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In this paper, the dual integral formulation for the Helmholtz equation used in solving
the acoustic modes of a two-dimensional cavity with a degenerate boundary is
derived. All the improper integrals for the kernel functions in the dual integral
equations are reformulated into regular integrals by integrating by parts and are
calculated by means of the Gaussian quadrature rule. The jump properties for the
single layer potential, double layer potential and their directional derivatives are
cxamined and the potential distributions are shown. To demonstrate the validity of the
present formulation, the acoustic frequencies and acoustic modes of the two-
dimensional cavity with an incomplete partition are determined by the developed dual
BEM program. Also, the numerical results are compared with those of the ABAQUS
program, FEM by Petyt and the dual multiple reciprocity method. Good agreement
between the present formulation and measurements by Petyt is also shown. © 1998
Elsevier Science Ltd. All rights reserved

1 INTRODUCTION

The hypersingular integral equation was first formulated by
Hadamard' to treat the cylindrical wave equation by spheri-
cal means of descent. In the meantime, Mangler derived the
same mathematical form in solving the thin airfoil prob-
lem.? The improper integral was then defined by Tuck® as
the ‘Hadamard principal value’. In aerodynamics, it was
termed the ‘Mangler’s principal value’.>*. Such a non-
integrable integral naturally arises in the dual integral
formulation especially for problems with a degenerate
boundary, e.g. crack problems in elasticity,i_'” heat flow
through a baffle,'’ Darcy flow around a cut-off wall,”'”
the aerodynamic problem of a thin airfoil* and acoustic
waves impinging on a screen.'*'> The dual formulation
also plays an important role in some other problems, e.g.
the corner problem,'® adaptive BEM,'” and the exterior
problem."® A general application of the hypersingular inte-
gral equation in mechanics was discussed in Ref. ', and a
review lecture on recent development of dual BEM was
presented in Ref. 2°. Combining the conventional integral
equation, e.g. Green’s Identity or Somigliana Identity, with
the hypersingular integral equation, we call the two
equations ‘dual integral equations’ owing to the presence
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of the pair of continuous and discontinuous properties of the
potential as the field point moves across the boundary.>' =23
From the above point of view, the definition of the dual
integral equations is quite different from the conventional
one used in crack elastodynamics by Buecker.’* The dual
equations in the present paper are independent with respect
to each other for the undetermined coefficients of the com-
plementary solution. The dual integral equations defined by
Buecker resulted from the same equation, but by collocating
different points. The present formulation totally has four
kernel functions, which make possible a unified theory
encompassing different schemes, various derivations and
interpretations. For elasticity, a detailed derivation can be
found in Ref. °. The singularity order of hypersingularity for
the kernel in the normal derivative of the double layer
potential is stronger than that of the Cauchy-type kernel
by one. The paradox of the non-integrable kernel is intro-
duced owing to the illegal change of the integral and trace
operators from the point of view of the dual integral formu-
lation.?' In order to ensure a finite value, the Leibnitz rule
should be considered as the derivative of Cauchy principal
value (C.P.V.) so that the boundary term 2/e can be included
to compensate for the minus infinity. In the literature,
many researchers have paid attention to regularization
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techniques® for hypersingularity and nearly hypersingular
integrals. The available techniques are summarized in Fig. 1.
Therefore, the value for the finite part can be determined by
means of regularization techniques. Based on the theory of
dual integral equations, the dual boundary element method
can be implemented.”'® The dual integral representation for
the Laplace equation was proposed in Ref. ?. In the same
way, the acoustic problem with a degenerate boundary also
requires the dual integral formulation. In the literature, a
large number of papers have focused on the non-physical
solution for the exterior problem of the Helmholtz equation
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Fig. 1. Regularization methods for hypersingularity.

data.

by using the integral equation method. Burton and Miller*®
first combined dual integral equations to deal with fictitious

eigenvalues. Furthermore, the multiple reciprocity method
(MRM) also encounters spurious eigenvalues for the interior
problem of the Helmholtz equation.”’** Both cases, the

exterior problem by BEM and the interior problem by

MRM, have problems with non-uniqueness for the solution.
However, for the interior problem with a degenerate bound-

ary, conventional BEM also results in a singular system, and

the problem of non-uniqueness also occurs. Terai'* and Wu
and Wan'? solved the three-dimensional acoustic problem
with a screen by using the dual integral formulation. To the
authors’ best knowledge, a detailed derivation on a two-
dimensional acoustic cavity with an incomplete partition

has not been found, although FEM results are readily

available.

In this paper, we extend the concept of the dual integral
formulation for the Laplace equation® to the two-
dimensional Helmholtz equation and examine the potential
properties of the four kernel functions. After discretizing the
dual integral equations, all the improper integrals are trans-
formed into regular integrals and are calculated using the

d(x)=f(x), xon B
m =g(x), xonB,
on,

Gaussian quadrature rule. The transcendental eigenequation
is constructed, and the eigenvalues are solved using the
direct search method. A general dual BEM program is
implemented to solve the acoustic frequencies and acoustic
modes for an arbitrary two-dimensional cavity with or with-
out incomplete partitions. An illustrative problem for the
acoustic modes of a cavity with an incomplete partition is
solved to show the validity of the present formulation for the
acoustic problem with a degenerate boundary. Results are
compared with other numerical methods and experiment

2 DUAL INTEGRAL FORMULATION FOR AN
ACOUSTIC PROBLEM WITH A DEGENERATE
BOUNDARY

Consider an acoustic problem which has the following
governing equation:

V2 (x) + K (x) =0,

where D is the domain of interest, x is the domain point, ¢
is the acoustic pressure and k is the wave number defined
by the angular frequency divided by the sound speed. The
homogeneous boundary conditions are shown as follows:

xin D

where B, is the essential boundary in which the acoustic
pressure is prescribed, B; is the natural boundary where
the normal derivative of the acoustic pressure in the n,
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direction is specified, and B, and B, construct the whole
boundary of the domain D.

The first equation of the dual boundary integral equations
for the domain point can be derived from Green’s third
identity:

2wo(x) = IB T(s, x)p(s) dB(s)

6d>( ) @
J U(s, x) ——dB(s), x€D
where 7(s, x) is defined by
T(s, x) = s, x) (5)
an

s

in which #, is the outnormal direction at the boundary point
s, and U(s, x) is the fundamental solution which satisfies

V2U(x, s)+k°U(x, s)=8(x—s), xED (6)

In eqn (6), 6(x — s) is the Dirac-delta function. After taking
the normal derivative with respect to eqn (4), the second
equation of the dual boundary integral equations for the
domain point can be derived:

2 dd’(x) JM(S x)é(s) dB(s)

ap(s) @
’)
— JBL(S, X) on dB(s), x&€D
where
L(s, x) = ‘wa(s’ %) (8)
o _ U, %) ©)
& 0= anong

in which n, and n, represent the outnormal directions of x
and s respectively. The explicit forms for the four kernel
functions are shown in Table 1. By moving the field point x
in eqns (4) and (7) to the boundary, the dual boundary
integral equations for the boundary point can be obtained
as follows:

7¢p(x)=C.P.V. JB T(s, x)¢(s) dB(s)

_RPV. J ues, » 22D ans) (19)
xXEB
a“:")_y PV. J M(s, x)é(s) dB(s)

—C.P.V. -[ L(s, x 9¢(s) s), (In
B ony
xXEB

where R.P.V. is the Riemann principal value and H.P.V. is
the Hadamard (Mangler) principal value.

U,T equation limit U,T equation

for domain point process | for boundary point

traction Leibnitz | traction

operator y rule operator
L, M equation |I'Hospital L, M equation

} for domain point rule * | for boundary point

Commutativity diagram for dual integral equations
Fig. 2, Commutativity for the derivation of hypersingularity.

It must be noted that eqn (11) can be derived simply by
applying a normal derivative operator with respect to eqn
(10). Differentiation of the C.P.V. should be carried out
carefully using Leibnitz’s ruie. The commutative property
provides us with two alternatives for calculating the H.P.V.,
as shown in Fig. 2, in the same way used for crack prob-
lems.’ For the problem including a normal boundary § and
degenerate boundary Ct +C~,ie. B=8§S+ C* + C,
eqns (10) and (11) can be reformulated as follows:For x € S,
eqns (10) and (11) become

7dp(x)=C.P.V. Is T(s, x)o(s) dB(s)

—RPV. J Us, x) i’(——)dB()
N ong
(12)
+ J; T(s, X)Ad(s) dB(s)
i dp(s)
_ Jw Us, x) . o 95
- a¢’§x)=H.P.V. L M(s, x)é(s) dB(s)
—CPV. LL(S, 0 29 455
’ o (13)
+ | . M(s, )Ad(s) dB(s)
dd(s)
- Jw L(s, x) ). o dB(s)
where
Ap(s)=(s )~ ¢(s7) (14)
il
Za—d’(s) (s )+ (*) (15)
n
For x € C*, eqns (10) and (11) reduce to
T $(x)=C.P.V. JU T(s, x)A¢(s) dB(s)
do(s)
_R.PV. L-+ Us, 0 Y. . dB(s)
+ Js T(s, 1)b(s) dB(s) — L UG, 0 %2 22 s
(16)
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Table 1. The explicit form of kernel functions for the two-dimensional Helmhotz equation.

Kernel function U(s, x) T(s, x) L(s, x) M(s, x)
Order of singularity weak (In(r)) strong (1/r) strong (1/r) hypersingular (1/r%)
Symmetry Ulx, s5) L{x, s) T(x,s) M(x, s)
gl . ) - . I I
— k — ik J k 7 — ik H,(k H''(k
Two-dimensional case ﬂﬁ o H | (kr) it in(kr) Yitti il S 2(, ) yivini (kr) n;f;
2 2 r 2 r 2 r? ()
Remark = yivi ;= nLS) ;= nfx) Yi=X;— 5

H. (kr) denotes the first kind of mth-order Hankel function.

aa 2% _ppy. L* M(s, x)Ad(s) dB(s)
dp(s) ]
—C.PV. L‘ Lis, x) Y. n dB(s)
+ L M(s, x)¢(s) dB(s)
— J"L(s, Xx) Mdb’(s) (17)
s an,
where
D )=o)+ o) (18)
o6 09 L. 0%
A %(X)— 5;()6 ) an(x ) (19)

eqns (14), (15), (18) and (19) indicate that the unknowns on
the degenerate boundary double, and that the additional
hypersingular integral equation, eqn (17), is correspond-
ingly necessary; i.e. the dual boundary integral equations
can provide us with sufficient constraint relations for the
doubled boundary unknowns on the degenerate boundary.

3 ON THE FOUR KERNEL FUNCTIONS AND
THEIR POTENTIALS

The four kernel functions, U(s, x), T(s,x), L(s, x) and
M(s, x), in the dual integral equations have different
orders of singularity when x approaches s. The order of
singularity and the symmetry properties for the four
kernel functions are shown in Table 1. The continuous prop-
erties of the potentials across the boundary resulting from
the four kernel functions are summarized in Table 2. In

Table 2, not only the normal derivatives for the single-
and double-layer potentials, but also the tangential deriva-
tives are considered. For the regular elements, no special
treatment is needed since the Gaussian quadrature rule can
be employed. Without loss of generality, the four improper
integrals for the singular elements obtained by using the
constant element scheme after coordinate transformation in
Fig. 3 can be formulated into the following regular integrals:

(1) U(s, x) kernel:

. {).5/
Uy= T lim J . Hik/s? + ) ds

= lim

2 0

Jf %H‘ kls!
— .51 U( S)dS

0.5/
+ H(ks) ds]
€

—ir .
= lim
2 e—0

- \/;
I
J_(w Hy(klsl) ds +0

0.5/
+ J H(') (ks) ds

Jr

&l 0.51
f Kt ' I
H(,< 2)/—}-1\ Jfo.sl H (kls)lsl ds:!

(i no sum)

—iT

2

(20)

Table 2. The properties of the single potential, the double layer potential and their directional derivatives

Kernel function  U(s, x) T(s, X) Lis, x) M(s, x) L'(s, x) M'(s, x)

K(s, x)

Density function  a¢/dn [0) dplon 103 aplon ¢

u(s)

Potential type single layer double layer normal derivative normal derivative tangential deriva- tangential deriva-
of single layer of double layer  tive of single tive of double
potential potential layer potential layer potential

_[ K(s, x)u(s) ds

Continuity across continuous discontinuous discontinuous psuedo continuous continuous discontinuous

boundary

Jump value no jump 2w — 2w(d¢lon) no jump no jump 27ss
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before rotation

(sin @, — cos ¢)

(T1,22)
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after rotation

(sin{¢ — 6), — cos(¢ — 6))

(~0.5,0) (0,0) (0751,0)
X : node
o collocation point
(sin @, — cos f)
,_r} | cosf  sin {1,; s,}
{v' T —sin® cosf | lwe—s2

Coordinate transformation

Fig. 3. Coordinate transformation for improper integrals.

where H(')(ks) is the first kind of the zeroth-order Hankel
function, / is the element length and the coordinate of the
collocation point is (0, 0).

(2) 1(s, x) kernel:

ik 0.5 .
Tii:%— Ilna J ()ilHIl(kV Sb+62) %db‘
o e 5T +e

ik lim Ve i(=2) € ds

2 =0 J - </‘ wk\/s* +€* /5P + €

e

. s
= lm& arctan o

- R

=7 (i no sum) (20

where H,'(ks) is the first kind of the first-order Hankel
function.

(3) L(s, x) kernel:

imk 0.5( 1 - e
Lii:Tll—n(l) J)—()As/Hl(k 5+ e€) Sz+62d5
. —imk % i(=2) €
= lim —— | ds
e—0 2 - \/: Tk 2 + €2 /s?+ €
=7 (i no sum) 22)

(4) M(s, x) kernel:

. 0.5 1 2 2
- H;(k\/ s
M, — imk J {_,‘,M}(_e)(_f)
2 =0 J-osi 2+

N H:(k\/sz—i—ez)ds
Vstteé

(o (3 ()

0.5
+k J o H,‘(klsr)lslds”(i no sum) (23)

_ —imk

where le(ks) is the first kind of the second-order Hankel
function. After the above manipulations, the improper inte-
grals, including weak (U(s, x)), strong (7(s, x), L(s, x)) and
superstrong (M(s, x)) singularities, are reduced to regular
integrals and can be calculated using the Gaussian quad-
rature rule.

The potentials of the six kernel functions in Table 2,
U(s, x), T(s, x), L(s, x), M(s.x), L'(s, x) and M'(s, x),
induced by the constant singularity source distributed
along the boundary from s = (—0.5,0) to s = (0.5, 0) are
shown in Figs 4-6 for different values of k = 0.01, 1 and 2
respectively. The behavior of the single layer potential
(U(s, x) kernel), the double layer potential (7(s, x) kernel),
the normal derivative of the single layer potential (L"(s, x)
kernel), the normal derivative of the double layer potential
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Fig. 4. (a) Pressure distributions of the real potentials resulting from the six kernel functions for the case of k = 0.01. (b) Pressure contour of
the real potentials resulting from the six kernel functions for the case of k = 0.01. (c¢) Pressure distributions of the imaginary potentials
resulting from the six kernel functions for the case of k = 0.01. (d) Pressure contour of the imaginary potentials resulting from the six kernel
functions for the case of k = 0.01.
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Fig. 5. (a) Pressure distributions of the real potentials resulting from the six kernel functions for the case of k = 1. (b) Pressure contour of

the real potentials resulting from the six kernel functions for the case of k = 1. (¢) Pressure distributions of the imaginary potentials

resulting from the six kernel functions for the case of k = 1. (d) Pressure contour of the imaginary potentials resulting from the six kernel
functions for the case of k = 1.
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resulting from the six kernel functions for the case of k = 2. (d) Pressure contour of the imaginary potentials resulting from the six kernel
functions for the case of k = 2.
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method UT+LM

uT

UT uT
LM(UT)| UT(LM)

UT

method LM+UT

LM

LM LM
LM(UT)| UT(LM)

LM

Fig. 7. Two alternative approaches.

(M"(s, x) kernel), the tangential derivative of the single layer
potential (L(s, x) kernel) and the tangential derivative of the
double layer potential (M'(s, x) kernel) are shown in the
figures. The subscript indexes of ‘R’ and ‘i’ in the kernels
represent the real part and imaginary parts respectively.
Both the real part and imaginary part are included in the
cases of (a,b) and (c.d) respectively. It is found that in the
case of Fig. 4(a) and Fig. 4(b) for k = 0.01, the asymptotic
behavior of the real part of the kernels for the Helmholtz
equation is similar to that of the Laplace equation in Refs
2122 45 expected. The continuous behaviors of the single
layer potential (U(s, x) kernel) and the normal derivative
of the double layer potential (M(s, x) kernel) are displayed
in this figure. The jump behaviors across the boundary along
s = (=0.5,0) to s = (0.5, 0) can be observed for the double
layer potential (7(s, x) kernel) and the normal derivative of
the single layer potential (L(s, x) kernel). Also, the dipole
and quadrupole source structures can be found. Based on the
singular solutions, the strength of the singularity can be
determined by satisfying the boundary conditions.

Vig+k'g=0
!

[

I
N

a=0.112, b=0.236, c=0.056 m, e=0

Fig. 8. A cavity with an incomplete partition.
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Fig. 9. The boundary element mesh.

4 EIGENEQUATION FOR THE ACOUSTIC
CAVITY WITH A DEGENERATE BOUNDARY

For simplicity, the Neumann problem is considered in this
paper. After determining the influence coefficients, we can
obtain the transcendental equation as follows:

(T(k)) ;) =0
[M;(k)]{¢;} =0

where {¢;} is the boundary mode of acoustic pressure and

Tyk)= —2md; + IB T(s;, x;) dB(s;)

M(k)= JB M(s;, x;) dB(s))

in which B; denotes the jth boundary element and the eigen-
value k is imbedded in the elements of the matrix. After
combining the dual equations on the degenerate boundary
when x collocates on C* or C~, the non-trivial eigen-
solution only exists when the determinant of the influence
matrix is zero. Since either one of the two equations, UT

2
8

B R B}
£
2

Acoustic frequencies (Hz)
8 g

mode number

Fig. 10. Comparisons of the acoustic frequencies for the former
five modes using dual BEM, dual MRM, FEM by Petyt, FEM by
the ABAQUS program and experiments.
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Table 3. The former five acoustic frequencies (Hz) by dual BEM, the other numerical methods and experiments

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
Present (UT + LM) 584 1439 1518 1537 1818
Present (LM + UT) 584 1439 1518 1534 1818
Dual MRM 577 1444 1529 1534 NA
ABAQUS (AC2D4) 618 1421 1496 1527 1780
ABAQUS (AC2D8) 605 1458 1536 1563 1851
FEM by Petyt 591 1478 1540 1570 1861
Measurement by Petyt 570 1470 1534 1555 1840

or LM, for the outer boundary S can be selected, two
alternative approaches in Fig. 7, UT + LM and LM +
UT, are proposed as follows.

The UT 4+ LM method has the eigenequation

Tigjq Tig, - Tige bj
T‘(-+/S T’}»'J} [ Ti(,,j(- ¢j(»+ ={0} (26)
Mi(+ Js Mi(~+j( + Mi(.+j(~ . d)j(- -

where is and i+ denote the collocation points on the S and
C™ boundaries respectively, and j and jo+ denote the ele-
ment ID on the S and C* boundaries respectively.

mode 2
- mode 3
$ B

mode 4

1537 Hz

Ty ’4,4’/)&
T mode 5

1818 Hz

The LM + UT method has the eigenequation

My, M., Mg ®jq
Toii Toie Tre [de, S=100 n
Mijs M, M bjc-

To solve for the eigenequation, a direct search method is
employed.

S AN ILLUSTRATIVE EXAMPLE
To demonstrate the validity of the dual integral formulation,
(b)

mode 1

mode 2

mode 3

mode 4

mode 5

Fig. 11. (a) The pressure distributions of the former five modes for the cavity with an incomplete partition. (b) The pressure contours of the
former five modes for the cavity with an incomplete partition.
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an example given by Petyt?™®?® is considered. A two-

dimensional cavity enclosed by rigid walls is shown in
Fig. 8. The cavity is a rectangle, 236 mm long and
113 mm high, and contains a rigid partition located halfway
along the longer side of the cavity. The thickness of the
partition is modeled as zero thickness; i.e. the boundary of
partition is degenerate. The partition extends from one side
of the cavity halfway across to the other wall. The cavity is
filled with an acoustic fluid whose density is 1.0 kg m ~ and
whose bulk modulus is 0.1183 MPa. The boundary element
mesh is shown in Fig. 9. The former five acoustic frequen-
cies given in Table 3 were solved using dual BEM, and the
results were compared with those of dual MRM,™ the
ABAQUS program®?' and FEM by Petyt.?5?° Two types
of element in the ABAQUS program, AC2D4 and AC2DS8,
were considered. As shown in Fig. 7, two methods, UT +
LM and LM + UT, were employed. There was fairly close
agreement between the two solutions and all the other
results as shown in Fig. 10. It was also found that the two
methods match very well, as shown in Table 3 and Fig. 11(a)
and Fig. 11(b). Although no mesh convergence studies have
been performed, the close agreement between the acoustic
frequencies and the acoustic modes of the present results in
coarse mesh and those given by Petyt and coworkers>>’
suggest that the mesh is adequate. Also, the pressure dis-
tributions and contour plot for the acoustic modes are shown
in Fig. 11(a) and Fig. 11(b) respectively. The present results
are also in better agreement with the experimental data
obtained by Petyt than they are with the data obtained
using other numerical methods.

6 CONCLUSION

The general formulation of the dual integral equations
of the boundary value problem for the two-dimensional
Helmbholtz equation with a degenerate boundary has been
derived in this paper. The properties of the potentials
resulting from the four kernel functions in the dual integral
equations have been examined, and their potential
distributions have also been given. A general dual BEM
program has been implemented to solve for the acoustic
frequencies and acoustic modes for an arbitrary two-
dimensional cavity with or without incomplete partitions.
An illustrative example has been successfully solved using
the proposed dual BEM, and the results compare well
with those obtained using other numerical methods and
experiments.
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