the problem without degen-

erate boundaries. However, spurious roots are imbedded if

the UT equation (5) or LM equation (6) is used alone. As

mentioned by Kamiya et al. [2], the equation derived using

MRM is no more than the real part of the complex-valued

formulation. The loss of the imaginary part in MRM results

in spurious roots. Yeih et al. [15] extended the general proof

for any dimensional problems and demonstrated it using a

one-dimensional case. The imaginary part in the complex-

valued formulation is not present in MRM, and the number

of constraints for the eigenequation is insufficient, which

causes the solution space to become larger. These findings

can explain why spurious roots occur using MRM when
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either Eq. (5) or Eq. (6) only is employed; i.e. the

mechanism of the spurious roots can be understood in this

way. The technique used to filter out spurious eigenvalues in

Refs. [10,17] is summarized as follows.

Since only the real part is of concern in MRM, one

approach to obtaining enough constraints for the eigenequa-

tion instead of the imaginary part of the complex-valued

formulation is to perform differentiation with respect to the

conventional MRM. This method results in the hypersin-

gular formulation for MRM. For the sake of simplicity, we

will deal with the Neumann problem. Therefore, Eqs. (5)

and (6) reduce to

½ �TðkÞ�N£N{u}N£1 ¼ {0}; ð7Þ

½MðkÞ�N£N{u}N£1 ¼ {0}; ð8Þ

where N is the number of boundary elements. In Ref. [17],

an approach to detecting spurious roots is to use the criterion

of the residue to satisfy Eq. (5) (or Eq. (6)) when

substituting the boundary modes obtained from Eq. (6) (or

Eq. (5)) for the characteristic wave number, k: The spurious

modes obtained from Eq. (5) will not satisfy Eq. (6). The

proof will be elaborated on later in Eqs. (52)–(55). This

conclusion also matches well with the results of fictitious

frequency in exterior acoustics. Burton and Miller proposed

a combined approach of UT and LM equations since their

fictitious poles are not the same [14]. Also, the spurious

modes obtained from Eq. (6) will not satisfy Eq. (5) in

controversa. Therefore, two residual norms can be defined

as follows [17]

eT ¼ ½ �TðkMÞ�{uM}; ð9Þ

where {uM} is the boundary mode which satisfies

½MðkMÞ�{uM} ¼ {0}; and

eM ¼ ½MðkT Þ�{uT }; ð10Þ

where {uT } is the boundary mode which satisfies

½ �TðkT Þ�{uT } ¼ 0; eT and eM are the residue norms induced

by Eqs. (9) and (10), respectively; and kM and kT are the

possible (true or spurious) eigenvalues obtained by Eqs. (7)

and (8), respectively. By setting an appropriate value of the

threshold, we can determine whether the root is true or

spurious. To double check, the acoustic modes can be

examined based on the distribution of nodal lines and

orthogonal properties after the possible true eigenvalues are

determined [17].

It is noted here that the residue method needs to find the

spurious boundary modes first from one equation (either the

UT or LM equation) in the stage in which we directly search

for the eigenvalue, and then substitute it into another

eigenequation (either the LM or UT equation) to check the

residuals. Now, we will present a more efficient way to filter

out spurious eigenvalues which can avoid the need to

determine the spurious boundary mode in advance.

To filter out spurious eigenvalues using the SVD

technique, we can merge the two matrices in Eqs. (7) and

(8) together to obtain an overdeterminate system as

½CðkÞ�2N£N{u}N£1 ¼ {0}; ð11Þ

where the ½CðkÞ� matrix is the augmented matrix, by

combining the ½ �T� and ½M� matrices as shown below [10]

½CðkÞ�ð2NÞ£N ¼
MN£NðkÞ

k �TN£NðkÞ

" #

for the Neuman problem;

ð12Þ

where the k term in Eq. (12) is added to be consistent in

dimension. Even though the ½CðkÞ� matrix in Eq. (12) may

have dependent rows resulting from the degenerate

boundary, the SVD technique can still be employed to

find all the true eigenvalues since a sufficient number of

constraints are imbedded in the overdeterminate matrix,

½CðkÞ�: As for the true eigenvalues, the rank of the ½CðkÞ�

matrix with dimension 2N £ N must at most be N 2 1 to

obtain a nontrivial solution. To filter out the spurious

eigenvalues, the rank must be promoted to N to obtain a

trivial eigensolution. In the dual MRM [10] or real-part dual

BEM [9,11], all the equations are combined together to meet

the requirement as shown in Eq. (12). However, it is found

that UT MRM [10] or real-part BEM [9,11] results in rank

deficiency by one and two for single spurious root and

double spurious root, respectively. In this paper, we propose

a more efficient method by selecting the appropriate number

of equations from dual formulation to filter out the spurious

eigensolutions as follows:

½CðkÞ�ðNþ2Þ£N ¼
MN£NðkÞ

k �T2£NðkÞ

" #
: ð13Þ

To find the rank of ½CðkÞ� matrix, the SVD technique can be

employed to detect the true eigenvalues by checking

whether or not the first minimum singular values, s1; are

zeros. Since discretization creates errors, very small values

for s1; but not exactly zeros, will be obtained when k is near

the critical wave number. In order to avoid the need to

determine the threshold for the zero numerically, a value of

s1 closer to zero must be obtained using a smaller increment

for the critical wave number, k: Such a value is confirmed to

be a true eigenvalue.

Since Eq. (11) is overdeterminate, we will consider a

linear algebra problem with more equations than unknowns

½A�m£n{x}n£1 ¼ {b}m£1; m . n; ð14Þ

where m is the number of equations, n is the number of

unknowns and ½A� is the leading matrix, which can be

decomposed into [21,22]

½A�m£n ¼ ½U�m£m½S�m£n½V�pn£n; ð15Þ

where ½U� is a left unitary matrix constructed by the left

singular vectors ðu1; u2; u3;…; umÞ; ½S� is a diagonal matrix

which has singular values s1;s2;…; and sn allocated in
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a diagonal line as

½S� ¼

sn · · · 0

..

. . .
. ..

.

0 · · · s1

..

. . .
. ..

.

0 · · · 0

2
666666666664

3
777777777775
; m . n; ð16Þ

in which sn $ sn21· · · $ s1; and ½V�p is the complex

conjugate transpose of a right unitary matrix constructed by

the right singular vectors ðv1; v2; v3;…; vmÞ: As we can see

in Eq. (16), there exist at most n nonzero singular values.

This means that we can find at most n linear independent

equations in the system of equations. If we have p zero

singular values ð0 # p # nÞ; this means that the rank of the

system of equations is equal to n 2 p: However, the singular

value may be very close to zero numerically, resulting in

rank deficiency. For a general eigenproblem as shown in this

paper, the ½CðkÞ� matrix with dimension 2N £ N will

theoretically have a rank of N 2 1 for the true eigenvalue

with multiplicity 1 and s1 ¼ 0: For true eigenvalues with

multiplicity Q; the rank of ½CðkÞ� will be reduced to N 2 Q;

in which s1;s2;…;sQ are zeros theoretically. In another

words, the matrix has a nullity of Q: In the case of spurious

eigenvalues, the rank for the ½CðkÞ� matrix is N; and the

minimum singular value is not zero.

Determining the eigenvalues of the system of equations

has now been transformed into finding the values of k which

make the rank of the leading coefficient matrix smaller than

N: This means that when m ¼ 2N; n ¼ N and b2N£1 ¼ 0; the

eigenvalues will make p $ 1; such that the minimum

singular values must be zero or very close to zero.

According to the definition for SVD, we have

½A�vp ¼ spup; p ¼ 1; 2; 3;…; n: ð17Þ

By choosing the qth zero singular value, sq; and substituting

the qth right eigenvector, vq; into Eq. (17), we have

½A�vq ¼ 0uq ¼ 0; q ¼ 1; 2; 3;…;Q: ð18Þ

According to Eq. (18), the nontrivial boundary mode is found

to be the column vector, vq; in the right unitary matrix.

After introducing the SVD method, matrix ½CðkÞ�

apparently causes the rank of the leading coefficient matrix

to be equal to N 2 1 for the true eigenvalue with

multiplicity 1. The boundary modes can be obtained from

the ½V� matrix in Eq. (14) using SVD. Another advantage of

using SVD is that it can determine the multiplicities for the

true eigenvalues by finding the number of near zeros in the

singular values. Two examples a circular cavity and a square

cavity with eigenvalues of multiplicity 2 will be considered

to demonstrate the use of SVD technique.

To check the validity of the proposed method, one

example will be examined analytically in the following

section.

5. Analytical derivations for true and spurious

eigensolutions

It is well known that MRM is no more than the real part of

the complex-valued formulation [2,15]. Therefore, the real

part of the complex-valued kernel, Uðs; xÞ [23,24], is

Re 2
p

2
iH0ðkrÞ


 �
¼

p

2
Y0ðkrÞ; ð19Þ

where H0 and Y0 are the Hankel and Bessel functions of zero

order, respectively. The imaginary part, J0ðxÞ; in Uðs; xÞ is

Im
2pi

2
H0ðxÞ


 �
¼

2p

2
J0ðxÞ ¼

2p

2

X1
n¼0

pnx2n
; ð20Þ

where J0 is the first kind Bessel function of zero order and pn

is

pn ¼
ð21Þn

4nðn!Þ2
: ð21Þ

Based on the theory of special functions, we can have

p

2
Y0ðxÞ ¼ ln

x

2
þ g


 �
J0ðxÞ þ

X1
n¼0

qnx2n

¼ ln
x

2
þ g


 �X1
n¼0

pnx2n þ
X1
n¼0

qnx2n
; ð22Þ

where g is an Euler constant and qn is

qn ¼
ð21Þðnþ1Þ

4nðn!Þ2
1 þ

1

2
þ

1

3
þ · · · þ

1

n


 �
: ð23Þ

In the present MRM formulation, the real kernel is

p

2
�YðkrÞ8 ðln rÞ

X10

n¼0

pnðkrÞ2n þ
X9

n¼0

qnðkrÞ2n ð24Þ

since 10 terms are adopted in the dual MRM program [17]. As

kr approaches zero, we have

p

2
�YðkrÞ ¼

p

2
Y0ðkrÞ2 ln

k

2
þ g


 �
J0ðkrÞ: ð25Þ

By setting x ¼ ðr; 0Þ and s ¼ ðR; uÞ as shown in Fig. 1(a),

we can expand Uðs; xÞ into a degenerate kernel as shown

below:

Uðs;xÞ ¼
p

2
�YðkrÞ ¼

p

2
Y0ðkrÞ2 ln

k

2
þg


 �
J0ðkrÞ

¼
p

2

X1
n¼21

YnðkRÞJnðkrÞcos nu2 ln
k

2
þg


 �

�
X1

n¼21

JnðkRÞJnðkrÞcos nu

¼
X1

n¼21

p

2
YnðkRÞ2 ln

k

2
þg


 �
JnðkRÞ


 �
JnðkrÞcos nu;

R$ r: ð26Þ
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It is interesting to find that the difference between the

MRM kernel and real-part kernel stems from the loss

terms of real constant, lnðk=2Þþg; in the zeroth-order

fundamental solution [3].

The T kernel can be obtained by differentiating Eq. (26)

with respect to r :

Tðs;xÞ¼
›U

›r

¼ k
X1

n¼21

p

2
YnðkRÞ2 ln

k

2
þg


 �
JnðkRÞ


 �
J 0

nðkrÞcos nu:

ð27Þ

Based on the dual series representation for the kernels and

Fourier expansion for uðsÞ and tðsÞ on the circular boundary,

we have

tðsÞ¼
XN
n¼1

ðan cos nuþbn sin nuÞþa0; ð28Þ

uðsÞ¼
XN
n¼1

ðcn cosnuþdn sin nuÞþc0: ð29Þ

The kernels can be expressed

Uðs;xÞ¼Uðf2uÞ¼
X1
21

Sm cos mðf2uÞ; ð30Þ

Lðs;xÞ¼Lðf2uÞ¼
X1
21

Vm cosmðf2uÞ; ð31Þ

where

Sm ¼
p

2
YmðkRÞ2 ln

k

2
þg


 �
JmðkRÞ


 �
JmðkrÞ; ð32Þ

Vm ¼ k
p

2
Y 0

mðkRÞ2 ln
k

2
þg


 �
J 0

mðkRÞ


 �
JmðkrÞ: ð33Þ

Substituting Eqs. (28)–(33) into the boundary integrals, we

have

ð
B
Uðs;xÞtðsÞdBðsÞ¼

ð2p

0
Uðs;xÞtðsÞRdu

¼
ð2p

0
a0þ

XN
n¼1

ðancosnuþbnsinnuÞ

" #

�
X1

m¼21

Smcosmðu2fÞRdu

¼2pR a0S0þ
XN
n¼1

ðancosnfþbnsinnfÞSn

" #
;

ð34Þ

ð
B
Lðs;xÞtðsÞdBðsÞ

¼2pR a0V0þ
XN
n¼1

ðancosnfþbnsinnfÞVn

" #
; ð35Þ

where x¼ða;fÞ and f are shown in Fig. 1(b). By setting

the collocation points x with fm¼mDu; m¼0;1;…;2N; and

Du¼
2p

2Nþ1
, Eqs. (34) and (35) can be expressed as

ð2pRÞ

S0 S1 0 · · · SN 0

S0 S1 cosf1 S1 sinf1 · · · SN cosNf1 SN sinNf1

S0 S1 cosf2 S1 sinf2 · · · SN cosNf2 SN sinNf2

..

. ..
. ..

. ..
. ..

.

S0 S1 cosf2N S1 sinf2N ··· SN cos Nf2N SN sinNf2N

2
66666666664

3
77777777775

a0

a1

b1

..

.

aN

bN

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

¼2pR½B�{a}using single layer method or UT MRM method;

ð36Þ

Fig. 1. (a) The definitions of r; u; and R: (b) The definitions of a and f:
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and

ð2pRÞ

V0 V1 0 · · · VN 0

V0 V1 cosf1 V1 sinf1 · · · VN cos Nf1 VN sinNf1

V0 V1 cosf2 V1 sinf2 · · · VN cos Nf2 VN sinNf2

..

. ..
. ..

. ..
. ..

.

V0 V1 cosf2N V1 sinf2N ··· VN cos Nf2N VN sinNf2N

2
66666666664

3
77777777775

a0

a1

b1

..

.

aN

bN

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

¼2pR½A�{a} using the double layer method or LM MRM method;

ð37Þ

where {a} is a column vector of ða0;a1;b1;…;aN ;bNÞ
T: It is

easy to decompose ½B� and ½A� into

½B�¼ ½H�½DB�; ð38Þ

½A�¼ ½H�½DA�; ð39Þ

where

½H�¼

1 1 0 · · · 1 0

1 cosf1 sinf1 · · · cos Nf1 sin Nf1

1 cosf2 sinf2 · · · cos Nf2 sin Nf2

..

. ..
. ..

. ..
. ..

.

1 cosf2N sinf2N ·· · cos Nf2N sin Nf2N

2
66666666664

3
77777777775
; ð40Þ

and

½DB�¼

S0

S1

S1

. .
.

SN

SN

2
666666666666664

3
777777777777775
; ð41Þ

½DA�¼

V0

V1

V1

. .
.

VN

VN

2
666666666666664

3
777777777777775
: ð42Þ

Using the following properties for ½H� (as shown in

Appendix A)

½H�T½H�¼

2Nþ1

2Nþ1

2
0

2Nþ1

2

. .
.

0
2Nþ1

2

2Nþ1

2

2
666666666666666666664

3
777777777777777777775

;

ð43Þ

we have

detl½B�l¼detlHl·detlDBl

¼222N½2Nþ1�Nþð1=2Þ·S0ðS1S2…SNÞ
2
; ð44Þ

detl½A�l¼detlHl·detlDAl

¼222N½2Nþ1�Nþð1=2Þ·V0ðV1V2…VNÞ
2
: ð45Þ

When Sn¼0; n¼0;1;2;…;N; true and spurious

eigenvalues are imbedded in ½ðp=2ÞYnðkRÞ2ðlnðk=2Þþ

gÞJnðkRÞ�JnðkrÞ¼0 if the single layer potential method or

UT method is used for the Dirichlet problem. We can

summarize this as follows:

True eigenequation : JnðkrÞ ¼ 0

for the Dirichlet problem;

ð46Þ

True eigenequation : J 0
nðkrÞ ¼ 0

for the Neumann problem;

ð47Þ

Spurious eigenequation :

p

2
YnðkRÞ2 ln

k

2
þg


 �
JnðkRÞ ¼ 0 using MRMðUTÞ:

ð48Þ

If the singularity is superimposed on the real boundary

ðr;uÞ; 0, u, 2p; instead of the fictitious boundary ðR;uÞ;

0, u, 2p; then only the spurious eigenequation (48) is

changed to

Spurious eigenequation :

p

2
YnðkrÞ2 ln

k

2
þg


 �
JnðkrÞ ¼ 0 using MRMðUTÞ: ð49Þ

Both cases (true and spurious) have the same boundary

modes, einu; on the boundary with radius R or r if UT MRM

or single layer MRM is used.

If the LM formulation is used, we have

L ¼
›U

›R
¼k

X1
n¼21

p

2
Y 0

nðkRÞ2 ln
k

2
þ g


 �
J 0

nðkRÞ


 �
JnðkrÞ

� cos nu; ð50Þ
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Fig. 2. (a) The minimum singular value s1 versus k using the UT equation only. (b) The minimum singular value s1 versus k using the LM equation only. (c)

The minimum singular values s1 versus k results obtained using the UT and LM equations. (d) The second minimum singular value s2 versus k results obtained

using the UT and LM equations. (e) The minimum singular value s1 versus k results obtained combining two equations from T matrix and all equations from M

matrix. (f) The second minimum singular value s2 versus k results obtained combining two equations from T matrix and all equations from M matrix.
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Fig. 2 (continued )
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M ¼
›2U

›R›r
¼k2

X1
n¼21

p

2
Y 0

nðkRÞ2 ln
k

2
þ g


 �
J 0

nðkRÞ


 �

� J 0
nðkrÞcos nu: ð51Þ

Similarly, the true and spurious eigenvalues occur at the

zeros for the following spurious eigenequation:

True eigenequation :

JnðkrÞ ¼ 0 for Dirichlet problem;
ð52Þ

Fig. 2 (continued )
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True eigenequation :

J 0
nðkrÞ ¼ 0 for the Neumann problem;

ð53Þ

Spurious eigenequation :

p

2
Y 0

nðkRÞ2 ln
k

2
þ g


 �
J 0

nðkRÞ ¼ 0

using fictitious MRMðLMÞ;

ð54Þ

Spurious eigenequation :

p

2
Y 0

nðkrÞ2 ln
k

2
þ g


 �
J 0

nðkrÞ

¼ 0 using direct MRMðLMÞ:

ð55Þ

Both cases (true and spurious) have the same boundary

modes, einu; on the boundary with radius R or r if LM MRM

or double layer MRM is used.

Substituting the eigenvalues and boundary modes

(obtained from the MRM UT equation) into UT equation

(1) for an interior point, we have

unða;fÞ ¼ p2RJnðkaÞ
p

2
YnðkrÞ2 ln

k

2
þ g


 �
JnðkrÞ


 �

� ða cosðnfÞ þ b sinðnfÞÞ;

0 , a , r; 0 , f , 2p;

ð56Þ

where a and b are free constants. Similarly, we have

unða;fÞ ¼ p2RJnðkaÞ
p

2
Y 0

nðkrÞ2 ln
k

2
þ g


 �
J 0

nðkrÞ


 �

� ða cosðnfÞ þ b sinðnfÞÞ;

0 , a , r; 0 , f , 2p;

ð57Þ

if the MRM LM equation is used. Theoretically, it is

interesting to find that spurious modes are trivial since the

terms of ½ðp=2ÞYnðkrÞ2 ðlnðk=2Þ þ gÞJnðkrÞ� and ½ð

p=2ÞY 0
nðkrÞ2 ðlnðk=2Þ þ gÞJ0nðkrÞ� are imbedded in Eqs.

(56) and (57), respectively. However, the spurious modes

obtained numerically are as follows using UT MRM and

LM MRM, respectively, where �unða;fÞ is a normalized

mode:

Single layer or UT method :

�unða;fÞ ¼ JnðkaÞða cosðnfÞ þ b sinðnfÞÞ;

0 , a , r; 0 , f , 2p;

ð58Þ

Double layer or LM method :

�unða;fÞ ¼ JnðkaÞða cosðnfÞ þ b sinðnfÞÞ;

0 , a , r; 0 , f , 2p:

ð59Þ

It is interesting to find that the nodal lines for true

and spurious modes are the same after normalization

if ½ðp=2ÞYnðkrÞ 2 ðlnðk=2Þ þ gÞJnðkrÞ� or ½ðp=2ÞY 0
nðkrÞ2

ðlnðk=2Þ þ gÞJ 0
nðkrÞ� approaches zero but is not exactly

zero. To be precise, true and spurious modes are different

since eigenvalues are not equal.

6. Numerical examples—a circular cavity and a square

cavity

In the first case of circular cavity with radius 1, an

analytical solution is available as follows: eigenequation

J 0
mðkmnrÞ ¼ 0; m ¼ 0; 1; 2; 3;…; n ¼ 1; 2; 3;…; eigen-

mode: uða; uÞ ¼ JmðkmnaÞeimu; 0 , a , r; 0 , u , 2p:

Eighty elements for r ¼ 1 are adopted in the boundary

element mesh. Since two alternatives, the UT and LM

equation, can be chosen when collocating on the boundary,

two results from the UT and LM methods can be obtained.

Fig. 2(a) shows the minimum singular value versus k: The

true eigenvalues contaminated by spurious eigenvalues can

be obtained as shown in Fig. 2(a) by considering the near

zero minimum singular values if only the UT equation is

chosen. In a similar way, the true eigenvalues contaminated

by spurious eigenvalues can be obtained as shown in Fig.

2(b) by considering the near zero minimum singular values

if only the LM equation is chosen. It is interesting to find

that no spurious eigenvalues occur as shown in Fig. 2(c)

when the UT and LM equations are combined. After

obtaining the true eigenvalues, their multiplicities can be

determined as shown in Fig. 2(d) from the locations where

the second minimum singular value also approaches zero. It

is found that double roots are obtained in this case. Since no

triple roots are available, the plot of s3 versus k is not

provided. The true and spurious eigenvalues are shown in

Tables 1 and 2, respectively. The ABAQUS results in Refs.

[25,26] for the true eigensolutions also match the present

solutions. Good agreement between analytical and numeri-

cal results can be obtained. For the more efficient method,

two equations from T matrix are combined with all

Table 1

The true eigenvalues obtained by using the analytical method and MRM for

a circular domain with Neumann boundary conditions

1 2 3 4

Analytical solution 1.8412

ðJ
01
1 Þ

3.0542

ðJ
01
2 Þ

3.8317

ðJ
02
0 Þ

4.2012

ðJ
01
3 Þ

Numerical solution using

UT equation (MRM)

1.84 3.06 3.85 4.15

Numerical solution using

LM equation (MRM)

1.84 3.06 3.85 4.16

J 0mn denotes the eigenvalues which satisfy the true eigenequation:

J 0
mðkmnrÞ ¼ 0; m ¼ 0; 1; 2; 3;…; n ¼ 1; 2; 3;…
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the equations from M matrix and the results are shown in

Fig. 2(e) and (f). Good agreement can be made in

comparison with Fig. 2(c) and (d). In Fig. 2, there are

sharp changes in the slopes of curve. This is a natural result

instead of artificial plot. Since the function of s1ðkÞ; is the

minimum of all the singular values of function k;

ðs1ðkÞ;s2ðkÞ;s3ðkÞ;…; Þ; the abrupt change of slopes can

be understood as an envelope curve. The first four true

boundary and interior modes are shown in Figs. 3 and 4,

respectively. The first two spurious boundary and interior

modes are shown in Figs. 5 and 6, respectively. Some

contamination near the boundary can be found in the interior

modes. The analytical and numerical results match very

well. As expected, the spurious modes in Figs. 5 and 6 for

Eqs. (56) and (57) are found to have the same nodal lines

that the true modes have although they have different

eigenvalues. Table 3 summarizes the results for the

Neumann problem. Also, the true and spurious eigensolu-

tions for the Dirichlet problem can be derived analytically as

Fig. 3. (a) The first true boundary modes. (b) The second true boundary modes. (c) The third true boundary modes. (d). The fourth true boundary modes.

Table 2

The spurious eigenvalues obtained by using the analytical method and

MRM for a circular domain with Neumann boundary conditions

1 2

Analytical spurious eigenvalues using UT

equation (MRM)

2.74 ðS1
1Þ 4.18 ðS1

2Þ

Numerical spurious eigenvalues using UT

equation (MRM)

2.75 4.11

Analytical spurious eigenvalues using LM

equation (MRM)

2.74 ðS001Þ 4.44 ðS011Þ

Numerical spurious eigenvalues using UT

equation (MRM)

2.74 4.34

Sn
m denotes the eigenvalues which satisfy the spurious eigenequation:

ðp=2ÞYmðkmnrÞ2 ðlnðkmn=2Þ þ gÞJmðkmnrÞ ¼ 0; m ¼ 0; 1; 2;…; n ¼ 1; 2;…

by MRM (UT). S
0n
m denotes the eigenvalues which satisfy the spurious

eigenequation: ðp=2ÞY 0
nðkmnrÞ2 ðlnðkmn=2Þ þ gÞJ 0mðkmnrÞ ¼ 0; m ¼

0; 1; 2;…; n ¼ 1; 2;… by MRM (LM).
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shown in Table 4. Although the spurious eigen solution of a

noncircular case cannot be analytically predicted, the

numerical results are shown in Fig. 7(a)–(e). The results

agree well with the exact solution of true eigensolution.

Since the CPU time of the MRM depends on the number of

adopted terms, the comparison with the other methods is not

provided.

7. Conclusions

The dual MRM in conjunction with the SVD technique

has been applied to determine the eigensolutions of a

circular cavity. Analytical solutions for the true and

spurious eigensystems occuring in the UT or LM equation

only have been derived. A more efficient method has been

Fig. 4. (a) The first true interior modes. (b) The second true interior modes. (c) The third true interior modes. (d) The fourth true interior modes.
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Fig. 5. (a) The first spurious boundary modes. (b) The second spurious boundary modes.

Fig. 6. (a) The first spurious interior modes. (b) The second spurious interior modes.

Table 3

The true and spurious systems for the Neumann problem using UT MRM and LM MRM

Eigenequation Eigenmode

(boundary)

Eigenmode (interior): unða;fÞ : (unnormalized);

Eigenmode (interior): �unða;fÞ : (normalized)

UT method True J 0nðkrÞ ¼ 0 einu unða;fÞ ¼ p2RJnðkaÞ
�p

2
YnðkrÞ2

�
ln

k

2
þ g

�
JnðkrÞ

�
cosðnfÞa

�unða;fÞ ¼ JnðkaÞcosðnfÞb

Spurious
p

2
YnðkrÞ2

�
ln

k

2
þ g

�
JnðkrÞ ¼ 0 einu unða;fÞ ¼ p2RJnðkaÞ

�p
2

YnðkrÞ2
�
ln

k

2
þ g

�
JnðkrÞ

�
cosðnfÞc

�unða;fÞ ¼ JnðkaÞcosðnfÞb

LM method True J 0nðkrÞ ¼ 0 einu unða;fÞ ¼ p2RJnðkaÞ
�p

2
Y 0

nðkrÞ2
�
ln

k

2
þ g

�
J 0nðkrÞ

�
cosðnfÞa

�unða;fÞ ¼ JnðkaÞcosðnfÞb

Spurious
p

2
Y 0

nðkrÞ2
�
ln

k

2
þ g

�
J 0nðkrÞ ¼ 0 einu unða;fÞ ¼ p2RJnðkaÞ

�p
2

Y 0
nðkrÞ2

�
ln

k

2
þ g

�
J 0nðkrÞ

�
cosðnfÞc

�unða;fÞ ¼ JnðkaÞcosðnfÞb

a Denotes a nontrivial solution.
b Denotes a nontrivial solution after normalization.
c Denotes a trivial solution without normalization.
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proposed by selecting sufficient number of equations from

dual MRM instead of all of them. Numerical experiments

have been performed to filter out the spurious solutions by

using the dual formulation. A general purpose program,

DUALMRM, has been developed, the spurious solutions

have been successfully predicted analytically and filtered

out numerically, and the multiplicities and boundary modes

of the true solutions for the circular cavities have been

Table 4

The true and spurious systems for the Dirichlet problem using UT MRM and LM MRM

Eigenequation Eigenmode

(boundary)

Eigenmode (interior): unða;fÞ : (unnormalized);

eigenmode (interior): �unða;fÞ (normalized)

UT method True JnðkrÞ ¼ 0 einu unða;fÞ ¼ p2RJnðkaÞ
�p

2
YnðkrÞ2

�
ln

k

2
þ g

�
JnðkrÞ

�
cosðnfÞa

�unða;fÞ ¼ JnðkaÞcosðnfÞb

Spurious
p

2
YnðkrÞ2

�
ln

k

2
þ g

�
JnðkrÞ ¼ 0 einu unða;fÞ ¼ p2RJnðkaÞ

�p
2

YnðkrÞ2
�
ln

k

2
þ g

�
JnðkrÞ

�
cosðnfÞc

�unða;fÞ ¼ JnðkaÞcosðnfÞb

LM method True JnðkrÞ ¼ 0 einu unða;fÞ ¼ p2RJnðkaÞ
�p

2
Y 0

nðkrÞ2
�
ln

k

2
þ g

�
J 0nðkrÞ

�
cosðnfÞa

�unða;fÞ ¼ JnðkaÞcosðnfÞb

Spurious
p

2
Y 0

nðkrÞ2
�
ln

k

2
þ g

�
J 0nðkrÞ ¼ 0 einu unða;fÞ ¼ p2RJnðkaÞ

�p
2

Y 0
nðkrÞ2

�
ln

k

2
þ g

�
J 0nðkrÞ

�
cosðnfÞc

�unða;fÞ ¼ JnðkaÞcosðnfÞb

a Denotes a nontrivial solution.
b Denotes a nontrivial solution after normalization.
c Denotes a trivial solution without normalization.

Fig. 7. (a) The minimum singular value s1 versus k results obtained using the UT and LM equations only. (b) The second minimum singular value s2 versus k

results obtained using the UT and LM equations. (c) The minimum singular value s1 versus k results obtained combining two equations from T matrix and all

equations from M matrix. (d) The second minimum singular value s2 versus k results obtained combining two equations from T matrix and all equations from

M matrix.
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determined by using the SVD technique. The possible

application of MRM to large scale problem will be

conducted in the future work.
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Appendix A

Using the property of a geometric series, we have

X2N

n¼0

einfm ¼
1 2 eið2Nþ1Þfm

1 2 eifm
; ðA1Þ

X2N

n¼0

einfm ¼
1 2 eim2p

1 2 eifm
¼ 0 ðm – 0Þ; ðA2Þ

where

fm ¼ m Du ¼
2mp

2N þ 1
:

Also, we have

X2n

n¼0

cos nfm ¼
0; ðm – 0Þ;

2N þ 1; ðm ¼ 0Þ;

(
ðA3Þ

X2n

n¼0

sin nfm ¼ 0 ðm ¼ 0; 1; 2;…; 2NÞ; ðA4Þ

X2N

n¼0

cos mfn sin lfn ¼
X2N

n¼0

cos nmf1 sin nlf1

ðfn ¼ n Du ¼ nf1Þ

¼ 1
2

X2N

n¼0

½sin nðlþ mÞf1 þ sin nðl2 mÞf1� ¼ 0;

ðA5Þ

X2N

n¼0

sin mfn sin lfn

¼ 1
2

X2N

n¼0

½cos nðl2 mÞf1 2 cos nðlþ mÞf1�

¼

0; l – m;

1

2
ð2N þ 1Þ; l ¼ m;

;

8><
>: ðA6Þ

X2N

n¼0

sin mfn cos lfn

¼
1

2

X2N

n¼0

½cos nðl2 mÞf1 þ cos nðlþ mÞf1�

¼

0; l – m;

1

2
ð2N þ 1Þ; l ¼ m – 0;

2N þ 1; l ¼ m ¼ 0;

8>>><
>>>:

ðA7Þ

where

l ¼ 0; 1; 2;…;N

m ¼ 0; 1; 2;…;N:
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